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建構半導體晶圓針測圖樣分類辨識模型 

Development Pattern Recognition Model for 
Classification of Circuit Probe Wafer Maps on 

Semiconductor 

 

研究生 : 呂建鋒  指導教授 : 洪炯宗 博士 

國立中央大學 資訊工程研究所 

 

 在半導體業界中，晶圓針測 (Circuit Probe) 屬於生產過程中的後段測試，其

測試結果包含了晶圓良率的好壞及追溯異常製程與設備所需之重要資訊，並且產

生圖形化的故障圖樣分佈於晶圓上，此資訊為製程錯誤診斷及機台故障檢視提供

很多有用的線索。因此，了解晶圓針測圖樣所代表的意義及造成故障圖樣的原

因，在工程資料關聯性分析中是件非常重要的工作。為了減少以往人為檢視方式

所消耗的時間，一個準確的晶圓自動化分類系統在工程資料分析中是不可或缺的

一套工具。本論文使用影像處理中偵測直線之霍夫轉換(Hough transform)及偵測

圓形之圓形霍夫轉換(Circular Hough transform)演算法擷取直線及圓形分佈故障

圖樣之特徵，並且使用了數種常見的特徵擷取技巧來取得其它不同的故障圖樣。

研究中提出一套結構化系統，將晶圓特徵擷取出後透過數種資料探勘分類演算法

建立不同的分類器(classifier)，並且驗證所提出之數種特徵可有效消除雜訊對晶

圓分類準確度的影響。最後以實際半導體資料及模擬資料評估不同資料勘分類演

算法對於本研究所提出的特徵擷取方法有最佳的準確度。 

摘要 
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Development Pattern Recognition Model for 
Classification of Circuit Probe Wafer Maps on 

Semiconductor 

 

Student: Chien-Feng Lu Advisor: Dr. Jorng-Tzong Horng 

Institute of Computer Science and Information Engineering, 

National Central University, Taiwan 

 

Abstract－ Circuit probe test is an end of line testing that the individual die has 
been measured at wafer level in modern semiconductor manufacturing. The test 
results are visualized as a spatial distribution of the failures on the wafer which can 
provide some valuable information for the production of failures. In order to reduce 
time consumption by human operation, a great accuracy of automatic classification 
system is clear needed for engineering analysis. In this paper, we demonstrate how a 
robust feature extraction procedure using by classical Hough transform (HT) and 
circular Hough transform (CHT) can be adapted to detect lines and rounds spatial 
patterns on circuit probe wafer map. In addition, we also used several technique to 
detect others spatial patterns. These features which are effectively eliminate the 
influence of noise to perform pattern classification. The presented methodology is 
validated with real fabrication data and several data mining classification algorithms 
are presented to evaluate the advantage of this methodology. 

Abstract 

Keywords - semiconductor wafer classification, circuit probe test, features 
extraction, Hough transform, data mining 
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Chapter 1 Introduction 

1.1 Background 
The semiconductor manufacturing has been became a more highly complex 

technology which involving a series of precise arrangement of process steps through 

several processing equipments to produce hundreds of individual integrated circuit die 

on a piece of silicon wafer. Thus, any tool excursion can lead to a yield loss across the 

industry. Such losses can originate from different kinds of problems which may arise 

from equipment malfunctions, delicate and difficult processing steps, or human 

mistakes [1]. In order to be competitive in the semiconductor manufacturing industry, 

the detection of these problems becomes a critical issue because yield performance is 

closely related to the control and efficiency of the wafer manufacturing process. 

Therefore, the yield enhancement engineering usually focuses on the investigation of 

low-yield lots, the elimination of defects, process excursions, the correlation between 

electrical and functional experiment result, and the improvement of baseline product 

yield [2, 3]. 

Some process step faults are detectable only by end-of-line tests. It is well know 

that spatial patterns in the distribution of Circuit Probe (CP) failures on a wafer can be 

related to the potential causes in end-of-line tests. If the dies that fail at CP tests are 

visualized as black pixels, the spatial distribution of the failures is likely to show 

characteristic patterns. Different shapes are possible in Line, Bull eye, Ring, Blob, and 

Edge. From these patterns it may be possible to understand which type of problem 

originated the failures, in which step of the process, and in which equipment. 

Therefore, these patterns can be used to trace back to the problems that originated the 

failures either by analyzing their qualitative features or by correlating them with the 
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lot history [1, 4]. Thus, engineers are usually screen form CP wafer map to conduct 

through statistical data analysis for fault diagnosis. Since there is a lot of data produce 

by step of process and equipment every day. For this reason, it is needed to develop a 

fully automatic classification system to screen signatures for engineers on CP wafer 

maps without time consuming and perform yield prediction, fault diagnosis, 

correcting manufacturing issues and process controls as shown in Figure 1.1.  

 

 
Figure 1.1 Diagram of our goal 

 

1.2 Motivation 

In previous researches, there are many proposed methods intend to classify and 

recognize these kinds of spatial patterns such as statistical distribution analysis, neural 

networks and image processing. Although many of these methods are powerful, they 

are generally unable to extract meaningful data or failed to detect noisy datasets. A 

more robust classification scheme can be achieved using data mining algorithms. 

However, the accuracy and reliability of the data mining approach depends on 

features selection and the selected features must have some unique attribute that can 

be used to discriminate each characteristic pattern [8]. As exhaustive search technique, 
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the Hough transform is a robust method which is relatively unaffected by noise for 

feature detection and generally been recognized as a reliable for linear and circular 

object detection [14]. K. Preston White et al. have been demonstrated how this 

transform can be adapted to classify signatures on semiconductor wafers in 2008 [5], 

but the procedure does not appear to be as useful for detecting patterns in Bull eye and 

Blob. Thus, we future apply circular Hough transform to detect spatial pattern 

representing in Bull eye and Blob.  

Otherwise, we found that some of these methods analyzed in rarely dataset. It 

appears very difficult to define conclusions on the relative performance on the basis 

of such limit dataset. For this reason, we analyzed much more extensive actual data 

provided by engineering database in a famous semiconductor company and simulated 

sufficient coverage of each spatial patterns generated by artificiality.  

 

1.3 Goals 

We intended to develop a pattern recognition model with a set of features and 

demonstrated this model is more accurate and reliable. Otherwise, we want to train 

and evaluate this model with sufficient actual data. In order not to against specific 

company and area, we further generated simulated data by artificiality. We hope that 

the accuracy on simulated data will consistent with real manufacturing data. 
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Chapter 2 Related Works 

2.1 Introduction to semiconductor manufacturing 
In this section, we provide an overview of semiconductor manufacturing. As 

illustrated in Figure 2.1, the manufacturing operation can be viewed graphically as a 

system with raw materials and supplies as its inputs and finished commercial products 

as outputs. The input materials include semiconductor materials, dopants, metals, and 

insulators. The corresponding outputs include integrated circuits, IC packages, printed 

circuit boards, and ultimately, various commercial electronic systems and products. 

 

 
Figure 2.1 Block diagram representation of a manufacturing system 

 

The types of processes that arise in semiconductor manufacturing include crystal 

growth, oxidation, photolithography, etching, diffusion, ion implantation, 

planarization, and deposition processes. Viewed from a systems-level perspective, 

semiconductor manufacturing intersects with nearly all other IC process technologies, 

including design, fabrication, integration, assembly, and reliability. The end result is 

an electronic system that meets all specified performance, quality, cost, reliability, 

and environmental requirements [21].  

 

2.1.1 Semiconductor process sequences 

 Semiconductor manufacturing consists of a series of sequential process steps like 
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the one described in the previous section in which layers of materials are deposited on 

substrates, doped with impurities, and patterned using photolithography to produce 

ICs. Figure 2.2 illustrates the interrelationship between the major process steps used 

for semiconductor fabrication. Polished wafers with a specific resistivity and 

orientation are used as the starting material.  

 

 
Figure 2.2 Semiconductor manufacturing process flow 

 

The process sequences of semiconductor can roughly be divided into front-end 

and back-end processing. The front-end processing includes oxidation, 

photolithography, diffusion, etching, thin-film deposition, and chemical mechanical 

polishing. After processing, each wafer contains hundreds of identical rectangular 

chips (or dies). The back-end processing includes test and assembly. Before the 

identical rectangular chips assembled into a package, functional test is performed. 

Functional testing at the completion of manufacturing is the final arbiter of process 

quality and yield. The purpose of final testing is to ensure that all products perform to 

the specifications for which they were designed. For integrated circuits, the test 

process depends a great deal on whether the chip tested is a logic or memory device. 

Circuit Probe test is a kind of wafer probe test when the polished wafer finished from 

semiconductor fabrication [21]. 
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2.1.2 Circuit probe maps 

 Testing the individual die at the wafer level has been an integral part of the 

semiconductor manufacturing process, it is so-called wafer probe or wafer sort. Figure 

2.3 is a picture of a typical probe test cell including the Automatic Test Equipment 

(ATE) and a wafer prober which is a machine used to test integrated circuits. The 

prober holds the wafer being tested on a vacuum chuck. The chuck moves in the 

horizontal x-y directions positioning the individual die on the wafer in the center of 

the test head. The prober Interface Board (PIB), sometimes called the DUT Load 

Board, connects the bottom side of the test head. Below the PIB, in the stack of 

tooling underneath the test head, is the Spring Contactor Assembly. The PIB is 

hard-mounted to the prober, so the Spring Contactor Assembly must provide a little 

vertical compliance and theta rotation as well as routing the test signals. The bottom 

element in the stack is the probe card. It has connectors or pads on the top side mating 

to the Spring Contactor Assembly and needles on the bottom side that physically 

contact the I/O pads on the individual die being tested [22]. 

 

 

Figure 2.3 Wafer level testing [22]  
 

 When all test patterns pass for a specific die, its position is remembered for later 
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use. Sometimes a die has internal spare resources available for repairing. Non-passing 

circuits are typically marked with a small dot of ink in the middle of the die, or the 

information of passing/non-passing is stored in a file, such a file recorded the result of 

the electrical test information on the wafer and can be drawn by visualized map. This 

wafer map categorizes the passing and non-passing dies by marking use of bins. A bin 

number is then defined as a good or bed die as shown in Figure 2.4.  

 

 
Figure 2.4 The CP map draw in different color with bin number 

 

If the dies that fail at probe tests are visualized as black pixels, the spatial 

distribution of the failures is likely to show characteristic patterns as shown in Figure 

2.5. 

 

Figure 2.5 The CP map draw in black with fail bin 
 

 Because of some process step faults are detectable only by end-of-line tests and 

spatial patterns in the distribution of Circuit Probe failures on a wafer can be related 
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to the potential causes in end-of-line tests. From these patterns it may be possible to 

understand which type of problem originated the failures, in which step of the process, 

and in which equipment. Therefore, these patterns can be used to trace back to the 

problems that originated the failures either by analyzing their qualitative features or 

by correlating them with the lot history. For instance, consider the plot in Figure 2.6 in 

which the average lot-level CP yield of a quarter of certain product. It can be found 

that the yield of two lots named LOT0032 and LOT0051 were significantly lower 

than baseline of specific value. After identified these low yield lots, the engineers will 

further go to examine CP maps by wafer in these lots.  

 

 

Figure 2.6 The CP yield trend chart 
 

In Figure 2.7, the CP maps present 6 wafers from the lot of LOT0032. It is easily 

to find out that all wafers failed in edge spatial patterns. 
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Figure 2.7 The CP wafers of low yield lot (LOT0032) 

 

Besides, in Figure 2.8, the CP maps present 25 wafers from the lot of LOT0051. 

It is also easily to find out that most wafers failed in center spatial patterns. 

 

 
Figure 2.8 The CP wafers of low yield lot (LOT0051) 

 

Because of spatial patterns are usually due to process errors and tool excursions 
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can be extremely valuable to engineers when identifying root cause in their work. 

Therefore, engineers are often screen form CP wafer map to conduct through 

statistical data analysis for fault diagnosis. Since there is a lot of data produce by step 

of process and equipment every day. For this reason, it is needed to develop a fully 

automatic classification system to screen signatures for engineers on CP wafer maps 

without time consuming and perform yield prediction, fault diagnosis, correcting 

manufacturing issues and process controls.  

 

2.2 Literature review 

In the past few years, methods of automated spatial pattern analysis in the 

semiconductor manufacturing process have been widely investigated and discussed. 

They proposed many approaches to classify and recognize these kinds of spatial 

patterns. At least four different approaches are possible, the simplest and least 

efficient is visual classification performed by a human operator. In view of the time 

needed to analyze thousands of wafers, it is not possible to have a fast feedback to 

correct problems. The second approach is statistical distribution analysis such Poisson 

or negative-binomial distributions are normally on lot-level basis for account for 

cluster phenomena. For example, Friedman et al., developed statistics measuring 

spatial dependency of defects to detect systematic clustering [11]. Although most 

statistical approaches are able to detect anomalies on wafer, they are generally unable 

to extract meaningful data from the spatial pattern since tend to incorrectly assume a 

stationary probability distribution. Systematic spatial patterns caused by the 

semiconductor fabrication process involve a complex variation of statistical 

parameters which are highly dependent on the process, machine, suppliers, materials 

etc. Thus, traditional statistical approaches are not recommended for practical 

application. Moreover, the monitoring statistics often bear relatively complex 
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statistical properties, adding difficulty in implementation of these methods. The third 

approach is neural network algorithms that can recognize spatial patterns. However, 

the major limitation of neural-network approaches lies in its inability to classify two 

or more shift variance in the spatial patterns. It is also incapable of detecting the 

presence and location of a cluster. Many of these methods need a large training dataset, 

and due to the complexity of the algorithms, most of these methods do not provide a 

statistically rigorous evaluation of their performances in pattern detection. The fourth 

approach is image processing, this method attempts to detect cluster outliers, but fall 

sort at detecting real manufacturing spatial pattern, which are almost always of 

different and imperfect geometrical shapes. However, this approach lacks flexibility 

because it requires the prior knowledge of all the possible shapes in different products 

and difficult to predict in advance [23, 24, 25]. Image processing and artificial neural 

network (ANN) classification approaches are notorious to fail for noisy datasets. 

Generally, neural network approaches cannot identify two or more shift variant or 

rotational variant spatial patterns that belong to the same defect pattern type [8].  

A more robust classification scheme can be achieved using data mining 

algorithms. However, the accuracy and reliability of the data mining approach 

depends on features selection and the selected features must have some unique 

attribute that can be used to discriminate each characteristic pattern. As exhaustive 

search technique, the Hough transform is a robust method which is relatively 

unaffected by noise for feature detection and generally been recognized as a reliable 

for linear and circular object detection [14]. The Hough transform employing a 

normal line-to-point parameterization is widely applied in digital image processing for 

feature detection. It is a very powerful tool for the detection of parametric curves and 

generally used to detect lines and rounds, which is originally proposed by Hough in 

1959. The advantage of Hough transform is as follows: it isn’t sensitive to the noise of 
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image, effectively eliminate the influence of noise. The transform is convenient to 

parallel computing. In the field of computer vision, some issues are complex and 

require a great of computation, and parallel computing is used by modified Hough 

transform, and then calculating the start and end of the line. In this paper, we applies 

the Hough transform for spatial pattern recognition and a frequency count to indentify 

lines or sets of lines which represent line signatures. K. P. White et al. have been 

demonstrated how this transform can be adapted to classify signatures on 

semiconductor wafers in 2008 [5], but the procedure does not appear to be as useful 

for detecting spatial patterns in Bull eye and Blob. Thus, we future apply circular 

Hough transform to detect spatial pattern representing in Bull eye and Blob which is 

proposed to detect rounds for spatial pattern [5, 6].  

However, we found that some of the previous methods analyzed in rarely dataset. 

For instance, on the basis of the analysis of simulated and real wafers, Chen and Liu 

concluded that the ART1 network classifies can recognize the similar defect spatial 

patterns more easily and correctly. However, the simulated data set was made of only 

35 simulated wafers, each of which containing 294 dies. As for the patterns, there are 

three types of rings and four types of scratches. The real wafers analyzed in the paper 

were only 14 wafers, still with 294 dies per wafer [2]. L.J. Wei using neural network 

approaches for recognizing the bin-map patterns on the wafer. In their work, the 57 

actual wafers had been analyzed which included 9 Bull eye, 14 Edge, 9 Blob, 9 Ring 

and 16 Line spatial patterns [12]. S.F. Liu et al. proposed a feature extraction 

procedure based on wavelet transform to extract features that represent different 

defect patterns. The presented methodology is verified with real industrial data from a 

semiconductor company and the experimental results show the presented 

methodology is able to recognize defect patterns with recognition accuracy of 95%, 

however, the real industrial data also made of only 65 wafers and the system failed to 
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recognize Blob type of spatial pattern [25]. It appears very difficult to define 

conclusions on the relative performance on the basis of such limit dataset [20]. For 

this reason, in this paper we analyzed much more extensive sets of manufacturing data 

provided by engineering database in a famous semiconductor company and sufficient 

coverage of simulated data generated by artificiality. Table 2.1 illustrates the 

comparisons between previous methodology with accuracy and data set. 

 

Table 2.1 The comparisons between presented methodologies.  
 

Literature 
Feature selection 

method  
Pattern Data set Accuracy 

F.L. Chen and S.F. Liu, A 

neural-network approach to  

recognize defect spatial pattern in 

semiconductor fabrication, 2000 

--  line, ring  14 real data 60%  

K.P. White et al., "Classification of 

defect clusters on semiconductor 

manufacturing wafers via the Hough 

transform", 2005 

Linear Hough 

transform  

bull eye, edge, ring 

and line 
-- -- 

L.J. Wei, "Development of wafer bin 

map pattern recognition model - using 

neural network approach", 2006 

5 features  
bull eye, edge, blob, 

ring and line 
57 real data 93.75% 

S.F. Liu et al.,"Wavelet transform 

based wafer defect map pattern 

recoginition system in semiconductor 

manufacturing", 2008 

Wavelet transform  
 line, blob, ring, 

radial, repeat 
65 real data 60%~100%  

J.W. Cheng et al., "Evaluating 

performance of different classification 

algorithms for fabricated 

semiconductor wafers", 2010 

2 features  
bull eye, edge, blob, 

ring and line 
unknown 0%~100% 

 
 

Based on this automatic classification methodology, we could obtain the 

information on problems related to the signature maps. Finding a process root cause is 
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not an easy task. Thus, a greater accuracy of classification is needed for engineering 

analysis. Subsequently, the process history of each wafer is used to create a list of the 

process step and keep track of which equipment must be responsible the problem in 

analysis. This paper proposed the use of five types of features from the semiconductor 

CP map on the wafer and evaluates the performance of several classification 

algorithms. We will demonstrate that the result present in more high accuracy with 

sufficient coverage of data set. 

 

2.3 Related tools 

 The Computer sciences are suitable implement for pattern analysis because they 

provide the ability to promptly perform systematic, repetitive analyses on large data 

sets. It is a significant challenge to analyze huge quantities of wafer inspection and 

electrical test data and extract the information needed for identifying yield 

improvement opportunities [7]. There are some techniques used in our methodology 

that we talk about as following section. For feature selection, it is including noise 

reduction, image edge detection, Hough transform. For evaluation, we verify the 

accuracy with data mining algorithms. 

 

2.3.1 Noise reduction 

In general, the spatial pattern composed of systematic and random fails as shown 

in Figure 2.9. The random fails are most often produced by the clean room 

environment and can only be reduced through a program of long term. Because of 

random fails have useless information for yield improvement, thus, we do not discuss 

this kind of fails in this paper. On the contract, systematic fails are often caused by 

some kind of machine failures and process-related fails are often caused by one or 
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more process steps not meeting the required specifications. Therefore, it is important 

to routinely monitor by systematic fails of wafer yield for irregularities. The 

segmentation is done on a by wafer basis and we will demonstrate the results in 

chapter 3. 

 

 

Figure 2.9 The spatial pattern separated into systematic and random fails 
 

In order to generating smoothed wafer maps without random fails, we applied an 

approach called local kernel estimator defined by D. J. Friedman et al. in 1997 [11]. 

The goal of the smoothing operation is to highlight regions with a large number of fail 

chips. As a visual process, this identification involves judging how closely the 

numbers of fail chips in small area agree with what might be expected by considering 

the yield of the wafer as a whole. To be more precise, at each chip position, we 

consider a neighborhood around the given chip and calculate the proportion of the 

chip’s neighbors that are failed. The choice of the neighborhood is flexible, although 

in practice we have typically employed 3x3 or 5x5 neighborhoods as shown in Figure 

2.10. 

 
Figure 2.10 The 3x3 and 5x5 mask 
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Further, one could use a weighted average with some specified set of weights 

instead of simple proportion. Essentially, the proportions are transformed to values 

between zero and one by applying a sequence of transformation, a variance-stabilizing 

transformation followed by centering and scaling a finally probability-integral 

transformation. Toward this end, local kernel estimator had been defined as: 

 

 
Where Ni is the chip set adjacent with i, Wi(j) is the weight of the chip j and IF(j) is 

indicate the chip j is failure or not. When the chip was failed the value would be 

denoted as 0, otherwise the value would be denoted as 1. In the previous research [12], 

the weight of mask has been design in 3x3 mask. Inside the mask, the weight of center 

die I (Wi) is set as  , and the weight of J (Wj) is set as  . For instance, when 3x3 

mask overlap on a partial of wafer map as shown in Figure 2.11, they can be 

calculated in following statement: 

 

 
 

 
Figure 2.11 The 3x3 mask overlap on partial of wafer map 

 

After we calculated  for all of the dies on the wafer we could realize that  will 
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change by yield of the wafer, thus we transfer  by the below formula: 

 

 
 

Because of the edge dies don’t have completed neighborhood then we transferred 

these edge dies by Standard normal integral function to solve it. In general, we don’t 

try to integrate it, just use the standard normal cumulative probability table as shown 

in chapter appendix. 

 

2.3.2 Canny edge detector 

Edge detection is a basic tool in image processing and computer vision, 

especially in the areas of feature detection and feature extraction, which aim at 

identifying points in a digital image at which the image brightness change sharply 

discontinuities. Typically, the first step in the process is to perform some detector of 

edge detection on the image, and to generate a new binary boundary image that 

provides the necessary segmentation of the origin image. The edge detection is a very 

important process required for the Hough transform because it could reduce the 

computation time and has interesting effect of reducing the number of useless vote. 

Many edge detection methods have been applied for different application. Among 

them, the Canny edge detector is the boundaries separating regions with different 

brightness or color suggested by J. Canny in 1886 which is an efficient method for 

detecting edges. It takes grayscale image on input and returns bi-level image where 

non-zero pixel mark detected edges [15]. 

In this paper, we applied the Canny function provided by OpenCV (Open Source 

Computer Vision Library) which is a library of programming function at real time 
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computer vision, developed by Inter corporation. The document of function is shown in 

Table 2.2. 

 
Table 2.2 The function of Canny in OpenCV 

 
 

The Canny algorithm is adaptable to various environments and its parameters 

allow it to be tailored to recognition of edges of differing characteristics depending on 

the particular requirements of a given implementation [13]. Otherwise, Canny 

detector gives thin edge compared to Sobel detector as shown in Figure 2.12. 

 

 
Figure 2.12 Image edge detection using OpenCV (a) origin image (b) Canny (c) Sobel  
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2.3.3 The Hough Transform 

 The Hough Transform is an algorithm presented by Paul Hough in 1962 for the 

detection of features of a particular shape like lines or circles in digitalized images in 

image analysis, computer vision and digital image processing. It can be applied to 

many computer vision problems contain feature boundaries which can be described 

by regular shapes. The purpose of the technique is to find uncompleted objects by 

voting procedure. This voting procedure is carried out in a parameter space, from 

which object candidates are obtained as local maxima in as so-called accumulator 

space that is explicitly constructed by the algorithm for computing the Hough 

transform. The classical Hough transform was concerned with the identification of 

lines, but later the Hough transform has been extended to identify of other shapes, 

most commonly circles or ellipse. The main advantage of the Hough transform 

technique is that it is tolerant of gaps in feature boundary descriptions and is relatively 

unaffected by image noise. Figure 2.13 shows the diagram of Hough process [14, 15]. 

 

 
Figure 2.13 The Hough transform process 

 
A. Line detection 
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 The simplest case of Hough transform is the linear transform for detecting 

straight lines. In the image space, the straight line can be described in rectangular 

coordinate xy-plane (image space) as follows: 

y = mx + b                                    

where m and b are the slope and intercept of line lj, as shown in Figure 2.14(a). The 

line in the xy-plane can be transformed into the slope-intercept parameter plane as 

follows: 

     b = -xm + y                                     

This line-to-point transformation is the basis for its usefulness, as shown in Figure 

2.14 (b). 

 

 

Figure 2.14 The linear Hough transform (a) Line lj trhough the fixed point  (x*, y*) 
in the xy-plane (b) a single point (mj, bj) in the slope-intercept parameter plane (c) 3 
points in the same line in image space transformed into r-θ parameter space and 
intersect to a point (d) A real case transformation in  r-θ parameter space 
 

The drawback of the (m, b) parameterization is that when lines which are nearly 

vertical in the xy-plane have extremely large values for both m and b. Thus, an 
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alternate parameterization was employed to avoid this shortcoming which called 

r-θparameter space as follows: 

   x cosθ + y sinθ =  r                        

Every point in the same line in the image space will intersect to a point in the r-θ 

parameter space, as shown in Figure 2.14 (c), which makes the lines extraction 

problem transform to counting problem. A real case transformation from image space 

to r-θparameter space look likes Figure 2.14 (d).  

Given this characterization of a line, we can then iterate through any number of 

lines that pass through a given point. We incorporate the results in an accumulator 

array. At the beginning, the accumulator array is initialized to zero for all cells. After 

that, for every value of A with a corresponding value B, the value of that cell is 

incremented by one [5, 14]. 

 

B. Circle detection 

 The Hough transform can also be used for detection circles and other parametric 

geometric figures. The circle is simpler to represent in parameter space, compared to 

the lines, since the parameters of the circle can be directly transfer to the parameter 

space as following: 

    r2 = ( x – a ) 2 + ( y – b ) 2                   

where a and b are the center of the circle in the xy-plane and where r is radius. The 

parametric representation of the circle is: 

     x = a + r cosθ  

     y = b + r sinθ  

 At each edge point we draw a circle with center in the point with the desired 

radius. This circle is drawn in the parameter space, when the edge points in the 
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xy-plane are located on the same perimeter then the circles with center in these points 

must be intersected to a point, as shown in Figure 2.15.  

 
Figure 2.15 Points are located on the same perimeter 

 

At the coordinates which belong to the perimeter of the drawn circle we 

increment the value in our accumulator matrix as show in Table 2.3. In this way we 

sweep over every edge point in the input image drawing circles with the desired radii 

and incrementing the values (or score) in our accumulator. When every edge point and 

ever desired radius is used, we can turn our attention to the accumulator. The 

accumulator matrix which is three dimensional, if the radius is not held constant, can 

quite fast grow large. In order to simplify the parametric representation of the circle, 

the radius can be limited to number of known radii, such as 1 < r < R where R is the 

wafer radius [16, 17]. 

Table 2.3 An example accumulator 
index a b r score 

1 23 4 5 17 

2 26 9 8 15 

3 23 5 5 15 

4 24 5 5 13 

5 30 4 12 13 

6 25 2 7 13 

… … … … … 
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2.4 Classification of data mining 

Most of the machine learning used in data mining can be divided into supervised 

learning and unsupervised learning. Unsupervised learning refers to the problem of 

trying to find hidden structure in unlabeled data. The idea is to use algorithms that 

automatically identify the classes of patterns in the data set and assign each wafer to 

one of the classes. The advantage of unsupervised learning is the method can identify 

unsuspected patterns that could have been ignored by a human operator. Otherwise, 

the disadvantage is the lack of direction for the learning algorithm and that there may 

not be any interesting knowledge discovered in the set of features selected for the 

training. In supervised learning, each example is a pair consisting of an input object 

and a desired output value. A supervised learning algorithm analyzes the training data 

and produces a classifier. The classifier should predict the correct output value for 

any valid input object. For instance, a set of wafers is classified by a human operator 

and then used to train a classification model. More precisely, the parameters of the 

model are tuned until corresponded by the training set and classifies the data as 

correctly as possible. The idea is that when new wafers are presented to the trained 

model, the will be classified correctly. A major disadvantage of supervised learning is 

the time spent by a human operator in order to prepare the training set and the 

subjectivity of the classification carried out by the human operator, which could 

affect in an unpredictable way the final performance of the classifier. In other words, 

the advantage of supervised learning is that all separate classes in the algorithms are 

meaningful to humans [20]. Supervised learning algorithms are applied in this paper 

because the input-output relationship is known. We cannot do classification without 

labeled data because only the labels tell what the classes are. Many situations present 

hung volumes of raw data, but assigning classes is expensive because it requires 
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human insight.  

The methodology must be capable of mapping the features which are extracted 

from the input to the output. A so-called train and test method is used to construct a 

classifier in which the available dataset is divided into a training set and a test set, as 

show in Figure 2.16 [8]. The original data has been divided into training set and 

testing set. The training set used to train a classified model by data mining 

classification algorithm with 10-folds cross-validation. Once the classified model had 

been constructed, the testing set will applied to estimate the accuracy of classifier. 

 

 
Figure 2.16 Train and Test method 

 

 It is natural to measure a classifier’s performance in terms of the error rate. The 

classifier predicts the class of each instance. If it is correct, that is counted as s success; 

if not, it is an error. The error rate is just the proportion of errors made over a whole 

set of instance, and it measures the overall performance of the classifier. We already 

know the classifications of each instance in the training set, which after all is why we 

can use it for training. To predict performance of a classifier on new data, we need to 

assess its error rate on a dataset that played no part in the formation of the classifier. 
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This independent dataset is called the test set. We assume that both the training data 

and the test data are representative samples of the underlying problem. It is important 

the test data was not used in any way to create the classifier. The training data is used 

by one or more learning methods to come up with classifiers. The test data is used to 

calculate the error rate of the final, optimized, method. Both of the two sets must be 

chosen independently, the test set must be different from the training set to obtain 

reliable estimate of the true error rate. If lots of data is available, we take a large 

sample and use it for training; then another, independent large sample of different data 

and use it for test. Provided that both samples are representative, the error rate on the 

test set will give a true indication of future performance. Generally, the large the 

training sample the better the classifier and the larger the test sample, the more 

accurate the error estimate. There’s a dilemma here, to find a good classifier, we want 

to use as much of it as possible for testing. Consider what to do when the amount of 

data for training and testing is limited. In practical terms, it is common to hold out 

one-third of the data for test and use the remaining two-thirds for training. However, 

the sample used for training or testing might not be representative and we cannot tell 

whether a sample is representative or not. A more general way to mitigate any bias 

caused by the particular sample chosen for holdout is to repeat the whole process, 

training and testing, several times with different random samples. This important 

statistical technique called cross-validation that we will talk about in next section 

[18]. 

 

2.4.1 10-fold cross-validation 

 Cross-validation is a technique for evaluating how the result of statistical 

analysis will generalize to an independent data set and comparing learning algorithms 
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by dividing data into two segments. One used to learn or train a model and the other 

used to validate the model. In typical cross-validation the training and validation sets 

must cross-over in successive round such that each data point has a chance of being 

validated against. The basic form of cross-validation is k-fold cross-validation. In data 

mining and machine learning 10-fold cross-validation (k = 10) is the most common. 

Why 10? Extensive tests on numerous datasets, with different learning techniques, 

have shown that 10 is about the right number of folds to get the best estimate of error, 

and there is also some theoretical evidence that backs this up [18]. 

In 10-fold cross-validation the original data is first randomly partitioned into10 

equally (or nearly equally) sized segments or subsamples. Subsequently, the 

cross-validation process repeated 10 times, with each of the 10 subsamples used 

exactly once as the validation data and a different fold of the data is held-out for 

validations while the remaining 9 (k – 1) folds are used for learning, as shown in 

Figure 2.17. The 10 results from the folds then can be averaged (or otherwise 

combined) to produce a single estimation. The advantage of this method over repeated 

random sub-sampling is that all observations are used for both training and validation, 

and each observation is used for validation exactly once.  

 
Figure 2.17 10-fold cross-validation 
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2.4.1 Classification algorithms 

 We often need to compare various learning methods on the same problem to see 

which is the better one to use. Subsequently, estimate the error using cross-validation 

and choose the scheme whose estimate is smaller. This is quite sufficient in many 

practical applications, if one method has a lower estimated error than another on a 

particular dataset, the best we can do is to use the former method’s model [18]. 

 

A. Decision tree 

 Decision tree is arguably the most widely used approach for classification 

because it is an effective method for producing classifiers from a dataset. It is also 

relatively simple, readable and fast to generate. It works by building a tree of rules 

(see Figure 2.18) whereby new instances can be tested by simply stepping through 

each test at each decision node starting from the root node till the leaf node. The 

advantage of this method is that it follows a logical approach and does not make any 

assumptions on the statistical distribution and independence of features. Thus it is 

normally more robust compared to most statistical approaches. 

 The biggest problem for decision tree is the missing branch (null leaf) 

phenomena. It occurs when the tree is used to classify a feature that is not found in the 

training set. This will result in an unclassified instance. When building a decision tree, 

it is important to choose which attributes to split as some choice of attributes may be 

considerably more useful than others. Basically, the attribute that has the most ‘pure’ 

nodes and randomly equal counts will be selected. Entropy which is an information 

theoretic measure of the ‘uncertainty’ contained in a training set, due to the presence 

of more than one possible classification [8]. 
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Figure 2.18 Example of decision tree using WEKA 

 

B. Naive Bayes classifier 

 NBC is a statistical classifier that predicts the probability that a given 

combination of features belongs a particular class as shown in Figure 2.19. In certain 

types of applications, this classifier is found to be comparable to decision trees. It also 

has the ability to overcome the ‘missing branch’ phenomena because prior and 

conditional probabilities are both used to calculate the probability of each possible 

classification. 

 Theoretically, Bayesian classifiers have the minimum error rate in comparison to 

all other classifiers. However in practical applications, the statistical assumptions that 

it imposes will reduce the classification accuracy. Another disadvantage is that it only 

applies to discrete features, which limits its application. Additionally a complex 

equation is required for estimating the classification probability and all features must 

be mutually independent [8]. 
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Figure 2.19 The generative process by NBC 

 

C. Bagging on decision tree 

 Boostrap aggregating (bagging) can improve the performance of decision trees. 

It combines multiple rather than using total isolation of classes. Thus a particular set 

of features can be categorized into several types of classes and their membership into 

each of the class types is scored. As show in Figure 2.20, the decision rules (base 

learners) are built different by training them using slightly different training sets. It is 

then the decision from each decision rules being vote to find the majority. Bagging 

classifier often gives a higher accuracy than a single classifier because it attempts to 

neutralize the instability of learning methods by simulating the process described 

previously using a given training set. This method excels especially when unstable 

base algorithms with high variance are used. Additionally, it does not tend to over fit 

the data which makes the final decision less affected by noisy data [8]. 

 
Figure 2.20 General framework of bagging 
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D. LogitBoost 

 Boosting is an ensemble method that is similar in concept to bagging. As shown 

in Figure 2.21, boosting trains the next weak learners based on the mistakes of 

previous learners. Normally, boosting results in better performance over bagging. 

However, it has a risk of over fitting and thus the performance of combined 

hypotheses might be worse than the performance of a single hypothesis. Besides, 

boosting requires a very large training set sample and is unsuitable for small datasets. 

Although there are many boosting algorithms available, this research only considered 

the use of LogitBoost, which performs additive logistic regression. This method can 

be accelerated by specifying a threshold for weight pruning. The advantage of 

LogitBoost over other boosting methods is its capability of being wrapped around any 

numeric predictor without making any modifications. However, it was required to do 

some regression, and due to the curse of dimension, doing regression is not a trivial 

task. Thus neutral network was implemented in this project for regression [8]. 

 

 
Figure 2.21 Boosting illustration 
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2.5 The WEKA data mining workbench 

 WEKA has several graphical user interfaces that enable easy access to the 

underlying functionality. The main graphical user interface is the “Explorer”. It has a 

panel-based interface, where different panels correspond to different data mining 

tasks. In the first panel, called “Preprocess” panel, data can be loaded and transformed 

using WEKA’s data preprocessing tools, called “filters”. This panel is shown in 

Figure 2.22. 

 

 
Figure 2.22 The WEKA explorer interface 

 
The main graphical user interface in WEKA is the “Experimenter” (see Figure 2.23). 

This interface is designed to facilitate experimental comparison of the predictive 

performance of algorithms based on the many different evaluation criteria that are 

available in WEKA. Experiments can involve multiple algorithms that are run across 

multiple datasets; for example, using repeated cross-validation. Experiments can also 

be distributed across different compute nodes in a network to reduce the 

computational load for individual nodes. All data mining algorithms we introduced 

previously can be found in WEKA classifier [18, 19]. 
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Figure 2.23 The WEKA experimenter interface 

Chapter 3 Materials and Methods 

3.1 Materials 

 In this section, we described where to get all the data set of variations 

characteristic spatial patterns of CP maps representing in Line, Bull eye, Ring, Blob, 

and Edge. In semiconductor industry, the Engineering Data Analysis System (EDAs) 

is collecting all measurement data and equipment information in step of process for 

each device (see Figure 3.1). We obtained hundreds of data from database of EDAs 

and used as training set. Besides, simulated data was generated and used because the 

amount of real manufacturing data in EDA database is not sufficient to contain all 

possible cases. Some patterns rarely occur in real datasets thus they will not provide 

sufficient coverage when training the classifier. After all, we listed the data set in 

manufacturing and simulated in Table 3.1. 
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Figure 3.1 The EDA database in semiconductor industry 

 

More precisely, the manufacturing data consist of 758 wafers with 626 dies per 

wafer and 965 simulated wafers generated by artificiality. 

 

 
 
 

Table 3.1 The EDA database in semiconductor industry 

 
 

Table 3.x The simulate data set 
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3.2 System flow 

As discussing the related works in Chapter 2, the steps of our methodology are 

depicted in Figure 3.2. Each step of block will be explained in the following section. 

 
Figure 3.2 System flow 

3.3 Methods 

3.3.1 Pattern definition 

The characteristic pattern is composed of basic shape, mainly including Line, 

Bull eye, Ring, Blob, and Edge. Because of these patterns can be used to trace back to 

the problems that originated the failures either by analyzing their qualitative features 

or by correlating them with the lot history, so we defined these pattern as our major 

classified spatial pattern shape as shown in Figure 3.3. 
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Figure 3.3 Pattern definition (a) Line (b) Edge (c) Ring (d) Blob (e) Bull eye 

 

3.3.2 Data preprocessing  
In order to eliminate the amount of noise bring from random error, we applied an 

approach called local kernel estimator which described in section 2.2 to generating 

smoothed wafer maps. First, the original wafer map must transfer to monochrome 

image. Second, we generating smoothed image using local kernel estimator, the result 

resented as gray-level image. Finally we set a threshold value with 0.71 which is 

optimization by trial and error to filter out random pixels and then obtained a clearly 

image with system error. The whole procedure is shown in Figure 3.5. 
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Figure 3.5 Filter origin map (a) Original image (b) Monochrome image (c) Gray-level 
image with (d) Gray-level image with threshold = 0.71 

 

 

After smoothed the image, an edge recognition procedure is implemented to find all 

edges in the image. The edge detection process is very important and required 

procedure for the Circular Hough transform technique. Various edge detection 

methods have been applied for different application such as Canny., as shown in 

Figure 3.6. 
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Figure 3.6 The result of an edge recognition procedure in a sample wafer 

 

3.3.3 Feature extraction 

In order to prove the Hough transform for lines detection, we involved the real 

failure of scratch pattern, as shown in Figure 3.7 (a), in semiconductor manufacturing.  

 

 

Figure 3.7 Line detection of Hough transform (a) Wafer with a scratch signature (b) 
Filter out random failures (c) Transformed into r-θ parameter space. (d) Frequency 
histogram of the signature 

 

Afterward, we managed a filter algorithm to filter out the random failures from the 

original Line spatial pattern and obtained the identified cluster, as shown in Figure 3.7 

(b). This procedure can reduce the number of wafers and dies that must be analyzed. 

When transformed the signature pattern from image space into the r-θ parameter 
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space, all the dies in the same line are intersected to a point at the angle 135 degree, as 

shown in Figure 3.7 (c). To automate the classification process, we count the number 

of die with the identical values of (r ,θ) for the cluster, the result can be visualized as a 

2-dimensional frequency histogram, as shown in Figure 3.7 (d). Thus, from the 

frequency data we automatically identify this pattern as a potential diagonal scratch. 

Any other cluster composed of lines, scratches can be identified at the angles of 0, 45, 

90 and 135 degrees, as shown in Figure 3.8. 

 Pattern r-θ parameter space 3D histogram 

(a) 

   

(b) 

   

(c) 

   

(d) 

   
 

Figure 3.8 Four angle line detection of Hough transform (a) 0 degree (b) 45 degree (c) 
90 degree (d) 135 degree 
 

In the following, we could notice that the frequency histogram for the cluster 

composed of ring signature, as shown in Figure 3.9 (a), is not be so characterized and 
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average distributed at the angles of 0, 45, 90 and 135 degrees. This result of frequency 

histogram caused us to confuse with Bull eye, Ring and Edge signature, as shown in 

Figure 3.9 (b) (c) (d). This result is presenting that the linear Hough transform is not 

enough to determine the signature without Line signature pattern. Therefore, we 

further employed the circular Hough transform method to distinguish the kind of Bull 

eye and Blob spatial pattern.  

 Pattern r-θ parameter space 3D histogram 

(a) 

   

(b) 

   

(c) 

   

(d) 

   
 

Figure 3.9 Linear Hough transform for variant shape (a) Bull eye (b) Blob. (c) Ring (d) 
Edge 
 

The circle is similar to represent in parameter space, compared to the line. As we 

described in section 2.4.2, each edge point we draw a circle with center in the point 

with the desired radius, when the edge points in the xy-plane are located on the same 
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perimeter then the circles with center in these points must be intersected to a point, as 

shown in Figure 3.10 (a). At the coordinates which belong to the perimeter of the 

drawn circle we increment the value in our accumulator matrix. In this way we sweep 

over every edge point in the input image drawing circles with the desired radii and 

incrementing the values (or score) in our accumulator. When every edge point and 

ever desired radius is used, we can turn our attention to the accumulator, as shown in 

Figure 3.10 (b). The accumulator matrix which is three dimensional, if the radius is 

not held constant, can quite fast grow large. In order to simplify the parametric 

representation of the circle, the radius can be limited to number of known radii, such 

as 1 < r < R where R is the wafer radius. 

 

 

(a) 

 
(b) 

Figure 3.10 Circle detection using circular Hough transform (a) 4 points are located 
on the same perimeter with radius r in the xy-plane and 4 circles are intersected to a 



 

41 
 

point (b) Sample of the accumulator matrix 
 

In general, the signatures of Bull eye and Blob spatial pattern on wafers could not 

be representing in completely circular shape. It could be in elliptic or arbitrary shape. 

Thus the maximum score in the accumulator will not be the optimal selection. To find 

the optimal selection in the accumulator we defined an equation named cover ratio as 

following: 

100
circle   detected  in  dies  total
circle   detected  in  dies  failed  (%)  Ratio  Cover ´=  

where the radius of  the circle 22 )()( byaxr -+-< .  

Therefore, based on the accumulator matrix we created previously, finding a set 

of center (x, y) and radius of circle in the accumulator and calculated the CR. Once the 

CR has been exceeded the threshold value (for instance, CR=0.9) then we could pick 

up this set of center and radius for our optimal parameter. The procedure result shown 

in Figure 3.11.  

 

Index 1 2 3 4 

Center of Circle (26, 5) (26, 7) (26, 6) (27, 11) 

Radius 13 12 12 8 

CR CR = 46.33% CR = 55.71% CR = 51.5% CR = 90.02% 

Illustration 

    

 

Figure 3.11 Finding optimal CR 
 

There is a situation should be noticed that the circle we found by circular Hough 

transform could be located in small area of failed dies (Figure 3.12). Thus, we must 

set a criteria to eliminate this situation occur. The criteria set as following: 
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100
 waferin dies failed Total

circle  in  dies  failed Total  (%) Wafer of  Circle ´=    

 

 
Figure 3.12 Circle detection in Ring and Blob spatial pattern 

 

  After we found a set of optimal center and radius, we further distinguish the 

spatial pattern between Bull eye and Blob by calculated the distance form wafer center 

to optimal center as shown in Figure 3.13. When the distance is large enough, the 

spatial pattern could correspond to the characteristic values of Blob spatial pattern. 
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Otherwise, there failure shape could be Bull eye spatial pattern. 

 
Figure 3.13 The distance of Bull eye and Blob spatial pattern 

 

The final portion of the feature extraction divided the wafer map into two zones as 

show in Figure 10, which zone1 occupied 4/5 of the wafer and zone2 occupied 1/5 of 

the wafer as shown in Figure 3.14. 

 
Figure 3.14 Wafer splitting 

 

In order to extract the features of ring and edge shapes, we only consider the 

number of failed dies in zone2, so we defined the Zone Ratio as:  
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100
zone2  in  dies  total
zone2  in  dies  failed  (%)  Ratio Zone ´=    

 

For instance, in Figure 11, if the failed pattern represent in ring signature, the 

calculated values of zone ratio showing a high percentage. If the failed pattern 

represent in edge signature, the calculated value of zone ratio showing a moderate 

percentage. Of course, when the failed patterns represent in Blob signature which is 

very close to the boundary of wafer map, it could also has a moderate percentage 

values of zone ratio. However, the Blob spatial pattern will be detected by CHT and 

calculated a distance between detected circle and wafer center, but edge spatial 

patterns will not. So, it can still effectively identify the edge spatial pattern. 

 

Figure 3.15 Failed ratio in zone 
 

All of the features that we discussed previously can be summarized in Table7. When 

the linear HT feature has an obvious intersection in a certain angle, we can almost 

determine the spatial pattern has Line signature. The CHT distance can detect whether 

there is a circular signature distribution on the wafer and the Zone ratio can detect 
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ring and edge signature similarly. 

Table 3.2 Relationship between features and patterns 
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Chapter 4 Results 

The methodology must be capable of mapping the features which are extracted 

from the input to the output. A so-called train and test method is used to construct a 

classifier in which the available dataset is divided into a training set and a test set, as 

show in Figure 4.1 [8]. The original data has been divided into training set and testing 

set. The training set used to train a classified model by data mining classification 

algorithm with 10-folds cross-validation. Once the classified model had been 

constructed, the testing set will applied to estimate the accuracy of classifier. 

 

Figure 4.1 System interface I (a) Load the original EWS map in the system (b) Filter 
out random failed dies 

 

4.1 Implementation 

As the experiment we have shown previously, and then we developed an 

automatic recognition application to implement our serial procedure of classification. 

The automatic recognition system is implemented using Visual Studio C# language 

under Microsoft Windows XP operation system. In this section, the automatic 

recognition system will be introduced. 
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1. Load the original CP map in the system and filter out random failed dies. 

2. Hough transform for linear detection. 

 
 

Figure 4.2 System interface I (a) Load the original EWS map and filter out random 
failed dies (b) Hough transform for linear detection 

 

3. Edge detection. 

4. Hough transform for circular detection. 

 
 

Figure 4.3 System interface II (a) Edge detection (b) Hough transform for circular 
detection 

 

(a) (b) 

(a) (b) 
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5. Calculated the failed ratio distributed on each zone. 

6. Get the entire features in each wafer. 

 
 

Figure 4.4 System interface III (a) Calculated the failed ratio distributed on each zone 
(b) Get the entire features in each wafer 

 

7. After obtain entire features then input the data to WEKA data mining tool to train 

model by classifier.  

8. In cross-validation, the 10-fold cross-validation is commonly used of k-fold 

cross-validation so that set the folds as 10. The classifier we selected decision tree 

(J48) that we have been demonstrated one of the data mining algorithms 

previously. Finally, the WEKA tool present relative data mining measurement  

(a) (b) 
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Figure 4.5 Training in WEKA data mining tool (a) Features input (b) Classifier 
measurement 

 

9. After running J48 algorithms, we could obtain the tree rule in the classifier. When 

we constructed the tree rule in our automatic system, the automatic system will 

classify each pattern in results.  

 
 

Figure 4.6 The result of system (a) Decision tree (b) Classification result 
 

We could set the automatic classification system in schedule in operation system 

by daily. For instance the system auto run at 06:00am every morning and query wafer 

for past 24 hours, when engineers go to work at 08:00am they can obtain the 

classified result without human resource and avoid time consuming. 

(a) (b) 

(a) (b) 
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4.2 Classification results  

Because of the input-output relationship is known, this paper using supervised 

learning algorithm to create the classifier. The algorithm must be capable of mapping 

the features which are extracted from the input to the output. A Train and Test method 

is used to construct a classifier in which the available dataset is divided into training 

and testing set. The 10-fold cross-validation is commonly used of k-fold 

cross-validation, so we used 10-flods cross-validation to divide the dataset. In 10-fold 

cross-validation, the origin dataset is randomly partitioned into 10 subsets. Of the 10 

subsets, a single subset is retained as the validation data for testing the model, and the 

remaining 9 subsets are used as training data. The cross-validation process is then 

repeated 10 times, with each of the 10 subsets used exactly once as the validation data. 

The 10 results from the folds then can be averaged to produce a single estimation. The 

advantage of this method over repeated random sub-sampling is that all observations 

are used for both training and validation, and each observation is used for validation 

exactly once. 

We inputted five types of failure shapes with 1723 datasets in fabricated 

semiconductor wafers and 965 datasets in simulated wafers that we introduced in 

section 3.1 to created pattern and get the characteristic values of these failure shapes. 

The result and accuracy of several classification techniques that we described 

previously in data mining algorithms are shown in Table 4.1. The different 

classification algorithms were used to classify the simulated datasets, and then the 

accuracy was obtained in each spatial pattern. It can be observed that the total 

accuracy of each classification algorithm result in at least 90.2% above. The Decision 

Tree (J48) and LogitBoost algorithms generally result in good accuracy performance 

with 95.2% and 95.5%.  It is hoped to that the accuracy on simulated data is 
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consistent with real manufacturing dataset when the classifiers are applied to real 

manufacturing real dataset. 

 
Table 4.1 The accuracy for simulated dataset 

  
Decision 

Tree(J48) 
NBC Bagging LogitBoost MultilayerPerceptron 

Bull eye 92.6 91.4 93.3 92 93.3 

Edge 96.9 86.1 95.6 96.9 93 

Blob 99.8 99.9 99.3 99.3 99.3 

Ring 92.9 92.9 93.7 95 95.4 

Line 94.7 82.9 93.1 94.7 90.4 

Total 95.2 90.2 94.8 95.5 94.1 

 

 Table 4.2 shows the accuracy for manufacturing data. The result also shows the 

accuracy for Decision Tree (J48) and LogitBoost algorithms represented in good 

performance with 95.5% and 95.3%.  

 

Table 4.2 The accuracy for manufacturing dataset 

  
Decision 

Tree(J48) 
NBC Bagging LogitBoost MultilayerPerceptron 

Bull eye 96.4 98.8 95.9 94.7 94.7 

Edge 96.3 80 96.3 97.1 96.7 

Blob 90.2 91.1 92.9 90.2 92 

Ring 98.2 89.2 98.2 98.2 97.3 

Line 95.2 96.8 92.1 94.4 97.6 

Total 95.5 90 95.3 95.3 95.8 

 

It is consistent with the result of simulated data. In all classification algorithms, The 

Decision Tree (J48) and LogBoost are most consistent in good performance both in 

simulated and manufacturing data. It could be noticed that the Line spatial pattern 

represent in comparative low accuracy both in simulated and manufacturing data of 

these classification algorithms.  
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Among all classifiers, LogBoost is most consistent in the overall performance in both 

simulated and manufacturing data. However, it was observed that the Line spatial 

pattern results in poor performance both in simulated and manufacturing data. This is 

cause of the failed pattern represent in mixture signature as show in Figure13. The 

spatial pattern has been classified as Line spatial pattern but it also has Blob signature 

in the wafer map. Then the classifier mistakenly classified it to Blob spatial pattern 

because it has been detected a circle by CHT feature extraction. 

 

 
Figure 4.7 Mixture spatial pattern 
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Chapter 5 Discussion 

This paper demonstrated three feature extraction techniques to classify spatial 

patterns on circuit probe map into different categories which representing in Line, 

Bull eye, Ring, Blob, and Edge characteristics. The technique such as linear Hough 

transform can be used for detect line spatial pattern, circular Hough transform can 

detect round shape and calculate distance between center of round shape and wafer 

center to distinguish Bull eye and Blob spatial pattern. Wafer map divided into zone 

blocks can help us to detect ring and edge spatial pattern. After demonstrated the 

approach with these features, we could summarize that the classification accuracy of 

our methodology is located in 90% ~ 95.8% in simulated and manufacturing data. It is 

found that Decision Tree (J48) and LogitBoost is the best performance algorithm for 

our feature selection and used to identify the failure classes production lots. 

Subsequently, we could contrast with process history of each same failure pattern and 

it may be possible to understand which type of problem originated the failure and 

which equipment is responsible by the root cause in engineering data analysis.  

Finally, the features will need to be more robust and invariant to noise. This is 

because noise and unclassified shapes will be an inevitable part of classified spatial 

patterns of manufacturing data. For further study, it is needed to develop more 

features to identify more failed shapes. It could need more independent features to 

enhance the accuracy of classification. For instance, we found that when the signature 

representing in scratch and mix-type edge result in poor accuracy with our 

methodology which is demonstrated in Figure 4.7. The automatic classification is 

currently used for process diagnosis at the semiconductor industry and performs well 

to save time for yield improvement. 
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Appendix 

Standard Normal Cumulative Probability Table 

Cumulative probabilities for NEGATIVE z-values are shown in the following table:  
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Cumulative probabilities for POSITIVE z-values are shown in the following table: 
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