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Abstract— In this paper, we show that, for an uncoded receiver
system, the proposed least mean square (LMS) decision aided
equalizer (DAE), with, the backward step-size constant greater
than forward step-size constant, compared to classical equal-step
size design, has a lower mean square error by upto 5 dB, for
a frequency selective wireless communication channel. Classical
LMS DAE with equal step-size constants, can be considered as
perfect decision feedback system, compared to, the proposed
unequal step-size, as a imperfect decision feedback system. We
provide, Wiener DAE, considering imperfect decision feedback
information, during training mode and provide analysis for LMS
DAE with unequal step size constants.

I. INTRODUCTION

Interference mitigation in a wireless communication re-
ceiver system, results in a signal to interference noise ratio
(SINR) versus bit error rate (BER) performance improvement.
Inter symbol interference (ISI) and deep fades in the channel,
increases with higher frequency selectivity, causing a corre-
sponding increase in interference noise, reducing the BER
performance. In a receiver design, with unknown wireless
channel state information (CSI), the effects of interference
noise, degrades the SINR versus BER performance. A decision
aided estimator (DAE), is employed to reduce the input SINR
for a particular BER performance, by mitigating interference
noise [1], [2]. A classical adaptive DAE receiver [3], ‘learns’
the CSI, using least mean square (LMS) algorithm, to update
the forward and backward filter coefficients. The common
feature of classical DAE receiver is, 1) to operate in moderate
to high SINR and 2) to assume that, perfect decision feedback
information is available at the feedback filter. In a classical
LMS DAE, the equalizer structure, has always used equal step-
size constants to update the filter coefficients [4], [3], which
is, implicitly assumes ’perfect’ decision feedback information,
to converge towards steady-state mean square error (MSE).
However, unequal step-size constant LMS DAE, provides a

potential for ‘imperfect’ decision information to be included to
converge to lower MSE steady-state values. The detector in a
DAE shown in figure 1, makes perfect decisions which are fed
into the feedback filter. But, the weighing of filter coefficients
can be influenced by unequal step-size constants, which treats
the decision feedback information as ‘imperfect’. In this paper,
we show that unequal step-size constants for LMS DAE, have
the ability to vary the extent of MSE convergence behavior
towards lower steady-state values for frequency selective com-
munication channels. The consequence of this result can be

Fig. 1. A classical DAE, r is the output information vector of transmitted
symbols x passed through a frequency selective ISI channel. Training mode,
which, performs channel estimation, uses the structure of a DAE, shown in
the figure.

applied to coded communication systems [5], [6], which is
not discussed in this paper. Hence, the step-size constants,
provide additional degree of freedom, per filter coefficient,
for LMS DAE. However, the question is, what are the optimal
settings of the forward and backward step-size constants (µf ,
µb respectively)? In order to understand the influence of the
step-size constants, on the MSE performance, a Wiener DAE
solution, for imperfect decision feedback information during
training mode is derived. We can then infer, the effect of
unequal step-size constants on MSE, using LMS DAE, over
an uncoded communication system. The contributions of this
paper are,

1) An LMS DAE with, the backward filter step-size (µb)
greater than forward filter step-size (µf ), provides a
reduction in steady-state MSE by upto 5 dB for an
uncoded system, in an highly frequency selective wire-
less communication channel (figure 3). The higher the
frequency selectivity, the greater, is the reduction in
MSE, such that, µb > µf .

2) We derive a Wiener solution, for the forward and
backward filter coefficients of a DAE receiver structure,
with imperfect channel estimate, during training mode
(equation 20 and 22), which is used to explain the
reduction of steady-state MSE for an LMS DAE, with
µb > µf .

3) The BER versus unequal step-size constants perfor-
mance for an uncoded LMS DAE follows the steady
MSE behavior, for high input SINR. The figures 4., and
5., show BER optimization can be achieved by assuming
unequal-step size.

The rest of the paper is organized as follows, in section
II we discuss the system model for an uncoded wireless
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communication system. In section III, we discuss the effect
of imperfect decision feedback information, in lowering the
MSE, using classical DAE structure, during training mode.
In addition, we discuss the lowering of steady-state MSE
using classical LMS DAE, with unequal step-size constants.
In section IV we describe the simulation results obtained in
this paper. We summarize the results presented by the authors
in section V.

II. WIRELESS COMMUNICATION SYSTEM MODEL

A communication receiver system is shown in figure 1.,
where, it is assumed that, there is no channel coding applied,
to the binary phase shift keyed (BPSK) digital information.
The channel model used in a wireless communication system,
presents an observation equation, with the complex baseband
signal,

rl(i) = Hlx(i) + nl(i) (1)

where, r(i)l=[r(i)1, ..., r(i)N ]T , i∈{0,L-1}, is the received
signal transpose vector, of length L, sampled at chip rate,
where N is the filter length, H is the hermitian matrix of
the wireless communication channel impulse response, x(i)is
the transmitted symbol vector and n(i)=[n(i)1, ..., n(i)N ]T , is
the additive white gaussian noise (AWGN), with covariance
E{n(n)nH(n)} = σ2I. The channel response matrix is
Hl=[hl, ..., pl], where, l is the packet index of Lp packets,
l∈{0,Lp-1}. The binary information x, is transmitted over a
radio-channel of bandwidth B, at a rate R=1/T symbols per
second. The M-tap wireless communication channel coeffi-
cients hk=[h1, ..., hM ]T , with, unequally spaced delays (of in-
terval τ ) convolves (?) with the transmitted signatures, to form
signatures pl

k=gk?hk. As the wireless channel is unknown, the
channel response matrix at the receiver is unknown. Since, the
channel response matrix Hl, is estimated once for a packet,
we drop l in the per-packet analysis, provided in this paper.

III. CLASSICAL DECISION AIDED ESTIMATION

A. Problem statement

In considering the estimation of channel, using training
mode, the figure 1., shows two receiver system components
for channel estimation. A feed-forward filter (FFF), is fed with
received vector r, while, a feedback filter is fed with decision
information from a binary detector. The estimation error is
given by,

ε(i) = d̂(i)− x(i) (2)

where, ε(i), is the error in estimating the training sequence
correctly, x(i) is the i th training symbol. The principle of
MSE, averages over the entire packet, so dropping the index
i in the future reference,

ε = E{| ε |2}
= E{| d̂− x |2} (3)

where, d̂ is the estimated symbol at the DAE, given by,

d̂ = fHr− bHd (4)

Substituting (4) into (3)

ε = E{| ε(i) |2}
= E{| d̂− x |2}
= E{| fHr− bHd− x |2} (5)

Solving (3), we can arrive at MMSE solution, which, can be
implemented adaptively, using the LMS DAE given by,

f(i + 1) = f(i) + µfe(i)r(i)
b(i + 1) = b(i) + µbe(i)d(i) (6)

where, µf and µb are step-size parameters for updating the
feed-forward (f) and feedback filter (b) taps respectively. The
classical solution, for LMS DAE however, uses the same step-
size constant, µb = µf [3].
However, from the update equation (6), it is not clear as
to whether the choice of the step-size ratio r, defined as
r = µb

µf
, has any effect on the final MSE, which leads to

the question: what are the optimal settings of µf , µb? In
order to understand the influence of the step-size constants
on the MSE performance, we will first need to access the
Wiener solution for a DAE under the conditions that, feedback
information through the backward filter, has imperfect decision
information. Since, the choice of forward, backward filter
coefficients, is critically dependent on its adjustment, during
training sequence. We have to focus our analysis on filter
coefficient design, during training mode, as part of channel
estimation.

B. Wiener Decision Aided Estimator

During training mode, the channel response matrix H and
vector x are not distinguishable, under the assumption that, the
wireless communication channel is unknown at the receiver.
Therefore, we have chosen a novel approach to finding the
expression for Wiener coefficients during training mode. Nor-
malizing and expanding (3), we have,

ε = (fHE{rrH}f− fHE{rdH}b− bHE{drH}f
−fHE{rx} − E{xrH}f + bHE{ddH}b
+bHE{dx}+ E{xdH}b + 1 (7)

Assuming the following expectations, and co-variances,

R = E(r.rH) (8)
Rrd = E(r.dH) (9)

p = E(r.x) (10)
Rdd = E(d.dH) (11)
Rdx = E(d.x) (12)

Taking partial differential w.r.t f,b and equation to zero in order
to find MMSE filter coefficients, we have, (7), (8)

∂ε

∂f
= 2fE{rrH} − 2bE{drH} − 2E{rx}

∂ε

∂b
= −2fE{rdH}+ 2bE{ddH}+ 2E{dx} (13)



In keeping with the principle, that we cannot discard any
information, without establishing the extent of its usefulness,
for an imperfect decision feedback DAE in training mode, we
allow the following assumptions,

Rrd 6= 0
Rdd 6= I

E(d.x) 6= 0
E(d) 6= 0 (14)

Substituting the assumptions, into (13) and equating to zero
for MMSE solution, we get

fR− bRH
rd − p = 0 (15)

fopt = (bopt (16)
RH

rd + p)R−1 (17)

−fRH
rd + bRH

dd + rdx = 0 (18)

substituting, for fopt into (18), we get,

−(bRrd + p)R−1Rrd + bRdd + rdx = 0
−bRrdR−1RH

rd − pR−1Rrd + bRdd + rdx = 0
b(Rdd − RrdR−1RH

rd)− pR−1Rrd + rdx = 0
(19)

bopt = (
pR−1Rrd − rdx

Rdd − RrdR−1RH
rd

) (20)

Substituting bopt into equation (15),

fopt = ((
pR−1Rrd − rdx

Rdd − RrdR−1RH
rd

)RH
rd + p)R−1 (21)

simplifying it further assuming RrdR−1
rd = I, we get,

fopt =
pR−1Rrd − rdx

RddR−1
rd − RrdR−1 + pR−1 (22)

1) Analysis of Wiener DAE for imperfect decision feed-
back: The forward and backward filter coefficients derived in
(22),(20), for the case of imperfect decision information, can
be reduced to perfect decision feedback Wiener DAE results
[7], by making appropriate assumptions,

| Rrd − I | � 0
Rdd = I

E(d.x) = 0
fpopt = pR−1Rrd

bp
opt = fR−1 (23)

where, fpopt, and bp
opt are Wiener filter coefficients assuming

perfect decision feedback information. So, the vector set, for
fopt given by (22), and the vector set for bopt given by (20),
in a Wiener DAE considering imperfect decision feedback
information, can be represented as,

fopt = {fpopt, fi}
bopt = {bp

opt, bi} (24)
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Fig. 2. Frequency responses of different frequency selective channels.

1) Proakis-B channel [8].
2) Vachula channel [9].
3) Proakis-C channel [8].

where, fi, and bi are the filter coefficients adjustments, con-
sidering imperfect decision feedback information. Clearly, the
forward and backward filter coefficient solutions, are affected
by assuming imperfect decision feedback information, which,
have to accounted separately, when using adaptive DAE algo-
rithm.

C. LMS Decision Aided Estimation

The MSE E[ε(i)2] is a convex function of vector f, b,
defined by (20) and (22). As stated in section III-A, training
sequence is used in practice, to tune the forward and backward
filters, using (6), which, converges channel estimation errors
using MSE principle. The classical wireless communication
channel estimate, using LMS DAE, with the forward and
backward filters adjusted using step-size µb,µf , assumes per-
fect decision feedback information. In an LMS DAE, this is
reflected by setting µb=µf = µ. The adaptive coefficients,
are updated classically, according to the following principle
equations[7],

fk(i + 1) = fk(i) +
1
2
µ[−∇fε(i)]

bk(i + 1) = bk(i) +
1
2
µ[−∇bε(i)] (25)

where, fk(i+1), and bk(i+1), are the filter coefficient at i+1
th symbol interval. ∇fε(i) is the gradient (partial-derivative)
of an i th symbol, w.r.t f, ∇bε(i) is the gradient of an i th
symbol, w.r.t b. Substituting (13) into (25) and simplifying, we
get the following set of update equations for the case, where,
decision feedback information into LMS DAE is perfect,

fk(i + 1) = fk(i) + µ[−fR + p]
bk(i + 1) = bk(i) + µ[fHRrd − b] (26)
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Fig. 3. Convergence analysis against steady-state MSE plot versus ratio r
(= µb

µf
). Results for uncoded system at 25 dB with LMS DFE for different

frequency selective channels. The steady-state MSE for optimum r=1 is greater
than r=10. The forward and backward filter coefficients are updated constantly
in directed mode.

1) Proakis-B steady-state MSE results [8].
2) Vachula steady-state MSE results [9].
3) Proakis-c steady-state MSE results [8].

1) Unequal step-size behavior in LMS DAE: The step-size
ratio r = µb

µf
, provides an additional degree of freedom for

every filter coefficient, using LMS DAE, such that, imperfect
decision feedback information into feedback filter is weighed
by a factor r = µb

µf
, according to MSE criteria. A different set

of update equations for LMS DAE, when imperfect decisions
(15),(18) are taken into account and substituted into (13),

fk(i + 1) = fk(i) + µf [−fR + bRH
rd + p]

bk(i + 1) = bk(i) + µb[fRH
rd − bRH

dd − rdx] (27)

Assuming that, υb → 0 and , is the residual MSE for estimated
symbol using LMS DAE, which, approaches zero, for large
enough training sequence,

fRH
rd − bRH

dd − rdx = υb

b = fR−1
dd RH

rd − R−1
dd rdx − υb.I.R−1

dd

(28)

substituting b into the update equation for fk(i + 1),

fk(i+1) = fk(i)+µf [−f(R−R−1
dd )+p−R−1

dd (rdx−υb.I)RH
rd]

(29)
bk(i + 1) = bk(i) + µb[fRH

rd − bRH
dd − rdx] (30)

The forward filter coefficients of (29), are updated using a step-
size constant µ and a factor R−1

dd (rdx−υb.I)RH
rd, compared to

(26). Similarly, the backward filter coefficients are updated
using step-size µ and a factor rdx. The filter coefficient
adjustments in (24), can now be justified using LMS DAE
filter coefficient update, using, unequal step-sizes.
The same principle can be extended to a continuously adapting
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Fig. 4. The two subplots show the correspondence of steady-state MSE and
uncoded BER performance versus ratio r (= µb

µf
), using DAE shown in figure

1., for Proakis-C communication channel [8], at 20 dB (input SINR).

1) Steady-State MSE at 20 dB for Proakis-C channel [8]
2) BER versus step-size ratio r performance measure for

Proakis-C channel

LMS DAE, where, the MSE is estimated symbol is compared
to the detected symbol d, assuming, sufficient training has
been provided during channel estimation. But, the analysis
for decision directed mode, within ‘Turbo’ receiver systems is
complicated and outside the scope of this paper.

IV. SIMULATION RESULTS AND ANALYSIS

We use a Vachula model used in [9], Proakis-B and Proakis-
C in [8] to demonstrate three results, with different channel
responses, as shown in figure 2. Although, Proakis-B chan-
nel has non-flat fade, the Vachula, Proakis-C channels have
highly frequency selective frequency responses. An uncoded
BPSK information is transmitted through a frequency selective
communication channel. The received samples (1) are fed to
feed-forward filter of the DAE, which, consists of 18 taps. The
feedback filter consists of 2 taps. All the taps are initialized to
zero values. With training data, we run the LMS algorithm
for 10,000 iterations, sufficiently long for the algorithm to
converge. With the taps thus obtained, we run the algorithm
for another 10,000 iterations in the decision directed mode. We
compute the average of (3), in the decision directed mode and
then find the ensemble average by repeating the experiment
over 200 independent trials. The final MSE thus obtained for
different values of the ratio r (= µb

µf
) are shown in figure 3., for

an SINR of 25 dB. The step-size µf associated with the feed-
forward filter is fixed at 0.0025. Clearly, MSE behavior for
Proakis-B channel, does not exhibit, the slow exponential drop
in MSE compared to Proakis-C or Vachula channel. In a DAE,
the simulation results show that, the MSE decreases sharply
in the beginning, and later reaches a steady-state region, with
increase in µb. The results show that, the simple choice of
choosing the step-sizes to µf =µb is not optimal, and a higher
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value of µb compared to µf results in more than 1.5 dB gain
in terms of MSE for a frequency selective channel. It can be
said that, the MSE for a frequency selective channel does not
have a correspondence BER results, especially at low SINR.
The reason for a higher steady-state MSE at r=0 is not difficult
to understand, as in this case, only the feed-forward filter
is active and it is just a linear equalizer. For the channel
considered above, linear equalizers produce excessive noise
enhancement [8]. As r is increased the FBF starts playing
its role and the combination of feed-forward and feedback
filter functions as a DAE. Since, DAE has the potential to
compensate for amplitude distortion without providing noise
enhancement, we get lower steady-state MSE. However, even
at r = 1, the feed-forward and feedback filter do not combine
in an optimal manner, to minimize the steady-state MSE. In
our example, a higher value of r pushes the combination of
feed-forward and feedback filter towards the optimal, and feed-
forward filter tends to be a whitening matched filter [3].
The figures 4., 5., show the BER performance results versus
the ratio r (= µb

µf
) for Proakis-C and Proakis-B frequency

selective channel. The figures have been shown separately,
to clearly point the correspondence between MSE and BER
results. There optimizing the BER results based on steady-
state MSE results, at high SINR. Different input SINR’s have
been used to obtain the results for Proakis-C and Proakis-B
channel, due to practical issues in generating BER results at
high SINR.

V. CONCLUSION

The steady-state MSE results follow the BER performance
results at high SINR for an LMS DAE. The simulation re-
sults have demonstrated the optimization in BER performance

results, by using unequal step-size constant values for an
adaptive DAE. The analysis provided here shows that, the
reduction in steady-state MSE can be explained by assuming
‘imperfect’ co-variance matrix of the detected symbols.
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