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Abstract

Abstract— Circuit probe test is an end of line testing that the individual die has
been measured at wafer level in modern semiconductor manufacturing. The test
results are visualized as a spatial distribution of the failures on the wafer which can
provide some valuable information for the production of failures. In order to reduce
time consumption by human operation, a great accuracy of automatic classification
system is clear needed for engineering analysis. In this paper, we demonstrate how a
robust feature extraction procedure using by classical Hough transform (HT) and
circular Hough transform (CHT) can be adapted to detect lines and rounds spatial
patterns on circuit probe wafer map. In addition, we also used several technique to
detect others spatial patterns. These features which are effectively eliminate the
influence of noise to perform pattern classification. The presented methodology is
validated with real fabrication data and several data mining classification algorithms
are presented to evaluate the advantage of this methodology.

Keywords - semiconductor wafer classification, circuit probe test, features
extraction, Hough transform, data mining
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Chapter 1 Introduction

1.1 Background

The semiconductor manufacturing has been became a more highly complex
technology which involving a series of precise arrangement of process steps through
several processing equipments to produce hundreds of individual integrated circuit die
on a piece of silicon wafer. Thus, any tool excursion can lead to a yield loss across the
industry. Such losses can originate from different kinds of problems which may arise
from equipment malfunctions, delicate and difficult processing steps, or human
mistakes [1]. In order to be competitive in the semiconductor manufacturing industry,
the detection of these problems becomes a critical issue because yield performance is
closely related to the control and efficiency of the wafer manufacturing process.
Therefore, the yield enhancement engineering usually focuses on the investigation of
low-yield lots, the elimination of defects, process excursions, the correlation between
electrical and functional experiment result, and the improvement of baseline product
yield [2, 3].

Some process step faults are detectable only by end-of-line tests. It is well know
that spatial patterns in the distribution of Circuit Probe (CP) failures on a wafer can be
related to the potential causes in end-of-line tests. If the dies that fail at CP tests are
visualized as black pixels, the spatial distribution of the failures is likely to show
characteristic patterns. Different shapes are possible in Line, Bull eye, Ring, Blob, and
Edge. From these patterns it may be possible to understand which type of problem
originated the failures, in which step of the process, and in which equipment.
Therefore, these patterns can be used to trace back to the problems that originated the

failures either by analyzing their qualitative features or by correlating them with the



lot history [1, 4]. Thus, engineers are usually screen form CP wafer map to conduct
through statistical data analysis for fault diagnosis. Since there is a lot of data produce
by step of process and equipment every day. For this reason, it is needed to develop a
fully automatic classification system to screen signatures for engineers on CP wafer
maps without time consuming and perform vyield prediction, fault diagnosis,

correcting manufacturing issues and process controls as shown in Figure 1.1.

4. Process Error

B Equipment Error
C. Mask Error

D. Recipe Error
E

Fault diagnosis

Spatial faded patterns

Figure 1.1 Diagram of our goal

1.2 Motivation

In previous researches, there are many proposed methods intend to classify and
recognize these kinds of spatial patterns such as statistical distribution analysis, neural
networks and image processing. Although many of these methods are powerful, they
are generally unable to extract meaningful data or failed to detect noisy datasets. A
more robust classification scheme can be achieved using data mining algorithms.
However, the accuracy and reliability of the data mining approach depends on
features selection and the selected features must have some unique attribute that can

be used to discriminate each characteristic pattern [8]. As exhaustive search technique,
2



the Hough transform is a robust method which is relatively unaffected by noise for
feature detection and generally been recognized as a reliable for linear and circular
object detection [14]. K. Preston White et al. have been demonstrated how this
transform can be adapted to classify signatures on semiconductor wafers in 2008 [5],
but the procedure does not appear to be as useful for detecting patterns in Bull eye and
Blob. Thus, we future apply circular Hough transform to detect spatial pattern
representing in Bull eye and Blob.

Otherwise, we found that some of these methods analyzed in rarely dataset. It
appears very difficult to define conclusions on the relative performance on the basis
of such limit dataset. For this reason, we analyzed much more extensive actual data
provided by engineering database in a famous semiconductor company and simulated

sufficient coverage of each spatial patterns generated by artificiality.

1.3 Goals

We intended to develop a pattern recognition model with a set of features and
demonstrated this model is more accurate and reliable. Otherwise, we want to train
and evaluate this model with sufficient actual data. In order not to against specific
company and area, we further generated simulated data by artificiality. We hope that

the accuracy on simulated data will consistent with real manufacturing data.



Chapter 2 Related Works

2.1 Introduction to semiconductor manufacturing

In this section, we provide an overview of semiconductor manufacturing. As
illustrated in Figure 2.1, the manufacturing operation can be viewed graphically as a
system with raw materials and supplies as its inputs and finished commercial products
as outputs. The input materials include semiconductor materials, dopants, metals, and
insulators. The corresponding outputs include integrated circuits, IC packages, printed

circuit boards, and ultimately, various commercial electronic systems and products.

Raw materials Finished
Supplies ‘ _ Products
Manufacturing
_— System >

Figure 2.1 Block diagram representation of a manufacturing system

The types of processes that arise in semiconductor manufacturing include crystal
growth, oxidation, photolithography, etching, diffusion, ion implantation,
planarization, and deposition processes. Viewed from a systems-level perspective,
semiconductor manufacturing intersects with nearly all other IC process technologies,
including design, fabrication, integration, assembly, and reliability. The end result is
an electronic system that meets all specified performance, quality, cost, reliability,

and environmental requirements [21].

2.1.1 Semiconductor process sequences

Semiconductor manufacturing consists of a series of sequential process steps like

4



the one described in the previous section in which layers of materials are deposited on
substrates, doped with impurities, and patterned using photolithography to produce
ICs. Figure 2.2 illustrates the interrelationship between the major process steps used
for semiconductor fabrication. Polished wafers with a specific resistivity and

orientation are used as the starting material.

Semiconductor fabrication
front-end

1
—:* Oxidation —— Diffusion —»|  Photolithography I
1
: I o |
1
: CMP + Deposition 4 Etching !
Lo —————————---——-———-—-—-= S g -
back-end Testing and assembly
‘ I - - - - -------- ettt el |
! Wafer Probe Test . . I
B Final T
| (WAT.CP) — uming —b] inal Test :
L e e e e e e e e e e e e e e e e e e e e e e = a

Figure 2.2 Semiconductor manufacturing process flow

The process sequences of semiconductor can roughly be divided into front-end
and back-end processing. The front-end processing includes oxidation,
photolithography, diffusion, etching, thin-film deposition, and chemical mechanical
polishing. After processing, each wafer contains hundreds of identical rectangular
chips (or dies). The back-end processing includes test and assembly. Before the
identical rectangular chips assembled into a package, functional test is performed.
Functional testing at the completion of manufacturing is the final arbiter of process
quality and yield. The purpose of final testing is to ensure that all products perform to
the specifications for which they were designed. For integrated circuits, the test
process depends a great deal on whether the chip tested is a logic or memory device.
Circuit Probe test is a kind of wafer probe test when the polished wafer finished from

semiconductor fabrication [21].



2.1.2 Circuit probe maps

Testing the individual die at the wafer level has been an integral part of the
semiconductor manufacturing process, it is so-called wafer probe or wafer sort. Figure
2.3 is a picture of a typical probe test cell including the Automatic Test Equipment
(ATE) and a wafer prober which is a machine used to test integrated circuits. The
prober holds the wafer being tested on a vacuum chuck. The chuck moves in the
horizontal x-y directions positioning the individual die on the wafer in the center of
the test head. The prober Interface Board (PIB), sometimes called the DUT Load
Board, connects the bottom side of the test head. Below the PIB, in the stack of
tooling underneath the test head, is the Spring Contactor Assembly. The PIB is
hard-mounted to the prober, so the Spring Contactor Assembly must provide a little
vertical compliance and theta rotation as well as routing the test signals. The bottom
element in the stack is the probe card. It has connectors or pads on the top side mating
to the Spring Contactor Assembly and needles on the bottom side that physically

contact the 1/0 pads on the individual die being tested [22].

Prober
Interface

ATE Board

. Spring
% Contactor
Assembly

Figure 2.3 Wafer level testing [22]

When all test patterns pass for a specific die, its position is remembered for later

6



use. Sometimes a die has internal spare resources available for repairing. Non-passing
circuits are typically marked with a small dot of ink in the middle of the die, or the
information of passing/non-passing is stored in a file, such a file recorded the result of
the electrical test information on the wafer and can be drawn by visualized map. This
wafer map categorizes the passing and non-passing dies by marking use of bins. A bin

number is then defined as a good or bed die as shown in Figure 2.4.

Bin Hare | Colow | &
[ OlE==-
[ 007
[ D18
[ 015
[ 021w

Figure 2.4 The CP map draw in different color with bin number

If the dies that fail at probe tests are visualized as black pixels, the spatial

distribution of the failures is likely to show characteristic patterns as shown in Figure

2.5.

.I ]

A. Process Error
: L B. Equipment Error
|I ] C. Mask Error
" D. Recipe Error
SRR Y E. ..
i W

Figure 2.5 The CP map draw in black with fail bin

Because of some process step faults are detectable only by end-of-line tests and

spatial patterns in the distribution of Circuit Probe failures on a wafer can be related

7



to the potential causes in end-of-line tests. From these patterns it may be possible to
understand which type of problem originated the failures, in which step of the process,
and in which equipment. Therefore, these patterns can be used to trace back to the
problems that originated the failures either by analyzing their qualitative features or
by correlating them with the lot history. For instance, consider the plot in Figure 2.6 in
which the average lot-level CP yield of a quarter of certain product. It can be found
that the yield of two lots named LOT0032 and LOTO0051 were significantly lower
than baseline of specific value. After identified these low yield lots, the engineers will

further go to examine CP maps by wafer in these lots.

CP Yield Trend Chart
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Figure 2.6 The CP yield trend chart

In Figure 2.7, the CP maps present 6 wafers from the lot of LOT0032. It is easily

to find out that all wafers failed in edge spatial patterns.



Figure 2.7 The CP wafers of low yield lot (LOT0032)

Besides, in Figure 2.8, the CP maps present 25 wafers from the lot of LOTO0051.

It is also easily to find out that most wafers failed in center spatial patterns.

Figure 2.8 The CP wafers of low yield lot (LOT0051)

Because of spatial patterns are usually due to process errors and tool excursions



can be extremely valuable to engineers when identifying root cause in their work.
Therefore, engineers are often screen form CP wafer map to conduct through
statistical data analysis for fault diagnosis. Since there is a lot of data produce by step
of process and equipment every day. For this reason, it is needed to develop a fully
automatic classification system to screen signatures for engineers on CP wafer maps
without time consuming and perform vyield prediction, fault diagnosis, correcting

manufacturing issues and process controls.

2.2 Literature review

In the past few years, methods of automated spatial pattern analysis in the
semiconductor manufacturing process have been widely investigated and discussed.
They proposed many approaches to classify and recognize these kinds of spatial
patterns. At least four different approaches are possible, the simplest and least
efficient is visual classification performed by a human operator. In view of the time
needed to analyze thousands of wafers, it is not possible to have a fast feedback to
correct problems. The second approach is statistical distribution analysis such Poisson
or negative-binomial distributions are normally on lot-level basis for account for
cluster phenomena. For example, Friedman et al., developed statistics measuring
spatial dependency of defects to detect systematic clustering [11]. Although most
statistical approaches are able to detect anomalies on wafer, they are generally unable
to extract meaningful data from the spatial pattern since tend to incorrectly assume a
stationary probability distribution. Systematic spatial patterns caused by the
semiconductor fabrication process involve a complex variation of statistical
parameters which are highly dependent on the process, machine, suppliers, materials
etc. Thus, traditional statistical approaches are not recommended for practical

application. Moreover, the monitoring statistics often bear relatively complex
10



statistical properties, adding difficulty in implementation of these methods. The third
approach is neural network algorithms that can recognize spatial patterns. However,
the major limitation of neural-network approaches lies in its inability to classify two
or more shift variance in the spatial patterns. It is also incapable of detecting the
presence and location of a cluster. Many of these methods need a large training dataset,
and due to the complexity of the algorithms, most of these methods do not provide a
statistically rigorous evaluation of their performances in pattern detection. The fourth
approach is image processing, this method attempts to detect cluster outliers, but fall
sort at detecting real manufacturing spatial pattern, which are almost always of
different and imperfect geometrical shapes. However, this approach lacks flexibility
because it requires the prior knowledge of all the possible shapes in different products
and difficult to predict in advance [23, 24, 25]. Image processing and artificial neural
network (ANN) classification approaches are notorious to fail for noisy datasets.
Generally, neural network approaches cannot identify two or more shift variant or
rotational variant spatial patterns that belong to the same defect pattern type [8].

A more robust classification scheme can be achieved using data mining
algorithms. However, the accuracy and reliability of the data mining approach
depends on features selection and the selected features must have some unique
attribute that can be used to discriminate each characteristic pattern. As exhaustive
search technigue, the Hough transform is a robust method which is relatively
unaffected by noise for feature detection and generally been recognized as a reliable
for linear and circular object detection [14]. The Hough transform employing a
normal line-to-point parameterization is widely applied in digital image processing for
feature detection. It is a very powerful tool for the detection of parametric curves and
generally used to detect lines and rounds, which is originally proposed by Hough in

1959. The advantage of Hough transform is as follows: it isn’t sensitive to the noise of
11



image, effectively eliminate the influence of noise. The transform is convenient to
parallel computing. In the field of computer vision, some issues are complex and
require a great of computation, and parallel computing is used by modified Hough
transform, and then calculating the start and end of the line. In this paper, we applies
the Hough transform for spatial pattern recognition and a frequency count to indentify
lines or sets of lines which represent line signatures. K. P. White et al. have been
demonstrated how this transform can be adapted to classify signatures on
semiconductor wafers in 2008 [5], but the procedure does not appear to be as useful
for detecting spatial patterns in Bull eye and Blob. Thus, we future apply circular
Hough transform to detect spatial pattern representing in Bull eye and Blob which is
proposed to detect rounds for spatial pattern [5, 6].

However, we found that some of the previous methods analyzed in rarely dataset.
For instance, on the basis of the analysis of simulated and real wafers, Chen and Liu
concluded that the ART1 network classifies can recognize the similar defect spatial
patterns more easily and correctly. However, the simulated data set was made of only
35 simulated wafers, each of which containing 294 dies. As for the patterns, there are
three types of rings and four types of scratches. The real wafers analyzed in the paper
were only 14 wafers, still with 294 dies per wafer [2]. L.J. Wei using neural network
approaches for recognizing the bin-map patterns on the wafer. In their work, the 57
actual wafers had been analyzed which included 9 Bull eye, 14 Edge, 9 Blob, 9 Ring
and 16 Line spatial patterns [12]. S.F. Liu et al. proposed a feature extraction
procedure based on wavelet transform to extract features that represent different
defect patterns. The presented methodology is verified with real industrial data from a
semiconductor company and the experimental results show the presented
methodology is able to recognize defect patterns with recognition accuracy of 95%,

however, the real industrial data also made of only 65 wafers and the system failed to
12



recognize Blob type of spatial pattern [25]. It appears very difficult to define
conclusions on the relative performance on the basis of such limit dataset [20]. For
this reason, in this paper we analyzed much more extensive sets of manufacturing data
provided by engineering database in a famous semiconductor company and sufficient
coverage of simulated data generated by artificiality. Table 2.1 illustrates the

comparisons between previous methodology with accuracy and data set.

Table 2.1 The comparisons between presented methodologies.

Feature selection
Literature Pattern Data set Accuracy
method

FL. Chen and S.F Liu, A

neural-network approach to

- ling, ring 14 real data 60%
recognize defect spatial pattern in
semiconductor fabrication, 2000
K.P. White et al., "Classification of
defect clusters on semiconductor Linear Hough | bull eye, edge, ring
manufacturing wafers via the Hough transform and line - -

transform”, 2005

L.J. Wei, "Development of wafer bin
bull eye, edge, blob,
map pattern recognition model - using 5 features 57 real data 93.75%
ring and line
neural network approach”, 2006

S.F Liu et al.,"Wavelet transform

based wafer defect map pattern line, blob, ring,
Wavelet transform 65 real data | 60%~100%
recoginition system in semiconductor radial, repeat

manufacturing”, 2008

J.W. Cheng et al., "Evaluating
performance of different classification bull eye, edge, blob,
2 features unknown 0%~100%
algorithms for fabricated ring and line

semiconductor wafers", 2010

Based on this automatic classification methodology, we could obtain the

information on problems related to the signature maps. Finding a process root cause is
13



not an easy task. Thus, a greater accuracy of classification is needed for engineering
analysis. Subsequently, the process history of each wafer is used to create a list of the
process step and keep track of which equipment must be responsible the problem in
analysis. This paper proposed the use of five types of features from the semiconductor
CP map on the wafer and evaluates the performance of several classification
algorithms. We will demonstrate that the result present in more high accuracy with

sufficient coverage of data set.

2.3 Related tools

The Computer sciences are suitable implement for pattern analysis because they
provide the ability to promptly perform systematic, repetitive analyses on large data
sets. It is a significant challenge to analyze huge quantities of wafer inspection and
electrical test data and extract the information needed for identifying yield
improvement opportunities [7]. There are some techniques used in our methodology
that we talk about as following section. For feature selection, it is including noise
reduction, image edge detection, Hough transform. For evaluation, we verify the

accuracy with data mining algorithms.

2.3.1 Noise reduction

In general, the spatial pattern composed of systematic and random fails as shown
in Figure 2.9. The random fails are most often produced by the clean room
environment and can only be reduced through a program of long term. Because of
random fails have useless information for yield improvement, thus, we do not discuss
this kind of fails in this paper. On the contract, systematic fails are often caused by

some kind of machine failures and process-related fails are often caused by one or
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more process steps not meeting the required specifications. Therefore, it is important
to routinely monitor by systematic fails of wafer yield for irregularities. The
segmentation is done on a by wafer basis and we will demonstrate the results in

chapter 3.
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Figure 2.9 The spatial pattern separated into systematic and random fails

In order to generating smoothed wafer maps without random fails, we applied an
approach called local kernel estimator defined by D. J. Friedman et al. in 1997 [11].
The goal of the smoothing operation is to highlight regions with a large number of fail
chips. As a visual process, this identification involves judging how closely the
numbers of fail chips in small area agree with what might be expected by considering
the yield of the wafer as a whole. To be more precise, at each chip position, we
consider a neighborhood around the given chip and calculate the proportion of the
chip’s neighbors that are failed. The choice of the neighborhood is flexible, although

in practice we have typically employed 3x3 or 5x5 neighborhoods as shown in Figure

2.10.
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Figure 2.10 The 3x3 and 5x5 mask
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Further, one could use a weighted average with some specified set of weights
instead of simple proportion. Essentially, the proportions are transformed to values
between zero and one by applying a sequence of transformation, a variance-stabilizing
transformation followed by centering and scaling a finally probability-integral

transformation. Toward this end, local kernel estimator had been defined as:

B; = w, (1) I (/)

Where Ni is the chip set adjacent with i, Wi(j) is the weight of the chip j and IF(j) is
indicate the chip j is failure or not. When the chip was failed the value would be
denoted as 0, otherwise the value would be denoted as 1. In the previous research [12],

the weight of mask has been design in 3x3 mask. Inside the mask, the weight of center
die I (Wi) is set as ﬁ , and the weight of J (Wj) is set as % . For instance, when 3x3

mask overlap on a partial of wafer map as shown in Figure 2.11, they can be

calculated in following statement:

_ 3 1
Pi=—X04+—x(0+14+04+04+04+0+0+1)=0.18
11 11

Figure 2.11 The 3x3 mask overlap on partial of wafer map

After we calculated P: for all of the dies on the wafer we could realize that P: will
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change by yield of the wafer, thus we transfer Pz by the below formula:

o~ ’r o~
o1
p; =Sin P

Because of the edge dies don’t have completed neighborhood then we transferred
these edge dies by Standard normal integral function to solve it. In general, we don’t
try to integrate it, just use the standard normal cumulative probability table as shown

in chapter appendix.

2.3.2 Canny edge detector

Edge detection is a basic tool in image processing and computer vision,
especially in the areas of feature detection and feature extraction, which aim at
identifying points in a digital image at which the image brightness change sharply
discontinuities. Typically, the first step in the process is to perform some detector of
edge detection on the image, and to generate a new binary boundary image that
provides the necessary segmentation of the origin image. The edge detection is a very
important process required for the Hough transform because it could reduce the
computation time and has interesting effect of reducing the number of useless vote.
Many edge detection methods have been applied for different application. Among
them, the Canny edge detector is the boundaries separating regions with different
brightness or color suggested by J. Canny in 1886 which is an efficient method for
detecting edges. It takes grayscale image on input and returns bi-level image where
non-zero pixel mark detected edges [15].

In this paper, we applied the Canny function provided by OpenCV (Open Source

Computer Vision Library) which is a library of programming function at real time
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computer vision, developed by Inter corporation. The document of function is shown

Table 2.2.

Table 2.2 The function of Canny in OpenCV

Canny

Implements Canny algorithm for edge detection.

void evCanny( IplImage* img, IplImage* edges, double lowThresh, double
highThresh, int apert ize=3 };

img Input image.
Image to store the edges found by the function.

Low threshold used for edge searching.

High threshold used for edge searching.
aperturesize Size of the Sobel operator to be used in the algorithm.
Discussion

The function canny finds the edges on the input image img and puts them into the
output image edges using the Canny algorithm described above.

n

The Canny algorithm is adaptable to various environments and its parameters

allow it to be tailored to recognition of edges of differing characteristics depending on

the particular requirements of a given implementation [13]. Otherwise, Canny

detector gives thin edge compared to Sobel detector as shown in Figure 2.12.

(@)

Figure 2.12 Image edge detection using OpenCV (a) origin image (b) Canny (c) Sobel
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2.3.3 The Hough Transform

The Hough Transform is an algorithm presented by Paul Hough in 1962 for the
detection of features of a particular shape like lines or circles in digitalized images in
image analysis, computer vision and digital image processing. It can be applied to
many computer vision problems contain feature boundaries which can be described
by regular shapes. The purpose of the technique is to find uncompleted objects by
voting procedure. This voting procedure is carried out in a parameter space, from
which object candidates are obtained as local maxima in as so-called accumulator
space that is explicitly constructed by the algorithm for computing the Hough
transform. The classical Hough transform was concerned with the identification of
lines, but later the Hough transform has been extended to identify of other shapes,
most commonly circles or ellipse. The main advantage of the Hough transform
technique is that it is tolerant of gaps in feature boundary descriptions and is relatively

unaffected by image noise. Figure 2.13 shows the diagram of Hough process [14, 15].

1 1
. 1 1
Image input Image preprocessing - Linear Hough :
{local kemnel estimator) : transform I
1 1
1 1
: ;  Result
1 | —
1 1
. I I
| |
Image segmentation | Circular Hough |
{Cannv edge detection) : transform :
1 1
|

Figure 2.13 The Hough transform process

A. Line detection
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The simplest case of Hough transform is the linear transform for detecting
straight lines. In the image space, the straight line can be described in rectangular
coordinate xy-plane (image space) as follows:

y=mx+b
where m and b are the slope and intercept of line Ij, as shown in Figure 2.14(a). The
line in the xy-plane can be transformed into the slope-intercept parameter plane as
follows:

b=-xm+y

This line-to-point transformation is the basis for its usefulness, as shown in Figure

2.14 (b).
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Figure 2.14 The linear Hough transform (a) Line Ij trhough the fixed point (x*, y*)
in the xy-plane (b) a single point (mj, bj) in the slope-intercept parameter plane (c) 3
points in the same line in image space transformed into r-6 parameter space and
intersect to a point (d) Areal case transformation in  r-0 parameter space

The drawback of the (m, b) parameterization is that when lines which are nearly

vertical in the xy-plane have extremely large values for both m and b. Thus, an
20



alternate parameterization was employed to avoid this shortcoming which called
r-oparameter space as follows:

Xxcosf+ysing= r
Every point in the same line in the image space will intersect to a point in the r-6
parameter space, as shown in Figure 2.14 (c), which makes the lines extraction
problem transform to counting problem. A real case transformation from image space
to r-Oparameter space look likes Figure 2.14 (d).

Given this characterization of a line, we can then iterate through any number of
lines that pass through a given point. We incorporate the results in an accumulator
array. At the beginning, the accumulator array is initialized to zero for all cells. After
that, for every value of A with a corresponding value B, the value of that cell is

incremented by one [5, 14].

B. Circle detection

The Hough transform can also be used for detection circles and other parametric
geometric figures. The circle is simpler to represent in parameter space, compared to
the lines, since the parameters of the circle can be directly transfer to the parameter
space as following:

=(x-a)’+(y-b)?
where a and b are the center of the circle in the xy-plane and where r is radius. The
parametric representation of the circle is:
X =a+ rcosf
y =b + rsinf
At each edge point we draw a circle with center in the point with the desired

radius. This circle is drawn in the parameter space, when the edge points in the
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xy-plane are located on the same perimeter then the circles with center in these points

must be intersected to a point, as shown in Figure 2.15.

Figure 2.15 Points are located on the same perimeter

At the coordinates which belong to the perimeter of the drawn circle we

increment the value in our accumulator matrix as show in Table 2.3. In this way we

sweep over every edge point in the input image drawing circles with the desired radii

and incrementing the values (or score) in our accumulator. When every edge point and

ever desired radius is used, we can turn our attention to the accumulator. The

accumulator matrix which is three dimensional, if the radius is not held constant, can

quite fast grow large. In order to simplify the parametric representation of the circle,

the radius can be limited to number of known radii, such as 1 < r < R where R is the

wafer radius [16, 17].

Table 2.3 An example accumulator

index
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2.4 Classification of data mining

Most of the machine learning used in data mining can be divided into supervised
learning and unsupervised learning. Unsupervised learning refers to the problem of
trying to find hidden structure in unlabeled data. The idea is to use algorithms that
automatically identify the classes of patterns in the data set and assign each wafer to
one of the classes. The advantage of unsupervised learning is the method can identify
unsuspected patterns that could have been ignored by a human operator. Otherwise,
the disadvantage is the lack of direction for the learning algorithm and that there may
not be any interesting knowledge discovered in the set of features selected for the
training. In supervised learning, each example is a pair consisting of an input object
and a desired output value. A supervised learning algorithm analyzes the training data
and produces a classifier. The classifier should predict the correct output value for
any valid input object. For instance, a set of wafers is classified by a human operator
and then used to train a classification model. More precisely, the parameters of the
model are tuned until corresponded by the training set and classifies the data as
correctly as possible. The idea is that when new wafers are presented to the trained
model, the will be classified correctly. A major disadvantage of supervised learning is
the time spent by a human operator in order to prepare the training set and the
subjectivity of the classification carried out by the human operator, which could
affect in an unpredictable way the final performance of the classifier. In other words,
the advantage of supervised learning is that all separate classes in the algorithms are
meaningful to humans [20]. Supervised learning algorithms are applied in this paper
because the input-output relationship is known. We cannot do classification without
labeled data because only the labels tell what the classes are. Many situations present

hung volumes of raw data, but assigning classes is expensive because it requires
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human insight.

The methodology must be capable of mapping the features which are extracted
from the input to the output. A so-called train and test method is used to construct a
classifier in which the available dataset is divided into a training set and a test set, as
show in Figure 2.16 [8]. The original data has been divided into training set and
testing set. The training set used to train a classified model by data mining
classification algorithm with 10-folds cross-validation. Once the classified model had

been constructed, the testing set will applied to estimate the accuracy of classifier.

Subsample 1

Subsample 2

Classification
algorithm

Subsample 10

10folds
cross-validation

Training set

f“” w)ﬁ,

A J
Original data
> Classifier
Testing set l
Evaluation

Figure 2.16 Train and Test method

It is natural to measure a classifier’s performance in terms of the error rate. The
classifier predicts the class of each instance. If it is correct, that is counted as s success;
if not, it is an error. The error rate is just the proportion of errors made over a whole
set of instance, and it measures the overall performance of the classifier. We already
know the classifications of each instance in the training set, which after all is why we
can use it for training. To predict performance of a classifier on new data, we need to

assess its error rate on a dataset that played no part in the formation of the classifier.
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This independent dataset is called the test set. We assume that both the training data
and the test data are representative samples of the underlying problem. It is important
the test data was not used in any way to create the classifier. The training data is used
by one or more learning methods to come up with classifiers. The test data is used to
calculate the error rate of the final, optimized, method. Both of the two sets must be
chosen independently, the test set must be different from the training set to obtain
reliable estimate of the true error rate. If lots of data is available, we take a large
sample and use it for training; then another, independent large sample of different data
and use it for test. Provided that both samples are representative, the error rate on the
test set will give a true indication of future performance. Generally, the large the
training sample the better the classifier and the larger the test sample, the more
accurate the error estimate. There’s a dilemma here, to find a good classifier, we want
to use as much of it as possible for testing. Consider what to do when the amount of
data for training and testing is limited. In practical terms, it is common to hold out
one-third of the data for test and use the remaining two-thirds for training. However,
the sample used for training or testing might not be representative and we cannot tell
whether a sample is representative or not. A more general way to mitigate any bias
caused by the particular sample chosen for holdout is to repeat the whole process,
training and testing, several times with different random samples. This important
statistical technique called cross-validation that we will talk about in next section

[18].

2.4.1 10-fold cross-validation

Cross-validation is a technique for evaluating how the result of statistical

analysis will generalize to an independent data set and comparing learning algorithms
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by dividing data into two segments. One used to learn or train a model and the other
used to validate the model. In typical cross-validation the training and validation sets
must cross-over in successive round such that each data point has a chance of being
validated against. The basic form of cross-validation is k-fold cross-validation. In data
mining and machine learning 10-fold cross-validation (k = 10) is the most common.
Why 10? Extensive tests on numerous datasets, with different learning techniques,
have shown that 10 is about the right number of folds to get the best estimate of error,
and there is also some theoretical evidence that backs this up [18].

In 10-fold cross-validation the original data is first randomly partitioned into10
equally (or nearly equally) sized segments or subsamples. Subsequently, the
cross-validation process repeated 10 times, with each of the 10 subsamples used
exactly once as the validation data and a different fold of the data is held-out for
validations while the remaining 9 (k — 1) folds are used for learning, as shown in
Figure 2.17. The 10 results from the folds then can be averaged (or otherwise
combined) to produce a single estimation. The advantage of this method over repeated
random sub-sampling is that all observations are used for both training and validation,

and each observation is used for validation exactly once.

Total data set

randomly mixed
Expernment 1
Experiment 2
Experiment 10 9/10 1/10
Training data Validationdata

Figure 2.17 10-fold cross-validation
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2.4.1 Classification algorithms

We often need to compare various learning methods on the same problem to see
which is the better one to use. Subsequently, estimate the error using cross-validation
and choose the scheme whose estimate is smaller. This is quite sufficient in many
practical applications, if one method has a lower estimated error than another on a

particular dataset, the best we can do is to use the former method’s model [18].

A. Decision tree

Decision tree is arguably the most widely used approach for classification
because it is an effective method for producing classifiers from a dataset. It is also
relatively simple, readable and fast to generate. It works by building a tree of rules
(see Figure 2.18) whereby new instances can be tested by simply stepping through
each test at each decision node starting from the root node till the leaf node. The
advantage of this method is that it follows a logical approach and does not make any
assumptions on the statistical distribution and independence of features. Thus it is
normally more robust compared to most statistical approaches.

The biggest problem for decision tree is the missing branch (null leaf)
phenomena. It occurs when the tree is used to classify a feature that is not found in the
training set. This will result in an unclassified instance. When building a decision tree,
it is important to choose which attributes to split as some choice of attributes may be
considerably more useful than others. Basically, the attribute that has the most ‘pure’
nodes and randomly equal counts will be selected. Entropy which is an information
theoretic measure of the ‘uncertainty’ contained in a training set, due to the presence

of more than one possible classification [8].
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Figure 2.18 Example of decision tree using WEKA

B. Naive Bayes classifier

NBC is a statistical classifier that predicts the probability that a given
combination of features belongs a particular class as shown in Figure 2.19. In certain
types of applications, this classifier is found to be comparable to decision trees. It also
has the ability to overcome the ‘missing branch’ phenomena because prior and
conditional probabilities are both used to calculate the probability of each possible
classification.

Theoretically, Bayesian classifiers have the minimum error rate in comparison to
all other classifiers. However in practical applications, the statistical assumptions that
it imposes will reduce the classification accuracy. Another disadvantage is that it only
applies to discrete features, which limits its application. Additionally a complex
equation is required for estimating the classification probability and all features must

be mutually independent [8].
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Figure 2.19 The generative process by NBC

C. Bagging on decision tree

Boostrap aggregating (bagging) can improve the performance of decision trees.
It combines multiple rather than using total isolation of classes. Thus a particular set
of features can be categorized into several types of classes and their membership into
each of the class types is scored. As show in Figure 2.20, the decision rules (base
learners) are built different by training them using slightly different training sets. It is
then the decision from each decision rules being vote to find the majority. Bagging
classifier often gives a higher accuracy than a single classifier because it attempts to
neutralize the instability of learning methods by simulating the process described
previously using a given training set. This method excels especially when unstable

base algorithms with high variance are used. Additionally, it does not tend to over fit

the data which makes the final decision less affected by noisy data [8].
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Figure 2.20 General framework of bagging
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D. LogitBoost

Boosting is an ensemble method that is similar in concept to bagging. As shown
in Figure 2.21, boosting trains the next weak learners based on the mistakes of
previous learners. Normally, boosting results in better performance over bagging.
However, it has a risk of over fitting and thus the performance of combined
hypotheses might be worse than the performance of a single hypothesis. Besides,
boosting requires a very large training set sample and is unsuitable for small datasets.
Although there are many boosting algorithms available, this research only considered
the use of LogitBoost, which performs additive logistic regression. This method can
be accelerated by specifying a threshold for weight pruning. The advantage of
LogitBoost over other boosting methods is its capability of being wrapped around any
numeric predictor without making any modifications. However, it was required to do
some regression, and due to the curse of dimension, doing regression is not a trivial

task. Thus neutral network was implemented in this project for regression [8].
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Figure 2.21 Boosting illustration
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2.5 The WEKA data mining workbench

WEKA has several graphical user interfaces that enable easy access to the
underlying functionality. The main graphical user interface is the “Explorer”. It has a
panel-based interface, where different panels correspond to different data mining
tasks. In the first panel, called “Preprocess” panel, data can be loaded and transformed
using WEKA’s data preprocessing tools, called “filters”. This panel is shown in

Figure 2.22.
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Figure 2.22 The WEKA explorer interface

The main graphical user interface in WEKA is the “Experimenter” (see Figure 2.23).
This interface is designed to facilitate experimental comparison of the predictive
performance of algorithms based on the many different evaluation criteria that are
available in WEKA. Experiments can involve multiple algorithms that are run across
multiple datasets; for example, using repeated cross-validation. Experiments can also
be distributed across different compute nodes in a network to reduce the
computational load for individual nodes. All data mining algorithms we introduced

previously can be found in WEKA classifier [18, 19].
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Figure 2.23 The WEKA experimenter interface

Chapter 3 Materials and Methods

3.1 Materials

In this section, we described where to get all the data set of variations
characteristic spatial patterns of CP maps representing in Line, Bull eye, Ring, Blob,
and Edge. In semiconductor industry, the Engineering Data Analysis System (EDAS)
is collecting all measurement data and equipment information in step of process for
each device (see Figure 3.1). We obtained hundreds of data from database of EDAs
and used as training set. Besides, simulated data was generated and used because the
amount of real manufacturing data in EDA database is not sufficient to contain all
possible cases. Some patterns rarely occur in real datasets thus they will not provide
sufficient coverage when training the classifier. After all, we listed the data set in

manufacturing and simulated in Table 3.1.
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Figure 3.1 The EDA database in semiconductor industry

More precisely, the manufacturing data consist of 758 wafers with 626 dies per

wafer and 965 simulated wafers generated by artificiality.

Table 3.1 The EDA database in semiconductor industry

Spatial pattern Training set Testing set Total
Center 100 11 111
Edge 216 24 240
Region 101 11 112
Ring 152 17 126
Line 113 13 126
Total 682 76 758

Table 3.x The simulate data set

Spatial pattern Training set Testing set Total
Center 147 16 163
Edge 206 24 229
Region 214 24 238
Ring 133 15 148
Line 168 19 187
Total 269 06 065
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3.2 System flow

As discussing the related works in Chapter 2, the steps of our methodology are

depicted in Figure 3.2. Each step of block will be explained in the following section.
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Figure 3.2 System flow

3.3.1 Pattern definition

Pattern Definition

Preprocessing &
Data Cleaning

Feature Extraction

Data Mining &
Model Creation

The characteristic pattern is composed of basic shape, mainly including Line,

Bull eye, Ring, Blob, and Edge. Because of these patterns can be used to trace back to

the problems that originated the failures either by analyzing their qualitative features

or by correlating them with the lot history, so we defined these pattern as our major

classified spatial pattern shape as shown in Figure 3.3.
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(d)Blob (f) Bull eye
Figure 3.3 Pattern definition (a) Line (b) Edge (c) Ring (d) Blob (e) Bull eye

3.3.2 Data preprocessing

In order to eliminate the amount of noise bring from random error, we applied an
approach called local kernel estimator which described in section 2.2 to generating
smoothed wafer maps. First, the original wafer map must transfer to monochrome
image. Second, we generating smoothed image using local kernel estimator, the result
resented as gray-level image. Finally we set a threshold value with 0.71 which is
optimization by trial and error to filter out random pixels and then obtained a clearly

image with system error. The whole procedure is shown in Figure 3.5.
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Figure 3.5 Filter origin map (a) Original image (b) Monochrome image (c) Gray-level
image with (d) Gray-level image with threshold = 0.71
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After smoothed the image, an edge recognition procedure is implemented to find all
edges in the image. The edge detection process is very important and required
procedure for the Circular Hough transform technique. Various edge detection
methods have been applied for different application such as Canny., as shown in

Figure 3.6.
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Figure 3.6 The result of an edge recognition procedure in a sample wafer

3.3.3 Feature extraction

In order to prove the Hough transform for lines detection, we involved the real

failure of scratch pattern, as shown in Figure 3.7 (a), in semiconductor manufacturing.

"';,.l' .
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Figure 3.7 Line detection of Hough transform (a) Wafer with a scratch signature (b)
Filter out random failures (c) Transformed into r-6 parameter space. (d) Frequency

histogram of the signature

Afterward, we managed a filter algorithm to filter out the random failures from the
original Line spatial pattern and obtained the identified cluster, as shown in Figure 3.7
(b). This procedure can reduce the number of wafers and dies that must be analyzed.

When transformed the signature pattern from image space into the r-0 parameter
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space, all the dies in the same line are intersected to a point at the angle 135 degree, as
shown in Figure 3.7 (c). To automate the classification process, we count the number
of die with the identical values of (r ,0) for the cluster, the result can be visualized as a
2-dimensional frequency histogram, as shown in Figure 3.7 (d). Thus, from the
frequency data we automatically identify this pattern as a potential diagonal scratch.
Any other cluster composed of lines, scratches can be identified at the angles of 0, 45,

90 and 135 degrees, as shown in Figure 3.8.

Pattern r-6 parameter space 3D histogram
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Figure 3.8 Four angle line detection of Hough transform (a) 0 degree (b) 45 degree (c)
90 degree (d) 135 degree

In the following, we could notice that the frequency histogram for the cluster

composed of ring signature, as shown in Figure 3.9 (a), is not be so characterized and
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average distributed at the angles of 0, 45, 90 and 135 degrees. This result of frequency
histogram caused us to confuse with Bull eye, Ring and Edge signature, as shown in
Figure 3.9 (b) (c) (d). This result is presenting that the linear Hough transform is not
enough to determine the signature without Line signature pattern. Therefore, we
further employed the circular Hough transform method to distinguish the kind of Bull

eye and Blob spatial pattern.
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Figure 3.9 Linear Hough transform for variant shape (a) Bull eye (b) Blob. (c) Ring (d)
Edge

The circle is similar to represent in parameter space, compared to the line. As we
described in section 2.4.2, each edge point we draw a circle with center in the point

with the desired radius, when the edge points in the xy-plane are located on the same
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perimeter then the circles with center in these points must be intersected to a point, as
shown in Figure 3.10 (a). At the coordinates which belong to the perimeter of the
drawn circle we increment the value in our accumulator matrix. In this way we sweep
over every edge point in the input image drawing circles with the desired radii and
incrementing the values (or score) in our accumulator. When every edge point and
ever desired radius is used, we can turn our attention to the accumulator, as shown in
Figure 3.10 (b). The accumulator matrix which is three dimensional, if the radius is
not held constant, can quite fast grow large. In order to simplify the parametric
representation of the circle, the radius can be limited to number of known radii, such

as 1 <r <R where R is the wafer radius.

1 T,
2. Boundarydetection
-
& §> J @

1. Filter map

(a)
index a b r score
1 26 5 13 21
2 26 7 12 20
3 26 b 12 20
4 27 11 8 20
(b)

Figure 3.10 Circle detection using circular Hough transform (a) 4 points are located
on the same perimeter with radius r in the xy-plane and 4 circles are intersected to a
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point (b) Sample of the accumulator matrix

In general, the signatures of Bull eye and Blob spatial pattern on wafers could not
be representing in completely circular shape. It could be in elliptic or arbitrary shape.
Thus the maximum score in the accumulator will not be the optimal selection. To find
the optimal selection in the accumulator we defined an equation named cover ratio as

following:

Cover Ratio (%) = failed c_jles_ln detected (_:II’C|E, 100
total dies in detected circle

where the radius of  the circle r<./(x- a)® +(y- b)*.

Therefore, based on the accumulator matrix we created previously, finding a set
of center (X, y) and radius of circle in the accumulator and calculated the CR. Once the
CR has been exceeded the threshold value (for instance, CR=0.9) then we could pick

up this set of center and radius for our optimal parameter. The procedure result shown

in Figure 3.11.

Index 1 2 3 4
Center of Circle (26, 5) (26, 7) (26, 6) (27, 11)
Radius 13 12 12 8
CR CR=46.33% CR=55.71% CR=51.5% CR =90.02%
i
Illustration

]

Figure 3.11 Finding optimal CR

There is a situation should be noticed that the circle we found by circular Hough
transform could be located in small area of failed dies (Figure 3.12). Thus, we must

set a criteria to eliminate this situation occur. The criteria set as following:
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Circle of Wafer (%) = Total failed dies in circle. 100

Total failed dies in wafer

(a) CR(%0): 95.49% Crurcle of Wafer: 11.02%

(b) CR(%0): 93.5% Circle of Wafer: 78.82%

Figure 3.12 Circle detection in Ring and Blob spatial pattern

After we found a set of optimal center and radius, we further distinguish the
spatial pattern between Bull eye and Blob by calculated the distance form wafer center
to optimal center as shown in Figure 3.13. When the distance is large enough, the

spatial pattern could correspond to the characteristic values of Blob spatial pattern.
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Otherwise, there failure shape could be Bull eye spatial pattern.

Distance

Figure 3.13 The distance of Bull eye and Blob spatial pattern

The final portion of the feature extraction divided the wafer map into two zones as
show in Figure 10, which zonel occupied 4/5 of the wafer and zone2 occupied 1/5 of

the wafer as shown in Figure 3.14.

Figure 3.14 Wafer splitting

In order to extract the features of ring and edge shapes, we only consider the

number of failed dies in zone2, so we defined the Zone Ratio as:
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Zone Ratio (%) = failed dies in zone2, 100

total dies in zone2

For instance, in Figure 11, if the failed pattern represent in ring signature, the
calculated values of zone ratio showing a high percentage. If the failed pattern
represent in edge signature, the calculated value of zone ratio showing a moderate
percentage. Of course, when the failed patterns represent in Blob signature which is
very close to the boundary of wafer map, it could also has a moderate percentage
values of zone ratio. However, the Blob spatial pattern will be detected by CHT and
calculated a distance between detected circle and wafer center, but edge spatial

patterns will not. So, it can still effectively identify the edge spatial pattern.

Gross Die: 626 Bad Die: 200

ID Region(%) Bad Cnt Region Cnt
[Zone]

1: 0.55% 2 364

2: 75.57% 198 262

Gross Die: 626 Bad Die: 60

ID Region(%) Bad Cnt Region Cnt
w | _
[Zone]
1: 0.82% 3 364
2: 21.76% 57 262

Figure 3.15 Failed ratio in zone

All of the features that we discussed previously can be summarized in Table7. When
the linear HT feature has an obvious intersection in a certain angle, we can almost
determine the spatial pattern has Line signature. The CHT distance can detect whether

there is a circular signature distribution on the wafer and the Zone ratio can detect
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ring and edge signature similarly.

Table 3.2 Relationship between features and patterns

Line Edge Ring Blob Bull eye
/ : t ' |- &
= ]
1 Linear HT Y M M M M
2 CHT distance N N N long short
3 Zone ratio Low Middle High Low/middle Very low
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Chapter 4 Results

The methodology must be capable of mapping the features which are extracted
from the input to the output. A so-called train and test method is used to construct a
classifier in which the available dataset is divided into a training set and a test set, as
show in Figure 4.1 [8]. The original data has been divided into training set and testing
set. The training set used to train a classified model by data mining classification
algorithm with 10-folds cross-validation. Once the classified model had been

constructed, the testing set will applied to estimate the accuracy of classifier.

Subsample 1
Subsample 2

Classification
algorithm

Subsample 10

Training set 10folds
cross-validation

O.riginal data t,;’: O@ *

_ . Classifier

Testing set l

Y

Evaluation

Figure 4.1 System interface | (a) Load the original EWS map in the system (b) Filter
out random failed dies

4.1 Implementation

As the experiment we have shown previously, and then we developed an
automatic recognition application to implement our serial procedure of classification.
The automatic recognition system is implemented using Visual Studio C# language
under Microsoft Windows XP operation system. In this section, the automatic

recognition system will be introduced.
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1. Load the original CP map in the system and filter out random failed dies.

2. Hough transform for linear detection.
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(a)

(b)

Figure 4.2 System interface | (a) Load the original EWS map and filter out random
failed dies (b) Hough transform for linear detection

3. Edge detection.

4. Hough transform for circular detection.
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(a)

(b)

Figure 4.3 System interface Il (a) Edge detection (b) Hough transform for circular
detection
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5. Calculated the failed ratio distributed on each zone.

6. Get the entire features in each wafer.
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Figure 4.4 System interface 111 (a) Calculated the failed ratio distributed on each zone
(b) Get the entire features in each wafer

7. After obtain entire features then input the data to WEKA data mining tool to train

model by classifier.

In cross-validation, the 10-fold cross-validation is commonly used of k-fold

cross-validation so that set the folds as 10. The classifier we selected decision tree

(J48) that we have been demonstrated one of the data mining algorithms

previously. Finally, the WEKA tool present relative data mining measurement
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Figure 4.5 Traininag in WEKA data mining tool (a) Features input (b) Classifier
measurement

9. After running J48 algorithms, we could obtain the tree rule in the classifier. When
we constructed the tree rule in our automatic system, the automatic system will

classify each pattern in results.

(a) (b)

Figure 4.6 The result of system (a) Decision tree (b) Classification result

We could set the automatic classification system in schedule in operation system
by daily. For instance the system auto run at 06:00am every morning and query wafer
for past 24 hours, when engineers go to work at 08:00am they can obtain the

classified result without human resource and avoid time consuming.
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4.2 Classification results

Because of the input-output relationship is known, this paper using supervised
learning algorithm to create the classifier. The algorithm must be capable of mapping
the features which are extracted from the input to the output. A Train and Test method
is used to construct a classifier in which the available dataset is divided into training
and testing set. The 10-fold cross-validation is commonly used of k-fold
cross-validation, so we used 10-flods cross-validation to divide the dataset. In 10-fold
cross-validation, the origin dataset is randomly partitioned into 10 subsets. Of the 10
subsets, a single subset is retained as the validation data for testing the model, and the
remaining 9 subsets are used as training data. The cross-validation process is then
repeated 10 times, with each of the 10 subsets used exactly once as the validation data.
The 10 results from the folds then can be averaged to produce a single estimation. The
advantage of this method over repeated random sub-sampling is that all observations
are used for both training and validation, and each observation is used for validation
exactly once.

We inputted five types of failure shapes with 1723 datasets in fabricated
semiconductor wafers and 965 datasets in simulated wafers that we introduced in
section 3.1 to created pattern and get the characteristic values of these failure shapes.
The result and accuracy of several classification techniques that we described
previously in data mining algorithms are shown in Table 4.1. The different
classification algorithms were used to classify the simulated datasets, and then the
accuracy was obtained in each spatial pattern. It can be observed that the total
accuracy of each classification algorithm result in at least 90.2% above. The Decision
Tree (J48) and LogitBoost algorithms generally result in good accuracy performance

with 95.2% and 95.5%. It is hoped to that the accuracy on simulated data is
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consistent with real manufacturing dataset when the classifiers are applied to real

manufacturing real dataset.

Table 4.1 The accuracy for simulated dataset

Decision
NBC Bagging | LogitBoost [MultilayerPerceptron

Tree(J48)
Bull eye 92.6 91.4 93.3 92 93.3
Edge 96.9 86.1 95.6 96.9 93
Blob 99.8 99.9 99.3 99.3 99.3
Ring 92.9 92.9 93.7 95 95.4
Line 94.7 82.9 93.1 94.7 90.4
Total 95.2 90.2 94.8 95.5 94.1

Table 4.2 shows the accuracy for manufacturing data. The result also shows the
accuracy for Decision Tree (J48) and LogitBoost algorithms represented in good

performance with 95.5% and 95.3%.

Table 4.2 The accuracy for manufacturing dataset

Decision
NBC Bagging | LogitBoost |MultilayerPerceptron
Tree(J48)
Bull eye 96.4 98.8 95.9 94.7 94.7
Edge 96.3 80 96.3 97.1 96.7
Blob 90.2 91.1 92.9 90.2 92
Ring 98.2 89.2 98.2 98.2 97.3
Line 95.2 96.8 92.1 94.4 97.6
Total 95.5 90 95.3 95.3 95.8

It is consistent with the result of simulated data. In all classification algorithms, The
Decision Tree (J48) and LogBoost are most consistent in good performance both in
simulated and manufacturing data. It could be noticed that the Line spatial pattern
represent in comparative low accuracy both in simulated and manufacturing data of

these classification algorithms.
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Among all classifiers, LogBoost is most consistent in the overall performance in both
simulated and manufacturing data. However, it was observed that the Line spatial
pattern results in poor performance both in simulated and manufacturing data. This is
cause of the failed pattern represent in mixture signature as show in Figurel3. The
spatial pattern has been classified as Line spatial pattern but it also has Blob signature
in the wafer map. Then the classifier mistakenly classified it to Blob spatial pattern

because it has been detected a circle by CHT feature extraction.

Figure 4.7 Mixture spatial pattern
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Chapter 5 Discussion

This paper demonstrated three feature extraction techniques to classify spatial
patterns on circuit probe map into different categories which representing in Line,
Bull eye, Ring, Blob, and Edge characteristics. The technique such as linear Hough
transform can be used for detect line spatial pattern, circular Hough transform can
detect round shape and calculate distance between center of round shape and wafer
center to distinguish Bull eye and Blob spatial pattern. Wafer map divided into zone
blocks can help us to detect ring and edge spatial pattern. After demonstrated the
approach with these features, we could summarize that the classification accuracy of
our methodology is located in 90% ~ 95.8% in simulated and manufacturing data. It is
found that Decision Tree (J48) and LogitBoost is the best performance algorithm for
our feature selection and used to identify the failure classes production lots.
Subsequently, we could contrast with process history of each same failure pattern and
it may be possible to understand which type of problem originated the failure and
which equipment is responsible by the root cause in engineering data analysis.

Finally, the features will need to be more robust and invariant to noise. This is
because noise and unclassified shapes will be an inevitable part of classified spatial
patterns of manufacturing data. For further study, it is needed to develop more
features to identify more failed shapes. It could need more independent features to
enhance the accuracy of classification. For instance, we found that when the signature
representing in scratch and mix-type edge result in poor accuracy with our
methodology which is demonstrated in Figure 4.7. The automatic classification is
currently used for process diagnosis at the semiconductor industry and performs well

to save time for yield improvement.
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Appendix

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0008 0.0008 0.0006 0.0006 0.0008 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0008 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0028 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.005%9 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

-24 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0338 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.04486 0.0438 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0485 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.14869 0.1446 0.1423 0.1401 0.1379

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 01711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2081 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.26786 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.41289 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 04721 0.4681 0.4641

56



Cumulative probabilities for POSITIVE z-values are shown in the following table:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.64086 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8108 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9308 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9408 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.97086
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
21 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
23 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
24 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
25 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
29 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9980 0.9990
31 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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