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Abstract

The malfunction of semiconductor devices caused by cosmic rays is known as

Single Event Effects(SEEs). In the atmosphere, secondary neutrons are the dom-

inant particles causing this effect. The neutron flux density in atmosphere is

very low. For a good statistical certainty, millions of device hours are required

to measure the event rate of a device in the natural environment. Event rates

obtained in such testings are accurate. To reduce the cost and time of getting

the event rate, a device is normally taken to artificial accelerated neutron beams

to measure its sensitivity to neutrons. Comparing the flux density of the beam

and the flux density of a location in the atmosphere, the real time event rate can

be predicted by the event rate obtained. This testing method was standardized

as the neutron accelerated soft error rate (ASER) testing in JEDEC JESD89A

standard. However, several life testings indicated that the neutron flux density

predictions given by the accelerated testings can have large errors. Up to a factor

of 2 discrepancy was reported in the literature. One of the major error sources

is the equivalence of the absolute neutron flux density in the atmosphere and in

accelerated beam.

This thesis proposes an alternative accelerated method of predicting the real-

time neutron error rate by using proxy devices. This method can avoid the error

introduced by the uncertainty in the neutron flux density.

The Imaging Single Event Effect Monitor (ISEEM) is one of the proxy devices.

It is the instrument originally developed by Z. Török and his co-workers in the

University of Central Lancashire. A CCD was used as the sensitive element to

detect neutrons. A large amount of data sets acquired by Török were used in

this work. A re-engineered ISEEM has been developed in this work to improve

ISEEM performance in life testings. Theoretical models have been developed to

analyze the response of ISEEM in a wide range of neutron facilities and natural



environment. The agreement of the measured and calculated cross-sections are

within the error quoted by facilities. Because of the alpha contamination and

primary proton direct ionization effects, performance of ISEEM in life testings

appeared to be weak.

A large extended Bonner sphere is the other proxy device. Methods have

been developed to adjust the configuration of an extended Bonner sphere to

approximate the response function of semiconductor devices. To take an example,

a Bonner sphere was designed to have a similar response to ISEEM. Monte Carlo

simulations predict that the event rate of this sphere is about five orders of

magnitude of the rate of ISEEM. Using this sphere, the neutron event rate of

ISEEM in atmospheric neutrons can be estimated in a much shorter time.
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Chapter 1

Introduction

1.1 Discovery of single event effects

In the early 1960s, Wallmark and Marcus[1] published a paper to predict the trend

of microelectronics. The minimum feature size was predicted to be approximately

10µm, which turned out to be wrong later. However, they correctly predicted

that cosmic ray direct ionization would upset a circuit when the feature size

of microelectronics became small enough. However, this prediction was too far

ahead its time. More than one decade elapsed before the technology reached

critical circumstances predicted. When this effect was studied by the pioneers at

the end of 1970s, there was no accepted term to refer to it. This effect was referred

to as “anomalies” by Binder et al. [2] in 1975, “bit errors” by Pickel et al. [3] in

1978, “soft errors” by May et al. [4] and “single event upsets” by Guenzer [5] in

1979. The term “soft errors” and “single event upsets” have been adopted in

many later works. JESD89A [6] of the JEDEC standard standardized this effect

as SEU ( single event upset) . This is one type of single event effects (SEEs), and

also the type of main interest in this work. Classifications of different types of

SEEs are introduced in section 1.2.

Today, four event mechanisms have been discovered. This section introduces

them in the order of the time of discovery. For all these mechanisms, the basic

1



principle of the effect is that a charged ion strikes an active region of an electronic

device and generates a large amount of charge to alter the state of the circuit.

A ion dissipates its kinetic energy in matter to release electron-hole pairs. For

silicon, on average, every 3.6 eV of kinetic energy can release one electron-hole

pair [7]. The four mechanisms are classified by how these charged ions emerge [8].

By the very early 1970s, the main device used in this project, the CCD,

was invented in the Bell laboratry [9]. This invention won the Nobel prize in

2009. These devices are essentially large photoactive capacitor matrices which

are capable of shifting out the charge packet stored in each capacitor. Unlike

many other radiation detectors, a full-frame CCD can time-independently record

the charges generated by stopping ions. CCDs were used to study radiation effects

on semiconductors shortly after they were invented[10]. More than a dozen works,

directly relate to the radiation effects on CCDs, were published in the literature

in the second half of the 1970s (e.g. [11–20]). They were used to measure the

noise introduced by gamma and ion radiations (e.g. [11–15]), the methods of

hardening the devices (e.g. [16, 17]), and the mechanisms of neutron damage

in semiconductors (e.g. [18–20]). Reviews of the radiation effects research and

developments in the 1970s, as given by Srour[10], remarked that by the end of the

1970s, the CCDs were realized as “an excellent vehicle for studying, characterizing

, and understanding certain basic effects of radiation that otherwise would not

be observable or observed”.

The galactic cosmic ray is the first recognized source of SEE. It originates

from outer space, and is composed of energetic particles such as hydrogen (94%),

helium (5%) , and other heavier ions. Its flux density is shown as a function of

ion mass up to
58
Ni in Fig. 1.1. Heavier ions than helium have very low flux

densityes. Among these heavier ions, carbon (of mass 12) and oxygen (of mass

16) have the largest flux densityes, though they are two orders of magnitude lower

than helium. A local peak appears at mass of 56 (mostly iron), its flux density

is one order of magnitude lower than carbon.

2



0 10 20 30 40 50 60
10

−2

10
0

10
2

10
4

atomic mass

flu
x,

 c
m

−
2  d

ay
−

1

Figure 1.1: Galactic cosmic ray flux density as a function of ion mass, after [21]

A paper entitled “satellite anomalies from galactic cosmic rays” [2] was pub-

lished in 1975 by Binder et al. They reported the upsets observed in J-K flip-

flops in a satellite. To identify the source of the upsets, they used the differential

cosmic ray spectra, the range-energy curves, and the mass distribution of the

galactic cosmic ray to produce a Linear Energy Transfer (LET)-like spectrum.

LET and stopping power are both used to quantify the kinetic energy variations

of a charged particle in matter. LET quantifies the energy transferred from the

stopping particle to matter. Stopping power quantifies the energy lost by the

particle. The authors assumed that a heavy ion, of some LET above a certain

threshold, causes an upset. The discrepancy between their prediction and the

observation was relatively small (about a factor of 2). This method inspired a

great number of later works. Even today, the use of LET spectra to predict the

event rate in space is still widespread.

With succeeding technologies, the feature sizes of memory devices continually

shrink. As a result, a second source of SEE became significant and was first

reported by May et al. [4] in 1979. By the end of the 1970s, Intel built a factory

downstream of an abandoned uranium mine. Unaware about that the river was

polluted by radioactive contaminations, water from this river was used in product
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fabrication. The uranium and thorium isotopes were brought into the products

of this factory. These isotopes decay by emitting alpha particles, which can cause

SEEs if they hit a sensitive region. The Dynamic Random Access Memories

(DRAMs) and CCDs from this factory were found to be highly unstable. The

error rate in the DRAMs was very high (about 200 per device per hour). This

was a new SEE mechanism as the source of the radiation was not from the

galactic cosmic rays in space, but was from the local material. May and Woods

reported this upset mechanism [4], and introduced the new term “soft errors” to

describe the upsets. Their work indicated that the microelectronic devices can

have a critical reliability issue even at sea level. Right after May and Woods’s

work, Pickel and Blandford published a calculation of the event rate for a 4kb 1

(Random access Memories) RAM in space caused by galactic cosmic ray direct

ionization [3]. The results showed that error rate of a total of 96kb of RAM can

be up to 0.62 per day. Their work demonstrated that random errors can be found

in systems which require high reliability. This work, along with May and Wood’s

discovery, had a large impact on the community. The concerns then were widely

spread.

By the end of the 1970s, another SEE mechanism was discovered. It confirmed

that the secondary cosmic rays in the earth’s atmosphere can cause SEE.

When the galactic cosmic rays arrive at the upper atmosphere, many inter-

actions occur. New generations of nuclides are produced by nuclear reactions

between the incomers and the local atoms, and those then propagate towards

the earth as illustrated in Fig 1.2. These processes are known as cosmic ray cas-

cades[7]. Such cascades are mainly engendered by the galactic cosmic ray protons

and alphas in the first place, as they are the dominant particles in the GCR flux

density and have relatively long ranges in matter, such as the atmosphere.

The flux density of the secondary cosmic ray in the atmosphere is shown as

a function of altitude in Fig 1.3. The data for this figure were extracted from

1kb, kilobit
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the QinetiQ Atmospheric Radiation Model (QARM) website example 6 [22–24].

It can be seen that at the edge of the atmosphere, the flux density of cosmic

rays increases as the cascades grow towards the earth, and reaches a peak at the

altitude of about 18 km. With further decrease in altitude, the air becomes denser,

and the flux density drops rapidly below 18km. It seems that the shielding effect

of the atmosphere is more significant than the particle production effect in that

region. Neutron and proton flux density are similar in quantity at the top of the

atmosphere. With the decrease of altitude, the flux density of neutrons becomes

higher than the flux density of protons. At sea level, the flux density of neutrons

is about 15 times higher than the flux density of protons.

Figure 1.2: Cosmic Cascade

Ziegler and Lanford, who suspected that cosmic rays in the atmosphere can

also cause soft errors, published a paper in Science in 1979[7]. This paper was the

first detailed analysis of the soft error mechanisms induced by particles other than

energetic heavy ions. They had evaluated the interactions of electrons, protons,

neutrons and muons with silicon. Their work showed that electrons and muons

have very weak interaction with silicon, therefore they couldn’t produce enough

charge to upset memory devices. Energetic hadrons which are the neutrons,

protons and pions, may have strong interactions with silicon. Therefore they

are capable of causing SEE. Neutrons are the dominant hadron below the flight

altitude (about 20km) as indicated by Fig. 1.3, which makes neutrons the main
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Figure 1.3: Cosmic ray flux density against the altitude, after the QARM[24,25]

website example 6

concern of the soft errors.

The first experimental evidence of the errors caused by protons and neutrons

were reported by Guenzer et al. with 1979 [5]. They tested some memory devices

in 6.5MeV to 14MeV neutrons and 32MeV protons. The authors proposed that

the effect was caused by the alpha particles created by a (n, α) or (p, α) or

similar nuclear reaction. The term “single event upset” was first introduced in

this paper. As the upset is caused by a single incident particle, it is so called a

“single event”.

From the 1980s to the early of 1990s, the alpha contamination problem was

the major research topic of SEE [26]. This effect was reduced significantly after

its discovery. One way of reducing this effect is using extremely high purity

materials. The alpha particle emitting rate was reduced by a factor of more

than 105 times [27]. Methods were also developed to prevent the alpha particles

reaching the sensitive volume by coating the volume with thick enough materials.

As devices scaled down, secondary neutrons became the main source of SEE at

flight altitude [28]. Neutron induced SEEs became one of the major research

topics of SEE from then to today.
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The latest event mechanism was first reported on those devices doped with

boron in the substrates in 1986 [29].
10
B emits an alpha particle and a

7
Li after

capture of a thermal neutron. Up to 2.8MeV energy in total can be released. Fig.

1.4 illustrates the cross-sections of (n,α) reactions for
10
B and

28
Si.

10
B shows a

large cross section of interacting with neutrons. The integrated cross-section of

10
B(n,α) below 2MeV is more than 4 orders of magnitude higher than the cross-

section of
28
Si(n,α). Since a small volume of boron is used in semiconductors, the

overall geometry cross section of boron against silicon may not be as significant

as the material cross-sections.

Even though the disadvantages of using
10
B in devices are clear, it didn’t

stop the manufacturers using it to achieve lower manufacturing costs. By the

mid-90s, memory containing borophosphosilicate glass (BPSG) were the most

favoured products on the market. Then Baumann alerted the community to the

risks of using memories that contain
10
B [30]. In 2002, Kobayashi et al. [31]

gave experimental evaluations of the three sources of the single event upsets on

some 0.18µm and 0.25µm feature size SRAM; and the results showed that the

thermal neutrons contributed 74% of the events, which is about three times the

events caused by cosmic neutrons. Alpha particle contaminations contributed 1%

of the events. However, the weights of the sources are strongly dependent on the

designs, as Armani et al. addressed more recently in [32]: the sensitivity of the

SRAMs, with the same feature size, to thermal neutrons can vary more than one

order of magnitude.

1.2 Types of SEEs and the type of interest in

this work

The types of SEEs are well defined in the JEDEC JESD89A standard [6]. They

generally fall into to the categories of “hard error” and “soft error”. Hard errors

refer to those errors which are associated with permanent damage. Soft errors
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Figure 1.4:
10
B(n,α) and

28
Si (n,α) cross-sections, data are from ENDF/B-VII.0

are those errors that can be recovered by re-initialization or sometimes a hard

reset [6]. Common soft errors in memories are single event upset (SEU), multi-bit

upset (MBU).

SEU is a latched logic state alteration in digital circuits. The term was first

introduced by Guenzer [5] after he observed bit upsets of a SRAM in neutron and

proton beams. This type of error can be detected and corrected by the circuitry

in some high demand applications, such as the Error-Correcting Code (ECC)

memory, which is commonly used in network severs.

MBU is a soft error involving multiple adjacent bits. Such events are often

observed in a small feature size device, where the adjacent cells are close to each

other. The short-range heavy ions can hit several cells before they stop. This

type of error is more difficult to correct, and is becoming more significant, because

of shrinking feather sizes which makes the cells closer to each other.

SET is the transient current pulse generated by incident particle in a linear

or combinational circuit. The width of the pulse is strongly depends on the

particle LET and the device technology. Such pulses would be attenuated when

propagating through the paths in a device. A SET could be latched and cause an

SEU[33]. This error is becoming more and more important in advanced memory
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devices, because of the trend to faster bus speeds.

SEU is the main type of interest in this project. In CCDs, the radiation

induced charge transients can be recorded as charge packages. The event charge

packages are essentially the results of SET effect. Applying a certain threshold,

such transients could be considered as SEUs, to simulate the analogous effects in

the memory devices.

1.3 Standard methods of characterizing SEE in

memory devices

JESD89A [6] standardized two methods of measuring soft errors, the SSER (Sys-

tem Soft Error Rate) and ASER (Accelerated Soft Error Rate) testings.

SSER is the measured devices’ real time event rate, when operating directly in

a natural radiation environment. This type of testing provides the most accurate

results, because no extrapolation or assumption is made. Since the neutron flux

density in the atmosphere is very low, this type of testing often uses a large

number of devices to increase the effective event rate. It usually needs millions

of device hours to reduce the statistical error. Such requirements usually make

SSER testings very expensive, especially when it takes place at a remote location

(such as mountain top). The event rate in the natural environment is extremely

low. For example, Autran et al. [34] placed 3.6Gb 2 of 0.13µm feature size SRAM

at the Altitude SEE Test European Platform (ASTEP) for about half a year.

They observed only 44 events.

To reduce the cost and time to test a certain type of device, ASER testing

is often employed. In such testing, a device is exposed to an intense beam of

particle to accelerate the event rate. The neutron fluence in this type of testing

is measured by facility beam monitors. The accuracy of the beam monitors is

the main error source in this type of measurement. (as discussed in section

2Gb, giga bit
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2.6). White neutron sources have similar neutron energy spectra to that of the

natural cosmic neutrons. Therefore they are, in particular, used to simulate device

responses in the atmosphere. Such beams are produced using energetic protons

to bombard a metal target, and have a wide energy range (from thermal up to

several hundreds MeV). Fig. 1.5 compares the neutron spectrum of Weapons

Neutron Research (WNR) facility in the Los Alamos Neutron Science Center

(LANSCE) and the atmospheric neutron spectrum predicted by JESD89A. The

radiation intensity at LANSCE is about 8 orders of magnitude greater than that

of the atmospheric neutron radiation. However, the LANSCE spectrum shows a

lower cut-off energy at the high energy end, and small discrepancies in the shape

of the spectra. The most energetic neutrons are a very small part in the overall

neutrons. The lower cut-off energy effect is often neglected. The discrepancies of

the shape may lead to considerable error. Kobayashi et al [35] have noted that

such discrepancies could lead up to 25% difference in results of ASER and SSER.
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Figure 1.5: Neutron spectra

The neutron flux densityes at the testing sites are usually predicted by models,

for example, the JESD89A model [6] and QARM [24,25]. Errors in such models

will be introduced to the final ASER prediction. This effect is introduced in

section 1.3.1, which also discusses some benchmarking testing to evaluate ASER
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testings in recent years.

1.3.1 A brief review of the state-of-art SEE life testings

Measurements of SSER in some devices have been undertaken by several re-

searchers in recent years [34–37], they measure these rates at different locations

to validate ASER and/or verify the neutron flux density predicted by models.

SRAM based devices were used as sensitive elements in all these studies.

Kobayashi et al. [35] reported a large discrepancy between the ASER and

SSER for a 0.18µm feature size SRAM in 2004. The measured ASER and SSER

were 7800FIT/Mb (failures in time per mega bit)3 and 3000FIT/Mb, respectively.

The authors analyzed all possible error sources and suspected that the neutron

flux density prediction at the location of their experiment had an error up to a

factor of 2.

The Rosetta experiment [36] of Xilinx compared ASER from several different

locations. Comparing the predictions of JESD89, the discrepancy is in the range

of -34% to 47%.

Autran et al. [34] has reported surprisingly good agreements of the event rate

predicted by ASER at TRIUMF (within 10%) for 130nm feature size CMOS

SRAMs in 2007. Later in 2009, they reported [37] a 30% discrepancy for 65nm

feature size CMOS SRAMs between the ASER at LANSCE and the SSER at the

same location as where they did their previous experiment. These two measure-

ments at ASTEP demonstrated that the errors of ASER predictions of different

devices at the same location are not consistent.

A few characteristics of state-of-art devices could be found in these three

studies. Firstly, alpha particle induced soft errors still exist in today’s devices.

Secondly, the devices that have strong incident angular dependency could intro-

duce discrepancy between the accelerated testings and life testings. For example,

in the Rosetta experiment of Xilinx [36], the cross-section of FPGAs at 180◦ in-

3the number of failures per 109 device-hours per mega bit
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cident angle is known to be twice as high as the event rate at 0◦ incident angle.

Since the neutron incident angles in the atmosphere are difficult to predict, it’s

hard to correct for the influence of this effect. Finally, the neutron flux density

uncertainty in the atmosphere is the major error source of SSER.

Several conclusions for the memory devices’ SSER testings can be drawn. The

memory devices have very low event rate, even at high altitude laboratories. A

large amount of space, power, and maintenance are needed to keep devices operat-

ing. Also strong incident angular responses of devices can introduce considerable

errors to the final results. Such errors are usually difficult to correct.

1.4 Measuring atmospheric neutrons using gaseous

counters

There are many instruments that can be used to measure the neutron spectrum

in the atmosphere. Gaseous counters are popularly employed. [38] These sen-

sors utilize a certain reaction to detect neutrons.
3
He and BF3 thermal neutron

counters are are discussed below.

BF3 counters utilize the reaction

10B + n → 7Li + 4He+Q

Q is the released energy in this reaction. Fig. 1.4 shows the cross-section curve

of
10
B in the energy range from 1× 10−12MeV to 20MeV. The cross section

curve follows a 1/v relationship4 up to about 0.1MeV. Q is 2.31MeV 93% of the

time, when the lithium nuclide is left in its first excited state. 7% of the time the

lithium nuclide is left in its ground state, and Q is 2.79MeV.

3
He counters utilize the reaction below to detect thermal neutrons.

3He + n → 3H + 1H + Q (0.764MeV )

4v is the neutron velocity
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The cross-section curve of this reaction is similar to the
10
B(n,α) reaction. Its

cross section curve follows a 1/v relationship up to about 0.2MeV. The cross-

section at thermal energy (i.e. 0.025 eV) is 5330 b. Compared to the 3840b

of
10
B(n,α) reaction at this energy,

3
He has 40% higher cross-section to detect

thermal neutron. Therefore,
3
He counters are commonly used in low flux den-

sity environments. All the neutron spectrum measurements in the atmosphere

introduced in section 1.5, below, used
3
He counters.

3
He counters are widely used in two types of instruments, the standard neutron

monitor NM64 [39] and Bonner sphere spectrometers [40].

The standard neutron monitors form a global network to measure neutrons.

Measured data from a large number of stations are openly available on the In-

ternet. However, the response of such monitors to neutrons is proportional to

neutron energy from 10MeV to 100GeV [39], which is very different from semi-

conductor response to neutrons. Neutrons above about 1MeV can induce SEE

in semiconductors, and such response is typically saturated at the energy on the

orders of 10MeV. A notable feature of the neutron monitors is that they have

a very large size, therefore have a large geometrical cross-section. The neutron

monitor at the Altitude SEE Test European Platform (ASTEP) [34] has about

10 events every second.

In the natural environment, the Bonner sphere spectrometer is widely used[38].

A Bonner sphere spectrometer consists a set of Bonner spheres in different sizes.

Different size spheres have a peak response at different energies. ( see Table 6.2

for example) Response functions of the spheres can form a response matrix. After

exposing the spheres to the same neutron field simultaneously, individual counts

can be unfolded according to the response matrix to obtain the neutron spectrum.

This type of spectrometer was first described in 1960 [40]. They have very good

energy range, good sensitivity, and isotropic angular response. But the energy

resolution is poor, and the processes of unfolding a spectrum is complex [38].

A cylindrical scintillator was used in the initial design of the Bonner sphere[40].
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Polyethylene

Counter

Figure 1.6: Example Bonner sphere geometry (not to scale)

In the 1980s and early 1990s, spherical
3
He counters, produced by Centronic Ltd.,

UK, have been used as the sensor of Bonner spheres [38]. A Bonner sphere spec-

trometer can be used in accelerated neutron fields [41, 42]. In that case, passive

detectors (e.g. gold foil) are used as the sensitive element, because active detec-

tors (e.g.
3
He counters) are too sensitive, high flux density neutrons can induce

serious event pile-up.

An example geometry is shown in Fig. 1.6. There is a thermal neutron sensor

placed in the center of the sphere. It could be gas filled counter, activation

foil, or scintillator [43]. Pure polyethylene surrounds the sensor to moderate the

incoming neutrons. The thickness of that moderator can be adjusted to make

the peak response appear at different energies. The conventional Bonner sphere

has a very weak response to high energy neutrons. To increase the high energy

response, high-Z materials have been purposed to be added to the spheres by Hsu

et al.[44]. Such spheres are so called “extended Bonner spheres”. The mechanism

of improved response is to utilize the (n,xn) reaction of high Z materials at high

energy.

Generally, a set of varied size Bonner spheres are involved to measure a neu-

tron spectrum. As different sizes of the spheres have peak responses at different

energies, the actual neutron spectra can be obtained by unfolding the counts

using individual response functions. This process is generally considered as the
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source of the most significant potential error [38], because the response functions

are from simulations, and there is no standard procedure for the calculation. It

has been observed that most of the calculations of the response functions are

based on MCNP and MCNPX (e.g. [44–48]). Possibly, as the results are strongly

affected by the hadron models used in the simulation code, most work in the

literature sticks to the same model in the same toolkit to obtain consistency with

other work.

To study the performance of Bonner sphere spectrometers, a literature study

has been performed.

Tommasino et al. [49] described the neutron spectrum measurement at flight

altitudes by a passive multidetector stack spectrometer [50]. This stack utilize

the fission reactions of neutrons with materials (e.g. uranium, thorium, and bis-

muth ) to detect neutrons. When they compared this spectrum with the one

measured by Goldhagen et al. [46] using Bonner spheres, they found a neutron

flux density peak at 300MeV instead of at 100MeV in the spectrum measured

by the Bonner sphere spectrometer. The authors suggested that this discrepancy

may be caused by the inaccurate cross-sections used in both of the studies. This

statement seems convincing. The cross-section data files are released by different

organizations and made available through data files, such as the Evaluated Nu-

clear Data File (ENDF)[51], Japanese Evaluated Nuclear Data Library (JENDL)

[52], and others (e.g. [53–55] ). Nuclear processes for neutrons up to 20MeV are

well established in those files. Many Monte Carlo simulation codes use the tabu-

lated data from the data files. (a short review of Monte Carlo simulation toolkits

is in section 2.2) Above 20MeV, the cross-sections in a simulation are mainly

from nuclear models. Predictions from the models may have large discrepancies

with the reality. However, data from the evaluated neutron data files may not

all be as accurate as they would be in ideal case. Sometimes, discrepancies can

be observed when comparing the neutron total cross-section of an isotope given

by two different organizations. For example, Fig. 1.7 compared neutron total
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reaction cross-section in
202

Pb from the latest version of ENDF and JENDL. The

cross-section in ENDF is about 10% higher than that in JENDL.
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Figure 1.7: Discrepancy in evaluated neutron data files

Today, neutrons in atmosphere are still not understood very well. Indicated

by Ziegler’s review [56], the measured neutron spectra have large discrepancies

with each other. Different instruments used in those measurements may be the

main factor causing the large discrepancies. At the present time, the spectrum

measured by Bonner sphere spectrometers is the most trusted. The shape of

the spectrum measured [48] in New York City has been standardized in JEDEC

JESD89A[6] as the shape of the spectrum in the atmosphere. Also it agrees

with the shapes predicted by some Monte Carlo simulations. (e.g. QARM) The

spectra measured by Bonner spheres rely on the response matrix, which also is

given by Monte Carlo simulations. Therefore, it is no surprise that those shapes

agreed. Because they all derived from simulation, and the major nuclear processes

of the primary neutron cascades in the atmosphere and the neutron propagation

in a Bonner sphere are actually the same. They are spallation reactions and

elastic scattering. An extended Bonner sphere can be considered as an analog

of the atmosphere, of which cross-sections are significantly biased. However,

using other mechanisms to detect neutrons ( such as TOF, and fission reactions
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discussed above) may give different results.

The inaccuracy of neutron spectra is the main concern for calculating the

real-time event rate of a memory device in standard ASER testing. In this work,

an alternative method of estimating the real-time event rate is proposed to avoid

the influence to the spectra inaccuracy.

1.5 Notable neutron spectrum measurements in

the atmosphere

Two sets of Bonner spheres have been involved in many secondary neutron spec-

trum measurements. One is the de facto Japan standard Bonner spheres [45] and

the other one is that used in the National Aeronautics and Space Administra-

tion’s (NASA) ER-2 project [46, 47]. Three aspects are common. Firstly, a 5.1cm

diameter
3
He counter is used as the sensitive element in each sphere. Secondly,

their response matrixes are calculated by MCNP or MCNPX. Finally, they all

contain extended Bonner spheres, which can extend the measured energy range.

There are 6 different size spheres, from 5.1cm (bare
3
He counter) to 23cm, in

the Japanese spectrometer. While the NASA’s ER-2 project intended to utilized

14 spheres from 5.1cm (bare
3
He counter) to 38.1cm (about 15 inch). The two

largest spheres out of the 14 spheres are loaded with high-Z materials to enhance

the response to high energy neutrons as suggested by Hsu et al.[44]. Since the ER-

2 project used more spheres, the spectrometer in that project may have better

energy resolution than the resolution of the Japanese spectrometer. However,

they take more space. This factor may limit the usage of this spectrometer.

Two out of fourteen spheres did not fly in the ER-2 project due to the space

constraints. [46]

The notable measurements in 1990s are the NASA ER-2 program and the

life testing at New York as measured by International Business Machines (IBM).

NASA’s ER-2 program [46, 47] is a multi-purpose program that was undertaken

17



in 1990s. One of the aims of this program is to characterize the dosage of at-

mospheric cosmic radiation to air crews. The Bonner sphere spectrometer was

intensively flown by the ER-2 High Altitude Airborne Science Aircraft [57]. In

the experiment, the aircraft was typically operating at 65,000 feet (19.8km) al-

titude, where there is the peak neutron flux density in the atmosphere. Those

measurements have provided valuable scientific data to many other projects. For

instance, the data have been used to verify the predictions of QARM[24]. Useful

conclusions were given by Goldhagen et al. [46, 47]. At high altitude, geomag-

netic latitude has very little effect on the shape of the spectrum, but it strongly

affects the flux density. The shape of the spectrum varies only slightly at high

altitude (20km to 12km). But there is a significant difference at sea level. Three

peaks (at 10−8MeV, 1MeV, and 100MeV) are observed in the spectrum at sea

level. However, the thermal neutron peak is not observed at high altitude.

This spectrometer was later deployed at the IBM T. J.Watson Research Center

for 10 months to measure the neutron spectrum at New York. [48] The measured

spectrum has later become part of the JEDEC JESD89A standard. Spectra of

five other locations have also been measured by Gordon to compare with the New

York spectrum.

In the first decade of the 21st century, many experiments in Japan [58, 59]

and Germany [60, 61] have also used Bonner sphere spectrometers to measure at-

mospheric neutron spectra. Nakamura et al. [58] and Kowatar et al. [59] have

measured the spectra in Japan. The main strategy of their work has been to

undertake measurements at sereral different altitudes on a mountain (e.g. Fuji),

and to compare the neutron spectra and the equivalent dose 5 delivered by neu-

trons. The neutron spectra at different altitudes of a mountain were found to

have a similar shape to each other closely.

The flux density in the atmosphere also affects by other factors, especially

5In the unit of Gray. One gray is the absorption of one joule of energy, in the form of ionizing

radiation, by one kilogram of matter.
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latitude and solar activities. Generally, the flux density in a higher latitude

location is higher than the flux density in a location of lower latitude [6]. The

solar activities can affect the flux density in a location by up to a factor of two[6].

The PTB NEutron MUltisphere Spectrometer (NEMUS) of Wiegel and Alevra

[60, 61] is an extended Bonner sphere spectrometer which consists of 16 spheres

from 3 inch to 18 inch diameter. Four out of these 16 spheres were loaded with

high Z-materials to enhance the response at high energy. This spectrometer

was tested in monoenergetic neutron beams from 1.2 keV to 19MeV, and in a

60MeV quasi-monoenergetic neutron source. The conventional Bonner spheres

were calibrated in the neutron beams below 14.8MeV. The average errors of the

measured and calculated response of the individual spheres agreed within ± 2%.

They used MCNPX to simulate the response. This good agreement demonstrated

that MCNPX can accurately model the neutron moderation and the
3
He inter-

actions with thermal neutrons. The extended Bonner spheres were calibrated in

the 60MeV quasi-monoenergetic neutron source. The calculations overestimated

the measurement by about 5%.

A battery-powered version of this spectrometer was also briefly introduced

in [61]. Relying on four C-sized batteries, this system can operate for 7 days.

This feature makes measurements at remote locations very convenient.

1.6 Project objectives and brief introduction

The main objective of this work is to investigate the use of proxy devices, which

have neutron response functions similar to some of memory devices, to character-

ize the influence of neutron fields in causing SEUs. The proxy devices can be used

in accelerated beams and more importantly in natural environments. A method-

ology has been developed to estimate the real-time event rate as an alternative

method to that of the standard ASER testing [6].

In the following section, the standard accelerated method used to estimate
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device real-time event rate (the ASER (Accelerated Soft Error Rate) testing) [6]

is referred to as the direct method. The method of using a proxy device is referred

to as the indirect method. They are both accelerated methods and need, to use

an accelerated beam.

The real-time event rate of a device, R, is calculated by

R =

∫

σ(E)ϕ(E) dE (1.1)

where σ is the detector response function, ϕ is the neutron flux density ( e.g.

in the atmosphere). To avoid the expensive SSER testing. R is normally esti-

mated by the accelerated testings. To simplify the work, one hypothesis is made.

This is that the shapes of the neutron spectra in an accelerated beam and in

the atmosphere are identical. This hypothesis is almost true if the accelerated

testing takes place in a white neutron beam, such as that of LANSCE, TRIUMF

and Atmospheric-like Neutrons from thIck TArget (ANITA). Then Equ. 1.1 is

simplified as

R = σϕ (1.2)

where σ is the overall cross-section, and ϕ is the integrated flux density. σ can

be calculated as dividing the observed event count by the neutron fluence of

the beam, and ϕ at the location of interest can be obtained by models or even

measured by spectrometers. However, if the accelerated beam is not broadly

similar to the atmospheric neutron field, the calculation of event rate should

strictly use Equ. 1.1. In that case, the device needs to be characterized by

the monoenergetic or quasi-monoenergetic neutron beams, or high energy proton

beams to measure the cross-section at certain energies. The response function is

obtained by curve fitting to the measured points.

In the indirect method, the proxy device is tested together with the sample

memory device in a beam, and then the proxy device is placed at the location

of interest. The event rate of the memory device in life testing, RMl
, can be
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predicted by

RMl
=

RMa
RPl

RPa

=
RPl

H
(1.3)

where RMa
and RPa

are the measured event rates of the memory device and the

proxy device in an accelerated neutron beam, RPl
is the measured event rate of

the proxy device in life testing, and H is the response enhancement factor. In

contrast with the direct method, the indirect method hypothesizes that the shape

of the memory device’s response function is identical to the one of proxy device’s.

A event in the proxy devices could be a pulse, which exceeds a certain height, in

a gaseous counter, or a group of pixels, which is brighter than a certain intensity,

in a CCD . Those thresholds should be chosen to make the response function of

the proxy device broadly similar to the response function of the device of interest.

As the hypotheses of these two methods are different, they treat the neutron

spectra and device response functions differently.

The direct method needs to compare the neutron flux density in the atmo-

sphere and the artificial beam. At the present time, there may be no method

to do this which is good enough. (see the comparisons of the measured neutron

spectra in section 1.5 ) Even though the absolute flux density in the atmosphere

and artificial beams are known, there still are difficulties. For example, because a

device usually has different cross-sections in different white beams. (e.g. [62, 63]),

it’s difficult to justify which cross-section is the closest one to the cross-section of

this device in the atmospheric neutron field.

The indirect method needs to compare device response functions. This can be

done by means of simulation, or simply testing the device of interest and the proxy

device in the same beam. The response enhancement factor can be measured in a

white beam. Agreement of the shapes can be evaluated in monoenergetic beams

or high energy proton beams.

For a better performance, it is preferred that the proxy device has an isotropic

response to neutron incident angles, as neutrons strike devices with random angles

in the atmosphere. If the proxy device has an isotropic response to neutrons, the
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angular effects of a memory device can be easily characterized by rotating it in the

accelerated testing. One disadvantage of the indirect method is that it requires

the life testing of the proxy device. In some cases, that may be difficult (e.g. at

remote locations). To summarize, the ideal proxy devices should

• have similar response to neutrons as that of SEE in devices of interest

• have high event rates in natural environments

• be portable

• have isotropic response to the neutron incident angle

The Imaging Single Event Effects Monitor (ISEEM) and large extended Bon-

ner spheres are the proxy devices studied in this work.

The ISEEM was originally developed by Z. Török and his co-workers. [64] A

CCD was used as the sensitive element in this instrument. It has been taken to

many well defined neutron facilities to calibrate. It has also been deployed to

a high altitude laboratory (Jungfraujoch) to perform a SSER testing. A large

amount of experimental data have been accumulated using ISEEM before the

start of this work. The testing facilities include the Los-Alamos Neutron Sci-

ence Center (LANSCE) [65–67], the The Svedberg Laboratory (TSL) (Quasi-

Monoenergetic Neutrons) QMN [68,69], and the Tri-University Meson Facility

(TRIUMF) [70] The development of ISEEM and measured data analysis were

previously published in [62, 71–73]. Török was awarded a PhD degree for his de-

velopment of ISEEM. His work focused on developing the software and hardware,

and comparing the measured data from different facilities to analyze the charac-

teristics of individual beams. But no model was developed to analyze the detail

event mechanisms (e.g. a microdosimetry model, or TCAD model of the sensor).

His work provided an excellent instrument for this work. A CCD has similar

characteristics to those of memory devices, because they are all semiconductor

devices. Therefore ISEEM was evaluated in this work as a proxy device. During

this work, the newly available beam TSL ANITA[74] was measured, and ISEEM

has been deployed to ASTEP [34] for a six months life testing.
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The analyzed results have indicated that ISEEM has excellent performance for

benchmarking different accelerated beams; but it sufferers from alpha contamina-

tion and low energy proton direct ionization in natural environments. Therefore,

it is not an ideal candidate for the proxy.

Large extended Bonner spheres are the other proxy devices studied in this

work. Monte Carlo simulations were employed to evaluate different design pa-

rameters of an extended Bonner sphere to approximate the response function of

semiconductor devices. It has been found that extended Bonner spheres have a

near constant event rate enhancement of the rate of ISEEM, even in very different

accelerated fields (such as TSL 180MeV and LANSCE). This instrument shows

better performance than ISEEM in the natural environment, because it has much

higher detection efficiency, and it is not affected by alpha contamination or proton

direct ionization.

1.7 Introduction of the thesis

The rest of the thesis is divided into six chapters.

Chapter 2 introduces the Monte Carlo simulation of neutron interactions in

the CCD (type KAF-0402E). GEANT4 [75, 76] was chosen for use. A litera-

ture study was performed to assess its performance comparing with other similar

simulation toolkits. Then the correctness of using this toolkit was verified by sim-

ulating the pulse height spectrum of a diode, of which the design parameters and

measurement results were known. Followed by that, the methods to construct

the CCD model and estimate the effective depth of the sensitive region are intro-

duced. This model simplifies the CCD response to charged ions to the extreme by

assuming all charges generated in specified regions are collected, and none from

elsewhere. The simulated charge collection spectra at different neutron beams

agreed closely with measurements, which suggested that the species and energies

of the secondaries were correctly modelled. The origins of charged particles and
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the event contributions of each device components were further explored. The

simulated event cross sections were found have a relatively large discrepancies

with the measurements (up to a factor of 2.6). Most likely, the simplification of

CCD response is the main error source. The investigation of charge collection

behavious in the CCD leads to the work presented in Chapter 3.

Chapter 3 introduces the work to characterize the CCD response to charged

ions. This chapter starts with a short review of the charge diffusion models in the

literature, and identifies a suitable model for this application. The critical design

parameters of CCD KAF-1401E were known. Therefore, this CCD was simulated

using the GEANT4 and diffusion models. The simulated cross-sections agreed

with measurements better than 30% in all cases. This discrepancy is within the

error quoted by the facilities.

Chapter 4 analyzes the ISEEM performance in natural environments. The

different experimental conditions of accelerated and life testing are discussed,

and corresponding effects were analyzed. ISEEM’s life and accelerated testings

were compared. Final results indicated that ISEEM has a good performance in

high flux density beams, and poor performance in natural environments.

Chapter 5 describes the software and hardware developments to improve the

performance of ISEEM.

Chapter 6 introduces the methods of adjusting the response function of an

extended Bonner sphere[40, 44] to match the shape of the function of an electronic

device. To take an example, a sphere was designed to have a similar shape of

response function to that of ISEEM. Monte Carlo simulations indicated the event

rate enhancement (on the orders of 105 ) of this Bonner sphere against ISEEM

is almost a constant at the neutron fields defined at JESD89A, TSL, ANITA,

TRIUMF and LANSCE. This result shows the good agreement of their response

shapes.

Chapter 7 summaries the knowledge acquired in this work, and discusses

future work.
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Chapter 2

The nuclear interactions of

neutrons and CCDs

Chapter 2 and 3 introduce the simulations of ISEEM responses to neutrons.

Chapter 2 focuses on analyzing the nuclear interactions. A model was therefore

developed using the GEANT4 toolkit [75, 76]. Secondary species and their ori-

gins were analysed. The record of particle energy deposition in the CCD active

regions is worked together with a simple charge collection model to generate a

charge collection spectrum in terms of shape. Simulated spectra on all test sites

agreed with those from measurements. However, event cross-sections were overes-

timated by up to a factor of 2.4. Chapter 3 introduces the work of modelling the

CCD response to charged secondary particles. This model was coupled with the

preliminary GEANT4 model. Event cross-sections predicted by this new model

have a discrepancy of 30% with our measurements. This discrepancy is within

the error quoted by the facilities.

A preliminary CCD model was developed to analyse the basic event mech-

anisms. This model used alpha particle responses (measured by Dunne [77]) to

study the charge collection behaviours of a CCD. Monoenergetic neutrons from

1MeV to 9GeV along with five complex neutron fields were simulated with this

model. The simulated and measured charge collection spectra agree closely. They
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are described in section 2.5.4 and analysed in section 2.6.

This chapter starts with the justifications of the used tools and methods, and

followed by the results and discussion.

2.1 Introduction of calculations for neutron in-

duced SEUs

Complementary with experimental studies, simulation has emerged as an impor-

tant aid to understand single event effects. Monte Carlo simulation is a widely

used approach to simulate the complex events. In this type of simulation, sta-

tistical characteristics of events can be studied given three types of information:

the nuclear data (secondaries energy and angular distributions), device geometry,

and the charge collection behaviour of the sensitive element.

The nuclear data are an essential part of the simulation. These data are either

measured from experiments or calculated from nuclear reaction models. Neutron

interactions with matter have been intensively measured below 20MeV [51]. The

data were later evaluated and released in the evaluated neutron data file. Section

1.4 introduced the evaluated neutron data files. GEANT4 provides a model which

can be used to simulate neutron-hadron interactions with matter below 20MeV.

It is a data driven model, based on a mixture of ENDF and JENDL, and is called

the “high precision” model (G4HPNeutron). Even though many measurements

for the neutrons above 20MeV have taken place, because of the wide range of

energies, they are not yet complete. Therefore theoretical nuclear models are

usually used to model neutrons with energies above 20MeV.

The devices’ materials strongly affect the productions of secondaries in a semi-

conductor device. (In some cases, geometries may also affect the production of

secondaries, for example, the extended Bonner spheres introduced in section 6.3.

) They are generally easy to obtain for the large instruments, such as gas filled

counters. By comparison, the detailed design of commercial microelectronics are
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microscopic and confidential. They are often one of the main source of uncer-

tainty, as for instance in this project.

The model of charge collection behaviour is the bridge to connect the pas-

sage of charged particles in the sensitive region to the measured response. For

semiconductor sensors, this kind of model could be accurately characterized by

Technology Computer Aided Design (TCAD) tools (e.g. Minimos [78]). How-

ever, TCAD calculations are generally time consuming, therefore not the best

choice for a mass event simulation. The charge collection behaviours are usually

simplified by making assumptions. One of the simplest assumptions is that the

charges generated in a certain region were collected, and none were collected from

elsewhere.

All three prerequisites of an SEU calculation can be found in an SEU calcu-

lation code. Take the first 3D SEU simulation program “Soft Error Monte Carlo

Modeling” (SEMM) [79] developed by IBM in the 1980s for example. It has been

developed for simulating bipolar devices. Device geometry can be modelled with

large number of cubes, as shown in Fig.2.1. This code used the NUclear SPAl-

lation (NUSPA) reaction model [80] to generate the event secondaries. However,

only some typical heavy recoils (such as He) of the secondaries can be tracked. A

device volume is modelled with a large number of cubes. The characters at the

top surface of each cube indicate different devices, and the cubes in 3D represent

different region in a sensitive region. The regions marked by the same charac-

ter have the some physical properties. It simplifies the devices’ charge collection

behaviours by the popular assumption mentioned earlier.

2.2 A brief review of candidate Monte Carlo

toolkits

GEANT4 [75, 76] is a Monte Carlo toolkit developed by the European Organi-

zation for Nuclear Research (CERN) for simulation of the passage of particles
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Figure 2.1: An example of SEMM geometry model, from[79]

through matter. The CCD models developed in this work are based on this

toolkit. Benefiting from the object oriented programming of C++, GEANT4

applications are flexible, and easy to use. All the particles and physics processes

involved in a simulation can be defined by the user, and the properties can be

easily modified. A functional GEANT4 application needs to register three manda-

tory objects, which define the detector, the physics processes of interest, and the

incident particles, to the kernel. They are implemented as virtual classes for the

user to derive new classes. Optional user actions may be needed to perform ex-

tra functionalities, such as killing unwanted secondaries and recording reaction
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version release year available classes

4.05.00 2003 1820

4.07.00 2005 2063

4.09.01 2008 2465

Table 2.1: Progress of GEANT4 development

products.

There are many software toolkits that are capable of simulating neutron ef-

fects on semiconductors, such as GEANT4 [75, 76], MCNP [81, 82], MCNP based

packages (such as MCNPX [83–85], MARS [86]), and FLUKA [87]. Because of

access restrictions, GEANT4 appeared to be the only choice for the purposes of

access and distribution. Another main advantage of GEANT4, apart from its

open-source nature [88], is that it is professionally maintained. Table 2.1 presents

the enhancements of the released GEANT4 versions by the counts of available

classes, which have names beginning with “G4”. It can be observed that GEANT4

classes have expanded 20% every two or three years, which demonstrates the po-

tential of GEANT4. Several radiation effect tools are based on GEANT4 [89–91].

GEANT4 shows good performance in predicting neutron induced pulse-height

spectra in PIN diodes [92], and has been used previously to simulate neutron

effects in CCDs [93, 94]. It also can be used to analyse packaging effects of de-

vices [95].

A brief assessment of GEANT4 follows.

MCNP, and packages based on it, has the largest group of users (about one

third more than the users of GEANT4 in 2006 )[84]. MCNP uses a measured data

file up to 150MeV [84], while GEANT4 uses neutron data only up to 20MeV.

As more measured data files are used, fewer errors may be introduced, and the

predictions given by MCNP may seem to be more convincing.

Because it’s a popular topic to compare the simulation results of these toolkits.

The performance of GEANT4 are assessed from the openly published papers.

Lemrania et al. [96] have used GEANT4 and MCNPX to simulated the low
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energy neutron (below 20MeV) propagation in rocks. Unsurprisingly, the results

closely agreed as they both use measured neutron data files in that energy range.

Yeh et al. [97] have simulated neutron propagation in water using FLUKA,

GEANT4 and MCNP in a higher energy regime ( 20MeV to 150MeV). Two

points can be concluded from their results. First of all, GEANT4 and MCNP

agreed closely at all the simulated energies (20MeV to 150MeV). Secondly,

though FLUKA predictions have the largest discrepancies with the other two

toolkits at most cases, these three toolkits agreed within 20% in all cases.

For light particle production at medium energy, the GEANT4 collaboration

has presented comparisons of measured and simulated neutron production of

medium energy protons on heavy metals on their website (see the “Medium En-

ergy Verifications” [98]). The measured and GEANT4 calculated cross section

curves overlapped almost at the full energy range, only small discrepancies are

observed at the highest energies.

However, for single event effects, the neutron propagation and light particle

production are not the key factors. The key factor should be the heavy ion

production, because these have high LET and are capable of depositing large

amounts of energy in a thin layer. A disappointing performance of GEANT4 on

predicting the production of very heavy ions was reported by Reed et. al. [99] in

2007. They simulated the fragment production of 180MeV protons on
27
Al, and

compared the results with measurements as shown in Fig. 2.2. In this figure, the

simulated results overestimated the production cross-section below about 8MeV,

but underestimated it above about 14MeV. Reed et al. stated that similar results

have been obtained for other residual nuclei. The impact of the wrong predictions

of yielding energy could be significant for applications which have strong energy

dependent responses.
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Figure 2.2: 180MeV protons fragment(A=16) production on
27
Al at θ = 20, after

Reed et al. [99]

Process Energy G4 class name G4NeutronHP-dataset

neutron elastic <20MeV G4NeutronHPElastic ElasticData

>19.9MeV G4HadronElastic -

neutron inelastic <20MeV G4NeutronHPInelastic InelasticData

>19.9MeV G4BinaryCascade -

neutron fission <20MeV G4NeutronHPFission FissionData

>19.9MeV G4LFission -

neutron capture <20MeV G4NeutronHPCapture CaptureData

>19.9MeV G4LCapture -

proton elastic <100TeV G4HadronElastic -

proton inelastic <10GeV G4BinaryCascade -

Table 2.2: GEANT4 models to simulate ISEEM response to neutrons

2.3 Validation of developed GEANT4 code

The correctness of the developed GEANT4 code is discussed in this section.

The physics list used to simulate the hadron physics is shown in Table 2.2.

Truscott et al. [92] reported a comparison of the measured and simulated

pules hight spectra of a silicon diode with a 300µm thick, 25mm diameter active

region. In this work, a GEANT4 simulation was implemented to make compar-
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Figure 2.3: Simulated PIN diode pulse high spectra

ison with the work of Truscott et al. [92] to verify the correctness of the simu-

lation code. Fig. 2.3 shows the calculated pulse height spectrum in a simulated

100MeV monoenergetic neutron beam. The comparison with the 100MeV quasi-

monoenergetic simulated resulted in reference [92] is good. The exponential slope

of the curve below 10MeV decreases against energy. The slope is stable above

10MeV, with a decay constant approximately 0.18MeV−1. The corresponding

slope in reference Fig. 2.3 is about 0.15MeV−1. This discrepancy may be caused

by the materials surrounding the active region, such as the device package. In

this work, those materials are not simulated.

2.4 KAF-0402E geometry and the GEANT4 model

The KAF-0402E is the most used CCD in the measurements. It has been

previously taken to the Los-Alamos Neutron Science Center (LANSCE) ICE

House[65–67], the The Svedberg Laboratory (TSL)[68, 69], and the Tri-University

Meson Facility (TRIUMF) [70] by Török and his co-workers. [64] This device has

0.4 mega pixels (512× 768 pixels), and operated in full frame mode. The square

pixel has the size of 9µm. No anti-blooming gates are implemented in this CCD,
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so all exceeding charges will flow into the vertically adjacent pixels. Fig. 2.4,

from the device data sheet, illustrates the geometry of this device. There are five

components, namely the image sensor, package, die attach resin, bonding wires,

and cover glass. The image sensor was fully modelled in the simulation.

The corresponding CCD model in GEANT4 is shown in Fig. 2.5. The struc-

ture of the gates are suggested by Ciccaralli et al. [100]. Each pixel is 9µm ×

9µm and controlled by a pair of gates. One of the gates was made from silicon,

and the other from indium tin oxide (ITO) [101]. The dielectric overlayer cov-

ered at the surface of the gate is assumed to be SiO2. An additional aluminium

enclosure face above the CCD surface was added in the simulated world volume.

In all simulations, incident particles are in the plane at 90 ◦ to the aluminium

face.

The depth of the active region was estimated from measurements of the alpha

particle irradiations taken by Dunne [77]. In those measurements, alpha particles

with energies in the range from 2.2MeV to 4.4MeV were incident approximately

normally onto the CCD surface with the cover slip removed. The energy of the

alpha particles were controlled by adjusting the distance between the source and

CCD. To simplify the work of estimating the position of the CCD active region,

all volume above the active region was assumed to be silicon. This assumption

unifies the material of the device. However, there are two major components

above the active region that are not silicon. If changing the materials can strongly

distort the energy lost of the alpha particle in those regions, this assumption will

introduce large error.

The first component is the passivation, the depth of which is approximately

3µm (estimated from [100]). Likely, it’s made of SiO2. The ranges of 1MeV

α particles in Si and SiO2 are 3.51µm and 3.58µm, respectively. Therefore,

the stopping capabilities of 3µm Si and 3µm SiO2 should be similar. Then the

assumption should have a minor effect.

The second component is the ITO gate. Assuming the ITO to consist of 10%
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(a) Top view (b) Side view

Figure 2.4: KAF-0402E geometry, from [101]
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2.5µm silicon dioxide

16µm deep 9µm wide silicon

2mm Si

0.3µm deep
4.5µm wide ITO

0.3µm deep
4.5µm wide Si

0.3µm deep 1µm wide ITO

Figure 2.5: Simulated KAF-0402E geometry (not to scale)

SnO2 and 90% In2O3, with density 7.12 g · cm−3, calculations using SRIM [102]

predict that α particles do not deposit more than 80 keV in a track of 0.3µm.

Therefore taking the passivation and ITO gates to be silicon will make the alpha

particle gain at most 50 keV energy, as 0.3µm silicon can absorb at most 30 keV

energy. Overall, the assumption has minor effect to the estimation.

The collected energy for each incident energy can be expressed as

Ei(rb, re) =

∫ re

rb

dEi

dx
dx (2.1)

where Ei is the collected energy, i denotes the identity of each incident energy,

dEi/dx is the stopping power, and re and rb are the limits of the active re-

gion. This equation is illustrated in Fig. 2.6, the data of which is calculated by

SRIM [102]. This figure shows the stoping power of alpha particles at various

energies. Energy noted at each curve shows the initial kinetic energy of the alpha

particle. Here we have re and rb both in the axis of the silicon depth. Equation

2.1 calculates the area under a specified curve in the region [re, rb].

The width, w = (re − rb), and depth of centre, d = (re + rb)/2, of the active

region are defined in Fig. 2.7. To estimate the value of w and d, they were

enumerated in a range with a fine interval (0.02µm per step); and corresponding

Ei is calculated to compare with measurements. w and d were evaluated by the
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Figure 2.6: Stopping power of alpha particles in silicon

mean-square residual against the measurements:

MSR(w, d) =
∑

i

(Ei(d− w/2, d+ w/2)− kNi)
2 (2.2)

with w/2 ≥ d (2.3)

where Ni is the detected signal (total grey level) at each α energy and k is the

conversion from measured grey level to energy, which is 3.5× 10−3 MeV per digital

number. It is clear that Equ. 2.2 is valid only when the depth is larger than half

of width. The calculated MSR for various configuration is shown in Fig. 2.8. As

defined by Equ. 2.3, data on the right hand side of the dashed line are valid.

The best estimate (the smallest MSR, which is 0.0757) is w =16.06µm and

d =11µm. This implies an oxide layer thickness of approximately 2.5µm, com-

pared to a depth of approximately 3µm estimated from [100]. Fig 2.9 com-

pares measured and modelled deposited energies from the α-particle experiments.

Fig. 2.9 shows the effect of energy loss in the overlayer and of saturation as ener-

getic particles traverse the active layer, depositing some of their ionisation energy

in the substrate (where the charge collection efficiency is assumed to be zero).

Measured grey level and modelled energy deposition compare well.
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2.5 Simulation results

In the measurement, an event is defined as adjacent bright pixels ( each brighter

than 1.44 fC, which is the charge generated by 0.324MeV ionizing radiation),

when there is more than 8 fC charge in total. Those thresholds have been

used in measurements at LANSCE, TRIUMF and TSL to effectively extract

events [62, 71]. Some example events are shown in Fig. 2.10. To be consistent

with the measurements, charged particles depositing more than 0.18MeV , which

can generate 8 fC of charge, in a close enough region are counted as an event in

the simulations,. The CCD model was simulated with monoenergetic neutrons

from 1MeV to 9GeV, and with five neutron beams.
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Figure 2.9: Alpha particle measurement and estimated energy

81um

Figure 2.10: Example events

2.5.1 Simulation in monoenergetic neutron fields

The responses of the CCD to monoenergetic neutrons were simulated in the range

from 1MeV to 9GeV. This section will analyze the simulated event cross-sections

and the shapes of the charge collection spectra in different energies.

In each simulation, 5× 107 incident neutrons were propagated normally through

the model within a 4 cm2 cross-sectional area encompassing the whole active area

of the CCD, corresponding to a neutron fluence of 1.25× 106 cm−2 at each energy.
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Figure 2.11: Simulated event cross-section in monoenergetic neutron fields

The monoenergetic event cross-section σ(E) is calculated as:

σ(E) =
Ne

Φ
(2.4)

Here, Ne is the number of events depositing more than a threshold charge in

the active region and Φ is the neutron fluence. Fig. 2.11 illustrates the simulated

cross-sections. Error bars in this figure show 68% confidence interval (CI). They

indicate that measured data points locate within them 68% of the time. The

threshold charge (8 fC) is chosen to match the threshold adopted elsewhere in the

analysis of experimental data[62, 71–73]. The cross-section increases by about two

orders of magnitude between 1MeV and 2MeV. Two local peaks are observed at

5MeV and 14MeV, each followed by a dip. A similar peak in SEU cross-section

at 14MeV has been reported in several experimental and simulation studies of

memory devices [63, 103, 104]. The cross-section increases steadily above 50MeV

from about 1.09× 10−4 cm2 to about 1.49× 10−4 cm2 at 9GeV.

Table 2.3 shows the threshold energies of the reactions. Charge collection

spectra for 2MeV to 5MeV neutrons are shown in Fig. 2.12. At 2MeV only the

elastic and inelastic collisions are active. Both of these reactions could deposit

little energy. At 3MeV, when alpha particles could be produced, the upper limit
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Table 2.3: Example reaction threshold energies of
28
Si

reaction energy(MeV)

n +
28
Si →

28
Si + n 0

n +
28
Si →

28
Si

∗

+ n 1.8434

n +
28
Si →

25
Mg + α 2.74554

n +
28
Si →

28
Al + p 3.99916

n +
28
Si →

24
Mg + α + n 10.346

n +
28
Si →

27
Al + d 10.5
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Figure 2.12: Simulated charge collection spectra on mono-energetic neutron field,

2MeV to 5MeV. Each interval in the vertical axis indicates a decade

of the spectrum is expanded from around 10 fC to 30 fC. Above 4MeV, protons

appeared, when the event upper limit is increased to 170 fC, the cross-section

increased 7 times when energy move from 2MeV to 5MeV.

Fig. 2.13 shown the shape of charge collection spectra changes from 5MeV

to 14MeV. At 10MeV two peaks were observed at 12 fC and 110 fC.
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Figure 2.13: Simulated charge collection spectra on mono-energetic neutron field,

5MeV to 14MeV. Each interval in the vertical axis indicates a decade
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Figure 2.14: Simulated charge collection spectra on mono-energetic neutron field,

14MeV to 1000MeV. Each interval in the vertical axis indicates a decade

2.5.2 The secondary nuclide species

Fig. 2.15 shows the contributions of different particle types to the cross-section for

events above 8 fC. As Fig. 2.15 shows, the component due to secondary hydrogen

and helium ions is greater at 14MeV than at 20MeV. Baggio et. al [104] have

recently reported that, for some SRAMs that are sensitive to helium ions, the
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Figure 2.15: The contribution of different secondary particles to the event cross-

section

SEE cross-sections can be greater at 14MeV than at 100MeV. However, the

SRAMs studied in [104] are immune to hydrogen ions’ direct ionisation due to

the small feature size. Therefore the hydrogen ions’ effect in those devices is not

significant at all. However, it is no surprise also to see peaks in the aluminum

and magnesium curves at 14MeV, as these are the complements of hydrogen

and helium, respectively. We also find a global maximum at 14MeV for the

contribution due to a local maximum in the cross-section for (n,xp) and (n,xα)

reactions in silicon around this energy [105].

As indicated by Fig. 2.11, the event cross-section above 50MeV is nearly a

constant. The major event contributors, which are hydrogen, helium, aluminium,

magnesium, and silicon , show two different characteristics above 50MeV. The

production of lighter ions (hydrogen and helium ions) is increased against energy,

and the production of heavier ions is decreased against energy.

Fig. 2.16 shows the proportion of event particles of each type which were

produced in the active region. The blank squares indicate that no events were

caused by the corresponding ion type.

A few particles with atomic number between helium and magnesium are ob-
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Figure 2.16: Proportions of event particles produced in the active region itself

served in the simulation. At the lower energies these come from reactions with

oxygen in the passivation; with increasing energy these ions can be produced by

silicon-neutron reactions and at the highest energies most come from the active

region itself. Take carbon for example. Fig. 2.17 shows the cross-sections of pos-

sible reactions that can introduce carbon into the active region below 250MeV.

The data for this plot were calculated using TALYS [106]. The threshold for

Si(n,xC) reactions is about 50MeV. Below this threshold, as the active regions

are taken to be pure silicon, the apparent carbon ions must be produced in the

surroundings by O(n,xC) reactions whose threshold is about 2MeV. Fig. 2.15

shows a minimum in the cross-section for carbon-induced events around 50MeV.

This is because both types of carbon production mechanisms are weak at this

energy.

Fig. 2.16 also shows very high proportions for locally generated heavy ions. At

all energies more than 97% of magnesium, aluminium and silicon ions originate

in reactions in the active region.
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Figure 2.17: Cross-sections for possible reactions introducing carbon into the

active region below 250MeV

2.5.3 Origins of the secondary nuclides

Origins of secondary Hydrogen, Helium, Aluminium, Magnesium and Silicon are

compared in Fig. 2.18 to Fig. 2.22 at 14, 50, 100, 300 and 1000MeV. It can

be seen that as the secondaries get heavier, more heavy ions are from the active

region itself.

As indicated by Fig. 2.15, Hydrogen and Helium have the dominant number

in the secondaries. As suggested by Fig. 2.18 and 2.19, the coverslip, active

region along with the substrate are the main regions of producing those ions.

The substrate is shown to be good at producing Hydrogen. About half of the

hydrogen is from the substrate. After the active region, the coverslip is second

major producer of helium. The helium production is very interesting. The global

peak of helium at 14MeV neutron shows not only at the bulk silicon, but also

at the SiO2 and even at the air. It may suggest oxygen or nitrogen or both

have a peak helium production cross-section at 14MeV. For the heavier ions,

their productions are decreased against energy above 50MeV. This can also be

observed in Fig. 2.15.
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Figure 2.18: Hydrogen Origins
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Figure 2.19: Helium Origins

2.5.4 Simulation in complex neutron fields

The corresponding neutron spectra of the complex fields are shown in Fig. 2.23.

ISEEM behaviour was simulated in each of these neutron fields and results com-

pared to measurements. Analysis of the measured data included frame cleaning,

whereby one raw frame is subtracted from the previous one to remove all the

permanent bright pixels in the frames, as often result from neutron-induced dis-

placement damage. Transients due to Random Telegraph Signal (RTS) noise[107]
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Figure 2.20: Aluminium Origins
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Figure 2.21: Magnesium Origins

were also identified and excluded from the measured data set. RTS is the signals

from some damaged pixels. The events generated by such signal are relatively

easy to be identified. They consist of a single pixel, and the charge level varies

over time. Therefore, such hard damage effects were not considered in the simula-

tions as they do not influence the measured data. In all the simulations, particles

were incident normally on the aluminium box.

Simulated and measured event charge distributions agree closely. Examples

are shown in Fig. 2.24. Similar agreement is found in the other fields studied.
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Figure 2.22: Silicon Origin
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Figure 2.23: Spectra of accelerated neutron fields

The experimental event cross sections were previously measured by other re-

searchers. [62, 71]. Those cross sections are defined as,

σ =
Ne

Φh

(2.5)

Where Φh is the integral neutron fluence. In the case of the white beams at LAN-

SCE and TRIUMF, Φh is the fluence of neutrons above 10MeV. In the case of the

quasi-monoenergetic neutron beam at TSL, Φh is the fluence of neutrons at the

quasi-monoenergetic peak. Simulated cross-sections are presented in Table 2.4,
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Figure 2.24: Event charge distribution comparisons for TSL 25 MeV and LAN-

SCE

Table 2.4: Measured and simulated integral cross-sections in ISEEM

cross-section, 10−5 cm2

measured simulated

LANSCE 7.66 11.2

TRIUMF 8.09 9.22

TSL 25 MeV 6.56 11.1

TSL 100 MeV 12.9 26.1

TSL 180 MeV 11.3 24.5

along with previously reported experimental data [71].

The simulated cross-sections in the white beams at LANSCE and TRIUMF

are about 46% and 14% over the measured values, respectively. The simu-

lated cross-sections in the quasi-monoenergetic beams at TSL exceed the mea-

sured values by between 69% and 117%, the discrepancy increasing as the quasi-

monoenergetic peak moves to higher energies. The discrepancies are discussed in

more detail in section 2.6.

Fig. 2.25 shows the contribution of particles of different types to the event

cross-sections in the simulated LANSCE and TRIUMF beams. It shows that the

extra component of the simulated cross-section at LANSCE is due to additional
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Figure 2.25: Types of particles generated at LANSCE and TRIUMF

recoils from elastic scattering and, especially, secondary hydrogen ions. The ma-

jority of events at this low threshold (i.e. 8 fC) are caused by hydrogen ions arising

from interactions in regions other than the device active layer, most notably the

substrate. Almost 40% of the simulated events originate in the silicon substrate,

and the cross-section for these interactions is significantly greater in the harder

beam at LANSCE. For the TSL simulations, the behavior of the discrepancy in-

creased as the quasi-monoenergetic peak moves to higher energies. We discuss

this in more detail in section 2.6. Fig. 2.26 shows the contribution of particles of

different types to the event cross sections in the simulated TSL 25MeV, 100MeV

and 180MeV quasi-monoenergetic beams. The most striking feature is that many

more hydrogen ions are generated as the energy of the quasi-monoenergetic peak

increases from 25MeV to 100MeV.

2.6 Discussion of possible error sources

This section discusses the possible sources that can contribute to the discrepancies

between the measured and simulated event cross-section.
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Figure 2.26: Types of particles generated at TSL

2.6.1 The absolute neutron fluence in measurement

The uncertainties in the measured cross-sections derive mostly from uncertainties

in the absolute values of the neutron fluence.

For LANSCE the uncertainty in measured fluence is understood to be about

5% below 20MeV [108]. The portions below and above 20MeV each contribute

about half of the total fluence above the ISEEM threshold of 2MeV. The con-

tribution to the cross-section of the higher-energy portion should be much the

greater, as indicated by Fig. 2.11. Therefore the uncertainty of the fluence above

20MeV should be a more important factor; but it’s unknown. The uncertainty

in the measured cross-section at LANSCE is therefore liable to be greater than

5%.

At TRIUMF, the absolute accuracy of the measurement of fluence above

10MeV is understood to be about 30% [109]. As the event cross-section above

10MeV is much larger than that below 10MeV, and as about 80% of the neu-

trons to which ISEEM is sensitive (i.e. above about 2MeV) are above 10MeV,

most events at TRIUMF should be caused by neutrons above 10MeV and the

uncertainty in measured cross-section should be dominated by that quoted for the

measured integral fluence. Although the simulated cross-section for TRIUMF ex-
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ceeds the measurement it is within the likely measurement uncertainty of about

30%.

For TSL, the measurement of fluence in the quasi-monoenergetic peak is un-

derstood to be accurate to 10%. This peak constitutes around 40% of the total

fluence. The uncertainty in the contribution of the low-energy tail is less clear.

However the discrepancies between measured and simulated cross-sections at the

higher energies seem unlikely to be explicable by measurement uncertainty alone.

2.6.2 The CCD model in simulation

The simulations appear systematically to overestimate event cross-sections at

all simulated fields. Possible sources of error include our model of the CCD

geometry, as both the depth of the active region and the detailed construction of

the underlying regions are estimated in the absence of design data. One of the

largest sources of error is likely to be the assumption of 100% charge-collection

efficiency in the active region.

Significant proportions of events are caused by particles entering the active

region from outside, especially from the substrate. These will deposit significant

proportions of their energy in low-field parts of the active region leading to charge

collection processes which are heavily dependent on diffusion effects and subject

to recombination processes. As a result, charge-collection efficiencies significantly

less than 100% are likely to be experienced (cf.[110, 111]) leading to overestimated

cross-sections in the simulations.

2.7 Summary

This Chapter introduces the preliminary Monte Carlo simulations of neutron

interactions in the CCD using GEANT4. The GEANT4 hadron models were

verified by simulating the pulse high spectrum of a pin diode, of which the design

parameters and measurement results were known from the literature.
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A simple CCD model was constructed using the results of alpha particle ex-

periments. The simulated charge collection spectra shows good agreements with

measurement in quasi-monoenergetic and white neutron beams. However, simu-

lated event cross-section overestimated measurements up to a factor of two. It’s

suspected that this error is mainly introduced by lack of charge diffusion model.

The later work described in Chapter 3 confirms such error is the dominant error

in the simulation.
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Chapter 3

The responses of CCDs to

ionizing radiation

This chapter introduces the work of adding a charge diffusion model to the

GEANT4 model. Chapter 2 presented the simulated results of the GEANT4

model. It successfully predicted the charge collection spectra in artificial neutron

beams, and helped to understand the species and origins of the secondaries. How-

ever, the calculated event cross-sections overestimated those cross-sections from

measurements by up to a factor of 2.4. Oversimplified charge collection behaviour

of a CCD in the model may be one of the major error sources. A charge diffusion

model was added to simulate charge diffusion in the low-field region of a CCD’s

sensitive region. The overall accuracy of the simulation was improved.

When Török began to develop ISEEM, he tested three different CCDs in accel-

erated beams to find the most suitable one for radiation monitoring. These CCDs

are: KAF-0402E (9µm pixel size, no anti-blooming protection), KAF- 0401LE

(9µm pixel size, lateral-overflow drain (LOD) for anti-blooming protection) and

KAF-1401E (6.8µmpixel size, no anti-blooming correction). Then KAF-0402E

was identified to be the best CCD for use, because it has higher event cross-section

and lower price. Most later measurements in this research group used this CCD

as suggested by Török. However, one of the most critical design parameters, the
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depth of the active region, of this CCD is still unknown. However, the sensitive

depth of KAF-1400 is understood to be 15µm. [112] KAF-1401E is an optically

enhanced version of KAF-1400. Such enhancement was made by using a new

material (indium tin oxide) to make one of the control gates. The design param-

eters of the these two CCDs may therefore be similar. Therefore the depth of

the sensitive region in KAF-1401E was taken to be 15µm. The KAF-1401E was

used as the benchmark device in this work to evaluate the performance of the

improved simulation model, and this new model of KAF-1401E has been found

have an maximum error of 30% at LANSCE and TRIUMF. As this discrepancy

is less than the absolute neutron fluence errors quoted by the facilities, this new

model is considered to have good performance.

The parameters of the KAF-0402E were adjusted to calibrate to the LANSCE

neutron spectrum. Because this spectrum is probably the best for the beams

available. The simulated results of this calibrated model shows that the maximum

error of the improved simulations on KAF-0402E is between -20.0% to 14.2% at

all tested fields, including LANSCE, TRUMF, TSL QMN, and TSL ANITA.

3.1 Short review of charge diffusion models

Kirkpatrick did the pioneering work [113] to model the diffusion charge gener-

ated by ionizing particles in semiconductors in 1979. After that work, many

diffusion models were published to model charge diffusion in semiconductor (e.g.

[114–119]). Kirkpatrick’s model was used in a CCD’s low-field region by Lomheim

et al. [112] in 1990. Lomheim et al. introduced a model to simulate charge collec-

tion behaviours of a CCD. In this model, the active region of a CCD was divided

into two layers. The layer close to control gate is the “high-field region”, and the

other layer is the “low-field region”. Charges in the high-field region are 100%

collected, and charges diffuse according to Kirkpatrick’s model in the low-field

region. The simulated spatial charge distributions of this model are very similar
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to the measurements, except the model tends to spread charges in a larger area.

In 1998, Pavlov et al. introduced a method [115] to model the charge collec-

tion in CCDs. In their model not only charge diffusion in the field free region,

but also charge sharing in the high-field region could be characterized. Because

more details are considered in this model, the implementation might be relatively

difficult.

More recently in 2008, Rolland et al. introduced a method to model the charge

collection in the field free region [119]. Along with this method, they also publish

a companion paper [120] of applying this method in a Matlab simulation. As the

arithmetic of implementation in [120] is very efficient and relatively simple, their

model was chosen for use in this work.

3.2 The geometry of the KAF-1401E

The KAF-1401E is a 1.4 millon-pixel full frame CCD. Its pixel size is 6.8µm× 6.8µm.

Lomheim et al. has noted that for the device KAF-1400, the depth of the active

region is about 15µm[112]. As the KAF-1401E is the optically enhanced version

of the KAF-1400, the design parameters of the these two CCDs may be similar.

Therefore the depth of the active region in KAF-1401E was taken to be 15µm.

The detailed geometry of KAF-1401E sensitive region is similar to the geom-

etry described in Chapter 2, except for the different pixel size and the depth of

the active region. Also the gates above the active region were replaced by the

extension of the passivation, because of their complex structure and extremely

weak contributions (see section 2.5.2).

The geometry of the CCD KAF-1401E is shown in Fig. 3.1. As indicated by

this figure, the package of this CCD can be divided into five layers. Each layer

can be represented by a box with a hole in the center as illustrated in Fig. 3.2.

The materials of the package are unknown. In this simulation, it was taken to be

aluminum oxide.
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Figure 3.1: Geometry of KAF-1401, from [121]

Figure 3.2: Box with a hole volume for modelling the CCD package

The corresponding world geometry in simulation is illustrated in Fig. 3.3a.

To simplify the work, the bonding wires and the device pins were not modelled.

The overall errors generated by omitting those components should be minor, as

they were either far away from the sensitive region or have very small volume.

There is a gap of 1.4mm air between the 1mm coverslip (assumed to be SiO2)

and the 3µm passivation (assumed to be SiO2). The 15µm active silicon in red is

underneath the passivation. There is a 0.8mm inactive silicon region underneath

the active silicon. It has the same area as the active silicon in the x-y plane.

Also one face of an aluminum enclosure above the coverslip also included in the

simulation.

Neutrons were incident normally on the model from random positions within

a plane above the aluminum enclosure. This plane covered an area of 4 cm2. The
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(a) Side view

(b) neutron irradiation

Figure 3.3: KAF1401E geometry in GEANT4 simulation

simulated CCD irradiation in a neutron beam is illustrated in Fig. 3.3b. The

propagation steps in the sensitive region was limited to 0.1µm. Coordinates of

the charged particles in that region, along with corresponding energy deposition

of individual step were recorded.

3.3 Modelling charge diffusion in the diffusion

region

The characteristics of the diffusion were studied based on Rolland’s model [119].

In the case where Sc is a disc of radius RD on the contact surface of the depletion

and diffusion regions, and the point source is right beneath the centre of the disc.

The total charge collection Qc, which is equivalent to charge collection efficiency

(CCE), can be calculated as,
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Qc(Z0, RD) = Qc(Z0,∞)−

m=+∞
∑

m=−∞

am exp(−ηRm)

Rm

(3.1)

with

Qc(Z0,∞) =
exp(−ηa0)− exp(−η(2− a0))

1− exp(−2η)

and am =
Z0

H
+ 2m ; Rm =

√

R2
D

H2
+ a2m ; η =

H

Ld

where Z0 is the depth of the source, H is the thickness of the low-field region,

Ld is the diffusion length. These equations are only valid for the “point source”

radiation, such as X-rays. For charged particles, the trajectories of the particles

are needed to be split into small segments to approximate the requirement. In

the STARDUST code [120], the segments were user defined to be 0.1µm. [122]

Fig. 3.4 shows the CCE of the 5µm, 10µm and 50µm discs. The CCEs

of circular planes were calculated assuming the depth of the diffusion region is

20µm and the diffusion length is 80µm. It’s observed that the CCEs of smaller

plane decrease much quicker.
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Figure 3.4: Charge collection efficiency as a function of the depth and the sensitive

area

One of the hypothesis of this diffusion model is that the bottom plane of the

diffusion region is a true ohmic contact. The closer the charges are to the bottom
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plane, the larger chance they diffuse into the substrate, instead of being collected

by a pixel. Therefore, it’s not surprising to observe the CCE drop from 1 at the

top plane to 0 at the bottom. In the case of a CCD, the bottom plane of the CCD

diffusion region is a P to P+ doped transition. A known effect of such a transition

is to introduce a potential barrier which can partially reflect the carriers towards

the potential well [122]. The impact of this effect is not clear. However, the good

agreement of simulated and measured charge collection distributions suggested

this effect has minor impact.

For the KAF-1401E, it is assumed that the 3µm high-field region has 100%

CCE, and the CCE of the 12µm diffusion region varied against the depth of the

source. Rolland’s method [119] was used to calculate the pixel collection from the

diffusion region. In the case where a point source located at the depth of Z0, and

the position of interest at the top of the diffusion region is ~ρ, the charge density,

Q, at that position is,

Q(Z0, ~ρ) =
1

2πH2

m=+∞
∑

m=−∞

am(1 + ηRm) exp(−ηRm)

R3
m

(3.2)

with

ρ = | ~ρ |

and am =
Z0

H
+ 2m ; Rm =

√

ρ2

H2
+ a2m ; η =

H

Ld

where Z0 is the depth of the source in diffusion region, H is the thickness of

low-field region, Ld is the diffusion length. The diffusion length is the average

distance of electrons travel before the total number is reduced to 1/e of the

original number [123]. This parameter is unknown at the moment. However,

Janesick noted (page 615 of [123]) that “the extent of the field-free region in a

CCD is considerably less than the diffusion length”. Taking the diffusion length

to be 200µm may be a reasonable estimation.

Fig. 3.5 shows the density of the collected charges in this CCD model (calcu-

lated by of Equ. 3.2). The agreement with the density in the Rolland’s original

paper [119] is good.
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Figure 3.5: Density of collected charges

The calculations of charge densities are time consuming. Instead of calculating

them at run time, the pre-calculated data can be used in the manner of a look-up

table. This technique was introduced in the reference paper of STARDUST[120];

and it is introduced below.

Fig. 3.6 illustrates a pixel defined by four points, P1(X1, Y1), P2(X2, Y1),

P3(X2, Y2) and P4(X1, Y2). The charge collection efficiency of the source at Z0,

CCEp, can be efficiently calculated as

CCEp = Qint(P3) +Qint(P1)−Qint(P2)−Qint(P4) (3.3)

where Qint is the integrated charge density, and defined by Equ. 3.4.

Qint(P (x1, y1)) =

∫ x1

−∞

∫ y1

−∞

Q(Z0, ~ρ) dy dx (3.4)

Therefore, a large 3 dimensional matrix of Qint[x, y, z] was prepared for the

next stage of the work. The indexes x and y are the ordinates of a corner of a

pixel. Index z is the depth of the source.
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Figure 3.6: Calculating the charge collection efficiency of a pixel

3.4 The implementation of the charge diffusion

model in KAF1401E

The matrix of Qint was calculated by Matlab and stored in a mat file. This file is

read by a binary executable to generate images according to the particle segments

recorded in a GEANT4 simulation.

A 5MeV proton with 90 degrees incident angle against the KAF-0402E was

simulated. It assumes that the depth of the depletion region is 3µm, the thickness

of the diffusion region is 20µm, and one digital number in the final readout image

represents 51 electrons. Fig. 3.7 shows the simulated readout image. It can be

seen the charge is evenly distributed around the proton entry point, and extended

over 4 pixels. The most and second most outer rounds of the pixels show about

1% of the pixel DN 1 in the centre. About 0.35MeV was deposited in the sensitive

region, and only 0.14MeV of that was collected by the pixels.

One example frame generated in a 900MeV monoenergetic neutron simula-

tion is illustrated in Fig. 3.8. There are 2.5× 106cm−2 neutrons passing normally

through the simulated CCD geometry. Charges generated by the ionizing secon-

daries were accumulated in the CCD, and finally saved as this frame. All types

1DN, digital number of a pixel in a gray-level image
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Figure 3.7: Simulated 5MeV proton 90 degree incident event

of reactions can be observed in Fig. 3.8. The most notable one is that due to

the secondary protons. Most of the protons penetrate the active region. A small

fraction of them have long tracks in the active region. For example, there are

three proton tracks in the bottom left corner of Fig. 3.8.

Figure 3.8: Simulated deposition of 2.5× 106cm−2 of 900MeV neutrons in the

CCD
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3.4.1 Event analysis

In the measurements, an event in KAF-1401E was defined as a group of adja-

cent pixels that individually collected more than 1.44 fC charge, where there is

more than 8 fC charge collected in total. The events in simulation were counted

according to this definition.

The simulated and measured event cross-sections at LANSCE and TRIUMF

are shown in Table 3.1. It’s known that the error of absolute neutron fluence at

TRIUMF is ± 30%. The agreement of simulation and measurement at TRIUMF

is within 3%. The LANSCE simulation overestimated the measurement by 27.6%.

The error of absolute neutron count at LANSCE was unknown. More discussions

about the errors can be found in [124]. The overall prediction accuracy is good.

spectrum simulated event cross-section measured cross-section

(1× 10−5cm2) (1× 10−5cm2)

LANSCE 13.4 10.5

TRIUMF 11.5 11.7

Table 3.1: Comparisons of simulated and measured KAF1401E event cross-

sections

The event charge spectra are compared in Fig. 3.9. For both TRIUMF and

LANSCE, the charge collection spectra agreed closely. However, there are more

large events observed in measurement than in simulation at LANSCE.

The event area distributions are shown in Fig. 3.10. It can be seen that the

simulated event area distributions decay much quicker than those from measure-

ment; and this is not caused by the statistical errors. Very likely, it is caused by

blooming effects of the device in the measurements. Approximately 20% of sim-

ulated event pixels exceed the blooming threshold (7.2 fC) at both LANSCE and

TRIUMF. In practice, those event pixels would extend the event vertically. This

miscounted effect can lead to the observation. This simulation methods are later

implemented to the KAF-0402E. Results show that for KAF-0402E the simulated

pixel distributions agreed closely with those from measurements for KAF-0402E.

63



Because fewer (11% out of the total event pixels) event pixels exceed the blooming

threshold of that device.
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Figure 3.9: Comparisons of event charge spectra
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Figure 3.10: Comparisons of event size spectra

3.5 KAF-0402E parameter calibration

The simulation on KAF-1401E demonstrated the performance of the improved

model.
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The parameters of the KAF-0402E were calibrated using LANSCE spec-

trum. Table 3.2 tabulated three sets of parameters that were tested in the KAF-

0402E model. The measured event cross-section of this device on LANSCE was

7.66× 10−5cm2. The simulated cross-sections are very sensitive to the depth of

the high-field region and are relatively insensitive to the diffusion length. It can

be seen that the parameter sets with 3µm depletion region depth and 20µm

diffusion region depth agree with the measurment with an error of 6% to 7%.

Therefore, they were chosen to be used in the model.

depletion region diffusion region diffusion length cross-section

(µm) (µm) (µm) (1× 10−5cm2)

3 20 30 7.39

3 20 80 7.45

4 20 80 8.83

Table 3.2: Sets of parameters tested on KAF-0402E model

Indicated by Table 3.2, the diffusion length has a minor effect on the event

cross-section. It also has minor effect to the event charge and spatial distributions.

Fig. 3.11 and 3.12 illustrate an example of those distributions in LANSCE when

the diffusion lengths are 30µm and 80µm.

3.6 Performance of the calibrated model

In previous section, the parameters of KAF-0402E were identified. The depth of

depletion region is 3µm. The depth of diffusion region is 20µm. The diffusion

length is 80µm.

This calibrated model was used to calculate the event cross-sections in com-

plex fields. The results are tabulated in Table 3.3. Simulation for TRIUMF un-

derestimates the measurements by 25%, somewhat better than the quoted error

in the measurement (i.e. ± 30%). TSL simulations still systematically overesti-

mate the measurements. The discrepancies increased from 16% to 42% when the

quasi-monoenergetic peaks moved from 25MeV to 180MeV.
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Figure 3.11: Comparisons of simulated and measured LANSCE event area distri-

bution
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Figure 3.12: Comparisons of simulated and measured LANSCE event charge

distribution

3.7 The response function of KAF-0402E to neu-

tron

The response of calibrated KAF-0402E to neutrons is tabulated in Table 3.4. The

cross sections are calculated for events above 8 fC. These data can be used to fold
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facility measured cross-section simulated cross-section

(1× 10−5cm2) (1× 10−5cm2)

LANSCE WNR 7.66 7.45

TRIUMF NIF 8.09 6.48

TSL QMN 25MeV 6.56 7.62

TSL QMN 108MeV 12.9 17.1

TSL QMN 180MeV 11.3 16.1

Table 3.3: Simulated results of using the calibrated KAF-0402E model
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Figure 3.13: The response function of ISEEM

a neutron spectrum to estimate the event cross-section. They are also plotted

in Fig. 3.13. The expected peak at 14MeV was observed. However, the charac-

teristic dip of some SRAM memory at 150MeV [6] was not observed. Possible,

simulations failed to predict this dip, or, more likely, it is only a characteristic of

certain devices.

3.8 Summary

This chapter introduced the method of developing the improve ISEEM simulation

model. This method was first applied to KAF-1401E to examine its correctness.

Good results were obtained. Then KAF-0402E was simulated using this new

model.
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energy beam area neutron count event cross section

(MeV) (cm2) (107) (8fC Thr) (10−5cm2)

1 1 2.5 3 0.012

2 1 2.5 46 0.184

3 1 2.5 108 0.432

4 1 2.5 140 0.560

5 1 2.5 192 0.768

6 1 2.5 176 0.704

7 1 2.5 420 1.68

8 1 2.5 599 2.40

9 1 2.5 656 2.62

10 1 2.5 789 3.16

14 4 10 1154 4.62

20 4 10 817 3.27

30 4 10 1479 5.92

40 4 10 1620 6.48

50 4 10 1776 7.10

60 4 10 1880 7.20

70 4 10 1659 6.64

80 4 10 1684 6.74

90 4 10 1729 6.92

100 4 10 1740 6.96

150 4 10 1769 7.08

200 4 10 1805 7.22

300 4 10 1863 7.45

400 4 9.6 1861 7.75

500 4 10 2000 8.00

600 4 10 2280 9.12

700 4 10 2259 9.04

800 4 10 2234 8.94

900 4 10 2385 9.54

Table 3.4: Monoenergetic neutron simulation results

With the charge diffusion model, the results of the first simulation on KAF-

1401E are promising. The simulated event cross-sections agreed with measure-

ment better than 30%. The results validated the combination of GEANT4 sim-

ulation and charge diffusion model. However, some important factors were still

unclear. For example, the doping profile of the CCD is unknown. The diffusion

length of this CCD was taken to be 80µm for KAF-0402E. Though diffusion

length can slightly affect calculated cross-sections, the effect is minor. Changing
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Figure 3.14: Performance comparison of the simulation models

the diffusion length of the KAF-1401E from 20µm to 200µm would increase the

cross-sections in white beams by about 1%.

The simulated event cross-sections of KAF-0402E have better agreement with

the measurements than the results from the preliminary work. (see Fig. 3.14)

That is the key contribution of the diffusion model. The measured event spatial

spectra of KAF1401E were strongly affected by CCD’s blooming effect, but this

effect is weaker in KFA-0402E, because the spatial distributions from simulation

and measurement agreed.

69



Chapter 4

ISEEM performance in the

natural cosmic radiation

environment

The previous two chapters introduced the simulation results of ISEEM in ac-

celerated testings, and the results were experimentally validated. This chapter

discusses ISEEM performance in the natural cosmic ray life testing.

This chapter first discusses the different experimental conditions in SSER and

ASER testings, and then analyzes the corresponding effects.

Two ASER measurements using ISEEM are also reported in this chapter.

The measurement taken at Jungfraujoch was simulated in GEANT4. It has been

found that neutrons, protons and alpha particles are the dominant sources of the

events.

Overall results suggest that ISEEM is a good instrument to measure acceler-

ated beams, but it has a poor performance in the natural environment testings.
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4.1 Different experimental conditions of SSER

and ASER testings

The event cross-section, σ, in the unit of cm2, derived from a ASER testing can

be used to calculate the SSER of a device in the unit of FIT as

SSER = σϕ× 109 (4.1)

ϕ, in the unit of cm−2.d−1 , is flux density of a location in the atmosphere. The

term 109 is the the billion hours in the FIT rate definition.

However, secondary cosmic rays are different to neutron beams in several

aspects. First of all, secondary cosmic rays represent a compound field. It has

extremely low flux density, and bombards devices with random angles. Therefore

some neglectable effects in the ASER testings become significant in the SSER

testings, such as the alpha contamination, device angular effect, and proton effect.

4.1.1 The major error sources

In a SSER testing, the event sources are the energetic protons and neutrons,

alpha particle contaminations, and thermal neutrons.

Thermal neutrons can be the dominant event source if boron-10 is present

near the device’s sensitive region, as discussed in section 1.1. However, thermal

neutrons can be shielded off by wrapping the devices with gadolinium or cad-

mium foils. Those foils have high cross-section to interact with thermal neutrons.

Therefore, they can efficiently attenuate thermal neutrons. For example, a 1mm

thick gadolinium foil have an attenuation factor of 4.3× 10−53 ·[6].

For a modern SRAM, alpha particle contaminations and fast neutrons are

the major event sources. Results of two 0.13µm SRAM SSER testings in the

literature are selected as in Table 4.1. It shows that events caused by alpha

particles can be as many as those caused by neutrons. The alpha particle soft error

rate in devices is mainly dependent on the materials and technology [4, 30, 34]. It
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SRAM location neutron SER alpha SER

(FIT/Mb)

A[125] Jungfraujoch 717 960

B[34] ASTEP 710 380

Table 4.1: Selected SSER results

is independent of the neutron flux density. The most accurate way to quantify the

alpha soft error rate is to place samples deep underground or underwater, where

neutron flux density is negligible. The neutron soft error rate is proportional to

the flux density of neutrons.

4.1.2 The angular effects

Flament ea al. [126] demonstrated that ome devices can have an order of mag-

nitude different cross-sections at different neutron incident angles in a 14MeV

neutron beam. This effect is due to the nature of the angular-dependent sec-

ondaries distribution. For example, Fig. 4.1 shows the
28
Si (n,xα) energy-angle

distributions at 100MeV. Data in this figure are calculated by TALYS version

1.0. [106] The 0◦ out going angle is the same direction as the incident neutron,

while the 180◦ out going angle is the revers direction. It can be observed that

the 0◦ out going angle has a higher cross-section, especially for the high energy

alpha particles.

In the work of Schwank et al. [127], some SRAMs that contain high-Z ma-

terials were tested in proton beams from 50MeV to 200MeV. Strong angular

dependance of SEE cross-section also observed. It is suggested by the authors

that the secondary angular distribution of the high-Z materials should answer

for this. The Rosetta experiment [36] of Xilinx undertook an ASER testing for

FPGAs. The FPGAs also were measured in accelerated beam. The highest

cross-section was obtained when the neutron beam was incident on the device

from the substrate through the top face. It is suggested that there were higher
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Figure 4.1:
28
Si (n,xα) energy-angle distributions at 100MeV incident energy

cross-section materials underneath FPGA. The materials are identified to be the

flip chip solder balls used to connect the die and the substrate.

The complexity of this effect leads to an uncertainty in the event rates pre-

dicted by ASER.

4.1.3 The effective particles in cosmic rays

As suggested by Ziegler et al. [7], protons and neutrons are the dominant sources

of SEE in the secondary cosmic ray. Pions can also have strong interactions with

matter; but have a very low flux density. Muons, electrons, and gammas are too

weakly ionising to induce SEE.

Protons are negligible in some accelerated neutron beams. For example, TSL

QMN has one proton in a million neutrons [128], and simulation also has shown

that the proton/neutron ratio at TSL ANITA is less than 0.15%. [129].

Energetic protons are one of the major secondaries in the atmosphere. Ra-

tios of energetic (above 10MeV) protons and neutrons were evaluated at three

locations using QARM. The locations are Jungfraujoch (3570m above sea level),

ASTEP (2550m above sea level) and Preston (sea level). The integral flux density

of neutrons and protons were calculated by QRAM. The results are tabulated in
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location integral flux density above 10MeV proportion of proton

(10−3 cm−2 · s−1density) (%)

neutron proton

Jungfraujoch 48.5 5.59 11.5

ASTEP 23.4 2.49 10.6

Preston 5.07 0.36 7.1

Table 4.2: The integral atmospheric flux density of protons and neutrons above

10MeV

Table 4.2. It can be seen that the proportion of protons is decreasing against alti-

tude. As only 1 in million neutrons is registered by the detector, the experiment

time may be relatively long. However, at Preston (approximately at sea level),

it’s still as high as 7.1%. Monte Carlo simulations of ISEEM at Jungfraujoch sug-

gested that when the event threshold is 8 fC (the charge generated by 0.18MeV of

a particle’s kinetic engery), the proton induced event rate is higher than the rate

induced by neutrons [124]. This is because the event detection threshold is too

low, therefore many events generated by proton direct ionisation are detected.

The CCD (KAF-0402E) used in the life testings of this work has a relatively

thick sensitive region (about 20µm), thereby small angle incident protons can

easily generate events. One of the methods to deal with that is to increase

the event detection threshold. However, a large number of real neutron events

would be removed as well. A CCD with a thinner sensitive region could be used;

however, the event rate would be reduced.

4.2 The characteristics of ISEEM in SSER test-

ing

ISEEM used a CCD as the sensitive element to detect the stopping ions that are

mostly generated by nuclear reactions taking place near or in the CCD’s active

region. As one type of semiconductor, the CCD also suffered from the three
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problems discussed in section 4.1.

4.2.1 Alpha contamination in ISEEM

Two experiments took place in the laboratory of the University of Central Lan-

cashire to evaluate the alpha contamination of the KAF-0402E and the KAF-

6303E. Comparing with the alpha event rate, the neutron and proton event rates

of ISEEM at this location are negligible [72]. The measurement of KAF-0402E

was undertaken by Török [130]. A 12 times larger CCD (KAF-6303E) is exam-

ined in this work to compare with the data of KAF-0402E. It was suspected that

most of the alpha came from CCD’s coverslip. Therefore, in this work, a CCD

was tested with and without the coverslip.

Fig. 4.2 shows the charge collection spectra of the measurements. Two spectra

are normalized at 8 fC. Both CCDs have a peak at about 100 fC, which is the

deposition of about 5MeV ionizing radiation. Very likely, those peaks are events

of alpha particles, because only alpha decay may contribute a peak in this region.

Neutron and proton events do not have a peak at 100 fC, as shown in Fig. 4.6.

However, the peak of the KAF-6303E is higher than that of the KAF-0402E.

The event rate of the KAF-0402E with coverslip is 3.11 cm−2d−1 (i.e. 75 events

in 74 days). The event rate of the KAF-6303 with and without the coverslip is

3.64 cm−2d−1 (i.e. 158 events in 8.5 days) and 3.28 cm−2d−1 (i.e. 251 events in

15 days), respectively. The event rates in all those experiments are similar. It’s

appeared that the coverslip is not a significant source of alpha particles. The

alpha particles are from the sensor itself or the bonding wires.

4.2.2 Angular effect in ISEEM

ISEEM has been tested in beams for angular dependence by Török [130]. Fig 4.3

is the experimental results of ISEEM at TRIUMF and LANSCE. In this figure,

the data from TRIUMF are closed, from LANSCE are open. All experiments

yielded similar event cross-sections for the KAF-0402E. Event cross sections are

75



10
0

10
1

10
2

10
3

event charge, fC

lo
g

d
iff

er
en

ti
a
l
d
is

tr
ib

u
ti

o
n
,
a
rb

.
u
n
it

s

 

 

KAF6303E without cover
KAF0402E with cover

Figure 4.2: Charge collection spectra at sea level, 95% CI

almost constant when the angle changes. The angles were tested from 0◦to 90◦.

Very likely, most of the neutrons at the high altitude laboratory strike ISEEM in

this range, because there is solid rock underneath the laboratory.
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Figure 4.3: Measurement of ISEEM sensitivity of incident angles, TRIUMF are

closed, LANSCE are open, A, B and C are different type of CCDs, after [130]

Work in this project has been carried out to investigate the mechanism of this

characteristic of CCDs. It showed that the CCD coverslip and substrate have
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a very similar cross-section, thereby they compensated each other to provide a

quasi-isotropic response to neutrons.

4.3 Life testing results of ISEEM

ISEEMs have been deployed to two high altitude laboratories to perform SSER

testings.

4.3.1 Life testing at Jungfraujoch

ISEEM has been deployed to Jungfraujoch experiment by Török. The data of

the Jungfraujoch is published in 2007 [72]. The raw event rate is 1.66d−1. And

the event rate at Preston laboratory is about 0.99 d−1. The neutron flux density

at Preston is approximately one tenth of Jungfraujoch. Moreover, the thicker

roof at the Preston site further attenuate the energetic cosmic ray. Therefore it’s

concluded that almost all events in the Preston dataset are the product of alpha

particle contamination. The rate of cosmic-ray induced events Jungfraujoch is

estimated to be approximately 0.67 d−1.

4.3.2 Life testing at ASTEP

In this work, a re-engineered ISEEM gathered 6 months data at ASTEP. There

are three runs. They are tabulated in Table 4.3. Event pixels were defined as

those above 2.5 fC(DN 300). Events were defined as those at least 8 fC(ΣDN

961). Results are therefore directly comparable to those from Jungfraujoch [72].

Table 4.3: ISEEM runs at ASTEP

run ID pixel detection threshold event threshold raw events filtered events

(DN) (DN) (ΣDN)

1 100 300 961 80 30

2 50 300 961 20582 35

3 50 300 961 64016 214
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Run001

From 29/11/2007 22:46 to 17/12/2007 17:17, duration 17 days, 18 hours,

31 minutes

Duration of this run is 1.535× 106 seconds. The event detection threshold of this

run is 100DN. 80 raw events are recorded. Applying a pixel filter DN of 300

doesn’t reduce events. Applying ΣDN filter level of 961 reduces events to 30. As

shown in Table 4.3, relatively few raw events were measured. Very likely, the

pixel detection threshold is too high.

Run002

From 17/12/2007 17:20 to 10/01/2008 11:50, duration 23 days, 18 hours,

30 minutes

The pixel detection threshold was reduced to increase raw events. Duration of

this run is 2.054× 106 seconds. The event detection threshold of this run is 50DN.

20582 raw events are recorded. Applying a pixel filter DN of 300 reduces events

to 104. Applying ΣDN filter level of 961 reduces events to 35.

Run003

From 10/01/2008 12:01 to 08/05/2008 13:24, duration 119 days, 1 hour, 23

minutes

Duration of this run is 1.028×107 seconds. The event detection threshold of

this run is 50. 64016 raw events are recorded. Applying a pixel filter DN of 300

reduces events to 479. Applying ΣDN filter level of 961 reduces events to 214.

The amplifier gain was set to 2 in these three runs. One gray level of the

pixel represents 52 electronic charges. The charge collection spectra of ASTEP,

Jungfraujoch and LANSCE are compared in Fig. 4.4. The spectra are normalised

to the area under the range from 8 fCto 32 fC. The error bars show 95% confidence
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intervals. False alarm peaks (between about 40 fC and about 200 fC) induced by

radioactive contaminations are observed at both ASTEP and Jungfraujoch. The

event rate at ASTEP was about 1.74d−1; at Jungfraujoch it was about 1.66d−1.

As the neutron flux density at Jungfraujoch is higher than the flux density at

ASTEP, the event rates indicated that the radioactive contaminations in the

CCD used in ASTEP dataset is more serious than that in the CCD used at

Jungfraujoch.
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Figure 4.4: Jungfraujoch, ASTEP and LANSCE charge collection spectra

The QARM [24] calculated integral neutron flux density above 2MeV (the

threshold energy) at ASTEP and Jungfraujoch is 3.16× 10−2 and 6.55× 10−2 cm−2.s−1,

respectively. And the integral proton flux density at ASTEP and Jungfraujoch

is 2.53× 10−3 and 5.67× 10−3 cm−2 · s−1, respectively. Therefore the neutron and

proton induced event rate at ASTEP is expected to be about half of the rate at

Jungfraujoch. Events, in which the charge is less than 40 fC, are mostly induced

by neutrons and protons. The event rates of these events at Jungfraujoch and

ASTEP are tabulated in Table 4.4. 68% confidence intervals are shown. The

measurements are consistent with the QARM prediction.
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event count time event rate

(day) (day−1)

Jungfraujoch 224 371.5 0.603
+7.1%

-6.6%

ASTEP 39 160.5 0.243
+18.6%

-19.3%

Table 4.4: Small event occurrence rate at ASTEP
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Figure 4.5: Particle spectra at Jungfraujoch, QARM calculation

4.4 Simulation and analysis

The response of ISEEM at Jungfraujoch are simulated and analyzed in this work.

The measured alpha event spectrum at Preston was assumed to be the charac-

teristic at Jungfraujoch. The neutron and proton effects at Jungfraujoch were

simulated using the predicted spectra of QARM. The simulated spectra are shown

in Fig. 4.5.

The cross-sections at Jungfraujoch is calculated using Equation 2.5, as for

LANSCE. The integral flux density of downwards neutrons and protons above

10MeV is 4.24× 10−2 cm−2 · s−1 and 5.17× 10−3 cm−2 · s−1, respectively. To sim-

plify the work, all particles were assumed to be incident normally on the alu-

minium enclosure and the CCD. Table 4.5 shows the event rates of the three main
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charge-inducing mechanisms: direct ionisation from cosmic-ray protons, nuclear

reactions from cosmic-ray neutrons, and direct ionisation from contaminating α

particles. Because the main proton interaction mechanism is direct ionisation,

they have a higher event cross-section than neutrons although the flux density is

lower. In consequence, the event rates due to protons and neutrons are close (at

the 8 fC threshold). The estimated total event rate from protons and neutrons

combined is 0.946d−1. This result is 41% over our measurement. As shown in

Table 4.5, the simulated Jungfraujoch neutron event rate is 0.384 d−1. Compared

with the LANSCE event rate [62], of about 32 s−1, the corresponding acceleration

factor is 7.2× 106.

The simulated angle of incidence for protons was 0 ◦. A larger proton incident

angle would greatly affect the simulation result as the longer paths would lead

to increased cross-section and a broader charge spectrum. However, Johnston et

al. [131] have studied the angular effect in some optocouplers whose active region

depth was close to that in our CCD. Their calculations showed that the increased

shielding effect at larger angles of incidence compensated for the angular effect.

Likely, the ISEEM aluminium enclosure, along with the lightweight laboratory

roof at Jungfraujoch, could do similarly.

The significant event sources in Jungfraujoch are the alpha contamination,

proton direct ionisation and neutron secondaries. The corresponding event charge

spectra are shown in Fig. 4.6. The α-particle contamination spectrum shows a

wide range below about 300 fC with a peak around 100 fC. The proton direct

ionisation charge spectrum follows a power law below about 40 fC. The shape of

the neutron event charge spectrum at Jungfraujoch has the same characteristic

as that from neutron beam trials, and the largest events exceed 1 pC.

Combining the spectra in Fig. 4.6 results in the data shown in Fig. 4.7. The

measured and simulated data agree quite well, although the calculated curve

exceeds the measured data at the lowest energies. This might be due to an error

in the treatment of the shielding at Jungfraujoch, as discussed above, or else in
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Table 4.5: Simulated event rates at Jungfraujoch

reaction type cross-section event rate

(cm2) (day−1)

neutrons 1.05× 10−4 0.384

primary protons 1.12× 10−3 0.500

secondaries of proton 1.38× 10−5 0.062
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Figure 4.6: Event charge distribution by type at Jungfraujoch

the estimation of CCD parameters, such as the active depth.

4.5 Discussion

This chapter discussed the performance of ISEEM in the life testings. Results of

the life testings at Jungfraujoch and ASTEP were compared.

ISEEM has a relatively strong response to neutron and is insensitive to neu-

tron incident angle. This feature makes it a good tool to measure the neutron

influence to causing SEE in atmosphere. However, the CCDs used in this work

have strong alpha contamination. A long term underground experiment is needed
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Figure 4.7: Event charge distribution comparison at Jungfraujoch

to measured the alpha event rate of a CCD, before placing it in atmosphere to

measure cosmic ray induced events. As indicated in Table 4.5, the event rate of

KAF-0402E based ISEEM is very low. The neutron event rate at Jungfraujoch is

0.384d−1. Using a CCD with a thicker active region in the place of KAF-0402E,

the event rate could be enhanced. However, such a device would be more sensi-

tive to proton direct ionization. Using a CCD with thinner active region in the

place of KAF-0402E, the proton effect could be suppressed. However, the neu-

tron event rate would be reduced at the same time. To summarize, CCD based

ISEEM is not an ideal proxy device to measure the influence of neutron fields in

causing single event effect in the atmosphere. A better proxy device is introduced

in Chapter 6.
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Chapter 5

The improvements of the imaging

SEE monitor

Two improved versions of ISEEM were developed in this work. Both versions are

re-engineered based on the system developed by Török and his co-workers. [64]

5.1 The improved ISEEM version one

A single board computer was used instead of a desktop PC. The overall system

is packaged into an aluminium box as shown at Fig.5.1. Therefore this monitor

is more convenient to carry to remote location, such as ASTEP. This portable

monitor has been taken to ASTEP[34] for a 6-month life testing in 2007.

5.2 The improved ISEEM version two

This re-engineered ISEEM communicates with host computer via the USB 1 2.0

bus instead of the PCI bus to reduce the board size and power consumption. The

system composed of a mother board that serves the requests of host computer

and a daughter board to interface the analog system which can operate up to six

CCDs. The dimensions of these boards are consistent with the PC/104+ form fac-

1USB, Universal Serial Bus
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Figure 5.1: The portable ISEEM at ASTEP ( 44.6◦N, 5.9◦E, 2550m above sea

level)

tor. Therefore this system is compatible with a wide range of PC/104+ products,

such as power supplies, single board computers, and enclosures. This ISEEM has

been used for one month at Preston to characterize the alpha contaminations of

a CCD.

5.2.1 System overview

The system block diagram is shown in Fig. 5.2. The overall system is controlled

by the host computer through a USB controller. The CCD integration interval

is timed by a timer in the host computer. When the timer ticks, a clock pattern

generator in an FPGA is triggered to drive the content of the CCD to the ADC

for the digitization. The digitized data of a full frame are transferred into an

external SDRAM. This SDRAM acts like a large FIFO buffer to accelerate the

data transfer rate from this system to the host computer. Once the clock gener-

ator asserts the “done” signal, the host computer requests the USB controller to

upload the data stored in the SDRAM. The enhanced performance of using an

SDRAM is discussed in next paragraph.

Since the USB bus needs a relatively long period of time to establish each data

85



Figure 5.2: System block diagram

transmission process, the transfer rate can be very low if the payload is small. Fig.

5.3 shows the rate as a function of payload size. The data transfer rate can be

as high as 38MB/s when the payload is larger than several MB. This rate drops

to less than 0.1MB/s when the payload is larger than several kB. Therefore, a

32MB SDRAM was used in this system to ensure a high data transfer rate.
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Figure 5.3: USB data transfer rate, data are from [132]
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5.2.2 The mother board and improved subsystems

The mother board is a 4 layer design. Only a 5V input voltage is required to

supply this board. The PCI 2 and ISA 3 bus sockets in the PC/104+ stack are

only used for powering and securing this board. An alternative 5V external power

rail could be selected by one of the on board jumper.

Figure 5.4 illustrates the block diagram of the mother board. A XEM3005[132]

FPGA module is used to control the programable voltage references (PVRs), SPI

bus, CCD video processors and provide programable IOs. The clock of the FPGA

can be adjusted from several MHz to 400MHz by changing internal registers of

the PLL 4. The CCD video processor is comprised of two ADCs 5 (AD9822).

There are six video input channels in total. The maximum pixel sample rate for

each ADC is 12.5 MSPS6.

Figure 5.4: Mother board block diagram

2PCI, Peripheral Component Interconnect
3ISA, Industry Standard Architecture
4PLL, Phase-locked loop
5ADC, analog to digital converter
6MSPS, Mega Sample Per Second
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5.2.3 The echoing method to synchronize CCD video sig-

nal

Correlated double sampling (CDS) is the method used to remove the reset noise

in the CCD video. The CDS processes of AD9822 (a CCD signal processor from

Analog Devices) is illustrated in Fig. 5.5. A video signal is processed by a

CDS enabled ADC. Two voltages are sampled for each charge package. The first

sample is measured before a reset clock. This sample is the sum of the charge

package and the dark signal. The second sample is measured right after the reset

when the charge package is clear. It’s the raw dark signal. The subtraction of

those samples then results the charge package.

CLK

φR

φH1

φH2

CDSLK1

CDSLK2

ADCCLK

ADC ouput

Read clock

1 2 3 4 5 6 7 8�����������������HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�LLLLLLLLLLLLLL�HHHHHHHHHHHHHHH�HHHHHHHHHHHHHH�LLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�HHHHHH�LLLHHHHHHHH�LLLLLLLLLLLLLL�HHHHHHHVVVVVVVV�VVVVVVVVVVVVVV�VVVVVVVHigh byte Low byte High byte�HHHHHHHHHHHHHH�LLLLLLLLLLLLLLL
Figure 5.5: RAM based generator generated waveforms for reading CCD pixels

It can be seen that the timing needs to be very precise. Otherwise, noise

will be introduced. However, the required precision is difficult to satisfy in the
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accelerated neutron testings. In such testings, a CCD and the ADC along with

other digital components are separated by a long cable, so that neutrons don’t in-

fluence the digital system. However, the cable delay makes it difficult to generate

an accurate readout waveform.

Fig. 5.6 illustrates the method used to solve this problem in the original

ISEEM. Both of the CCD driving clock (from the digital system to CCD) and

the CCD video signal (from the CCD to the digital system) are delayed by the

long cables. To synchronize the video with the sampling processes, the CDS

clocks are delayed (i.e. twice the cable delay) by a programable delay circuit.

This design has a very good performance. But it only works for a fixed-length

cable. Once the length of the cable changes, the in-circuit delay needs to be

re-programmed.

Figure 5.6: Solution of cable delay in old ISEEM

A fixed length cable is a inconvenience in the experiments. It has to be as long

as possible in order to be used at different facilities. The block diagram of the

new design is shown in Fig. 5.7. The CDS clocks are then encoded as the effective

CDS clock. The information carried in the CDS clocks are compressed into the

single signal to optimize the use the cable. In this design, when the digital system

trying to read the CCD video, it sends the reset, vertical and horizontal clocks

to the daughter board along with the effective CDS clock. The daughter board

echos back the effective CDS clock and the video signal. In this way, video can

be properly synchronized, and not affected by the propagation delay introduced
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by the long communication media. Therefore, an arbitrary length of cable could

be used. Moreover, the complex in-circuit delay is replaced by a pairs of wires.

Figure 5.7: The new solution of cable delay

5.2.4 Programmable voltage references

Driving a CCD requires many different levels of voltages for biasing. To optimize

the system performance in harsh environmental conditions, digital potentiometers

are used to replace mechanical trimmers. In the life testing of Jungfraujoch,

some of the gathered images are blurred because temperature variation affected

the voltage of the mechanical trimmers. One digital potentiometer along with

an operational amplifier formed a programable voltage reference (PVR). There

are some advantages in using digital potentiometers in such applications. First

of all, they are insensitive to temperature. Also they can work in a wide voltage

ranges. The AD5263 was chosen as the replacement. This device can output the

voltage with less than 1% error when operating in the voltage divider mode at a

temperature between -40◦C and 125◦C.

A section of the negative PVR schematic (an AD5263 and one set of output

buffers) is shown in Fig. 5.9. For the device AD5263, terminals A, B are connected

to two different voltages, and terminal W is the divided voltage of the voltage

across A and B. The level of the voltage at W is adjustable via the SPI bus.

The desired negative voltages are buffered by a couple of operational amplifiers

to invert the voltage and drive the capacitive load. The main challenge of this

design is to avoid the operational amplifier oscillations and reduce the voltage
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Figure 5.8: Schismatics of the programable voltage references

overshoot. The LM8272 is used as the buffer. This amplifier is designed to

drive unlimited capacitive loads without oscillations. Additionally, the output

of the digital potentiometer can be adjusted in several small steps, instead of

one big step, to avoid large voltage swing at the output. Therefore large voltage

overshoots can be avoided.

The measured voltage output of the PVRs are shown in Fig. 5.9. The x axis

is the value held by internal register of the digital potentiometer which represents

the scale of the output voltage. The voltages across positive and negtive PVRs

are 15V and -10V, respectively. The output of the negative PVR is saturated at

about 200.
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Figure 5.9: Measured voltage output of programable voltage references

class name description

USBController control ISEEM and manage data flow

ImageLable image real time display

PixelExtractor event pixel extraction

EventProcessor event pixel grouping

EventListManager event storage and read back

Spectroscope event profile characterization

Logger global system logging

Table 5.1: ISEEM software package classes

structure name description

AFrame raw data of one frame

AnEventPixel one event pixel

AnEvent one event, comprised of AnEventPixel

EventsInAFrame events from the same frame, comprised of AnEvent

EventListFile all events in a trial, comprised of EventsInAFrame

Table 5.2: ISEEM software package data structures

5.2.5 Host side software

The host computer software was developed based on the Qt toolkit. Qt is a open-

source cross-platform application and UI framework. The code written in Qt can

be compiled in most of the operating system without changing any source code.

The latest version of the software was tested on Windows and Linux.
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5.3 Summary

This section introduced two versions of re-engineered ISEEM. Version one has

been taken to a high altitude laboratory for a 6-month life testing. Version two

was used to measure CCD alpha contaminations in the Preston laboratory for a

month.
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Chapter 6

Design of an extended Bonner

sphere as a proxy device

The Imaging Single Effect Monitor (ISEEM) response in accelerated artificial

beams have been studied to characterise the neutron induced charge transients

in semiconductors. It has been deployed to Jungfraujoch and ASTEP for long

term experiments to attempt to validate the neutron prediction models. However,

the alpha impurity behaved as the dominant event source even at the mountain

altitudes [72]. Simulations also suggested the noise of low energy proton direct

ionization intermingled with the neutron events below 40 fC. (see Chapter 4)

Increasing the event detection threshold could remove most of the proton noise,

but would further extend the experiment time.

A Bonner sphere was studied as an alternative proxy. In the natural envi-

ronment, the Bonner sphere spectrometer is one of the instruments widely used

to measure the neutron spectrum [38, 45–48]. This type of detector was first de-

scribed in 1960[40]. They have very good sensitivity for thermal, epithermal, and

fast neutrons, and isotropic angular response [38]. MCNP and MCNPX are the

most common tools used to calculate the Bonner sphere response in most studies

(i.e. [38, 45–48]).

Comparing with the ISEEM’s passive mechanism to measure neutron fluence
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(see Chapter 2), Bonner spheres measure neutron fluence in a aggressive way. En-

ergetic neutrons are firstly thermalized by the modulator surrounding a thermal

neutron sensor, and then detected. A variety of thermal neutron sensors could be

used as the sensitive element in a Bonner sphere. The last section of this chapter

will discuss the suitable application of different types of sensors.

In 2009, a paper by Garny et al. was published [42] to claim that GEANT4 is

as good as MCNPX. They compared the simulation results of MCNPX(version

2.6.6) and GEANT4 (version 8.2) in their work. Gold foil was used as the sensitive

element. They firstly compared the simulated neutron energy spectra in a 6 inch

sphere produced by 1MeV monoenergetic primary neutron using GEANT4 and

MCNPX. There is a 2mm gold foil placed in the center of the sphere. Simulated

spectra are overlapped for most of the energies, except that MCNPX had about

5% higher prediction for the neutrons in the energy range between 0.03 and 0.1 eV.

Then, they calculated the response of this sphere to primary neutrons at 1 eV and

1MeV. Results show that the largest discrepancy is about 7%. Such agreements

may be considered very good.

The conventional Bonner sphere has a very weak response to neutrons above

100MeV. To increase the high energy response, high-Z materials were proposed to

be added to the sphere by Hsu et al.[44]. Such a sphere is so called an “extended

Bonner sphere”. The mechanism of improved response is that high-Z materials

act as neutron multipliers at high energy. Examples of high-Z material neutron

productions are shown in Fig. 6.1. Data for
56
Fe(n,xn) and

208
Pb(n,xn) are from

ENDF. Threshold energies of iron and lead are about 0.8 and 2MeV, respec-

tively. Lead has a higher cross-section than iron above 4MeV. The cross-section

difference increases with the increase of energy. Lead has more than a 7 times

higher cross-section than iron above 30MeV. Therefore, lead should have a better

performance than iron in terms of the enhancement of the response.

In the progress of this work, an 18 inch extended Bonner sphere showed similar

response to neutrons in the energy range from 1MeV to 1GeV as ISEEM in
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Figure 6.1: Neutron productions of
56
Fe and

208
Pb, data from ENDF 6

simulation. The response function of this sphere was found in the paper of Hsu

et al. [44] in 1994. Like microelectronics, large extended Bonner spheres (larger

than 15inch) are not sensitive to thermal and epithermal neutrons, and have a

constant response to the high energy neutrons. More analysis can be found in

section 6.1.

This Chapter introduces the development and verification of a GEANT4 sim-

ulation to study the extended Bonner sphere in section 6.1. Only the response

of the a
3
He counter was simulated, the response of the electronics to pulses

generated by the
3
He counter are not included. Section 6.2 studies the mech-

anism of simulating semiconductor response by a Bonner sphere. Section 6.3

applies the knowledge acquired in section 6.2 to simulate the response of ISEEM

to neutrons. In this work, a
3
He counter was chosen as it has high efficiency for

detecting thermal neutron. This feature is a particular advantage in the natural

environment.
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6.1 Verification of the simulation code

The methods and physics models introduced in Garny et al. [42] are listed in

Table 6.1, and re-produced for simulation. The correctness of the developed code

is verified by comparing with the response function of the 18 inch extended Bonner

sphere, which was published in Hsu’s paper [44]. In Hsu’s work, they simulated

a set of extended Bonner spheres in different configuration. One sphere of size

18 inch is also simulated in this work to compare with its calculated response

function by Hsu. Both of the simulations calculate for a
3
He counter with 4

atmospheres pressure. There is lead shell in between 3 inch to 4 inch in this sphere.

Except for the sensor and lead shell, the rest of the volume is pure polyethylene.

The densities of lead and polyethylene are 0.92 and 11.34 g.cm−3, respectively.

However, this work simulates a
3
He counter with diameter of 5cm instead of the

3.2cm counter used in Hsu’s work. Therefore, the simulated response function is

expected to be higher than the function of Hsu’s. The major reason for calculating

a different size counter is that Hsu et al. didn’t mention how they applied the

event threshold. This makes numerical comparison difficult. Today, the 5cm

3
He counter counters are commonly used in extended Bonner spheres [38, 46–48],

as this counter is the largest counter commercially available. The simulated

results also indicate the orders of magnitude of the event rate enhancement over

ISEEM. Therefore, only the shapes of the response functions were compared.

The geometry of the Bonner sphere is shown in Fig. 6.2. The thermal sensor

in this sphere is a 5cm
3
He counter, with a gas pressure of 4 atmospheres. In some

applications, especially for small size
3
He counters, to minimize the wall effect,

some heavier gas is added to the sensor to increase the stopping power. In this

simulation, the gas is taken to be 100%
3
He .

3
He has a high cross-section to cap-

ture thermal neutrons, and generates a secondary tritium and proton. The total

kinetic energy of the secondaries is 0.764MeV. This reaction can be expressed as

n + 3He → 3H + 1H + 0.764MeV
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Process Energy G4 class name G4NeutronHP-dataset

Elastic <4eV G4NeutronHPThermalScattering ThermalScatteringData

<20MeV G4NeutronHPElastic ElasticData

>19MeV G4LElastic -

Inelastic <20MeV G4NeutronHPInelastic InelasticData

>19MeV G4BinaryCascade -

Fission <20MeV G4NeutronHPFission FissionData

>19MeV G4LFission -

Capture <20MeV G4NeutronHPCapture CaptureData

>19MeV G4LCapture -

Table 6.1: GEANT4 models to simulate Bonner sphere response to neutrons

In this simulation, charged particles which deposit more than 24% of the peak

energy in a event (i.e. 0.183MeV) were considered as events. This threshold is

previously used in the literature [46–48].

All reactions below 20MeV were modelled by HP (high precision) models

which are data driven. A corresponding dataset for the HP models is shown in

Table 6.1.

Nine energies were simulated from 0.1MeV to 1GeV. The response function

from GEANT4 simulations is compared with the function from Hsu’s original

paper in Fig. 6.3. These two functions were normalized at 0.1MeV. It can

be seen that, the agreement below 10MeV is good. A more rapid rise from

GEANT4 over MCNP is observed. It begins at 50MeV, which is lower than the

250MeV in the MCNP simulation. Observations can be understood as when the

neutron production effect is weak, agreement is good. Otherwise, agreement is

poor. Therefore, the neutron production models used in these two simulations

should correspond to the discrepancy at high energy. Fig. 6.4 shows the neutron

production in lead. The cross-section rapidly increases at high energy. At high

energy, secondary neutrons are the dominant effective particle. According to this

figure, the response function from GEANT4 seems to be more reliable, because

it has a similar shape with the neutron production for lead above 50MeV. The
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Figure 6.2: Geometry of simulated 18 inch extended Bonner sphere (not to scale)
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Figure 6.3: Comparisons response functions given by GEANT4 (this work) and

MCNP (from [44])

MCNP simulation was done in 1990s. Probably, the cascade model used in that

simulation was not as good as the more recent model used in GEANT4.

The event cross-section of ISEEM at high energy is the order of 10−5 cm2, while

it is of the order of 1 cm2 for this 18 inch extended Bonner sphere. Comparing

less than 0.4 events per day of ISEEM at Jungfraujoch high altitude laboratory,

this Bonner sphere can measure about 40000 events every day.
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Figure 6.4: Neutron production on lead

6.2 Sphere configurations and their effect to the

response function

The event cross-section of a semiconductor from threshold energy to infinity can

be split into three regions by its characteristics.

These regions are referred as the lower, medium and higher energy region in

the following text, and they are denoted as region A, B and C, respectively, in

Fig. 6.5. Fig. 6.5 is the desired response function of an extended Bonner sphere.

The event cross-section in the lower energy region rises from the threshold

energy to the lower boundary of the medium energy region. The event cross-

section characteristic in this region is that the slope is constant on log-log scale.

The medium energy region is between the lower and higher energy region. The

cross-section slope in this region diminishes against the increase in energy towards

few at the saturated energy of this device. Above the saturated energy, the event

cross-section is a constant value, or a “limiting cross-section”. Of course, a Bonner

sphere is sensitive to thermal and epithermal neutrons. For large spheres, the

sensitivity is very low, but still higher than ideal. In practice, a spherical layer of

thermal neutron absorber may be added to the Bonner sphere to minimize this
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Figure 6.5: The ideal response function of a Bonner sphere as the proxy of a

microelectronics device

effect. This is not discussed in this chapter, and will be studied in future work.

This section discusses modelling of the response function of an extended Bon-

ner sphere in the three regions classified above. Methods also are discussed for

adjusting the Bonner sphere configuration to match a semiconductor response

better. The next section will apply these methods in iterations to approximate

the response function of a Bonner sphere to ISEEM’s event cross-section. How-

ever, the size and weight of this Bonner sphere is not optimized.

6.2.1 Modelling the response in the lower energy region

A conventional Bonner sphere has a sharp global peak response to neutrons at a

certain energy. The rapid rise of this peak can be used to model the rise of the

event cross-section of a semiconductor at the lower energy region. The position

of the peak depends on the thickness of polyethylene. Example peak locations

are tabulated in Table 6.2. Data were taken from the simulated results in [42] and

[44]. It can be observed that with the increase of sphere size, the peak is moved

to higher energies. For a Bonner sphere larger than 9 inch, the width (in unit of

MeV) of the peak is a nearly a constant. The peaks’ upper cut off energies are

101



Table 6.2: Peak response of Bonner spheres to neutron energy

sphere diameter peak location

(inch) (MeV)

1.3 2× 10−6

5.5 0.6

7 1

10 3

15 7

18 13

all at about 50MeV.

A conventional Bonner sphere uses pure polyethylene to thermalize neutrons.

However, the rise of the peak is not as rapid as in semiconductors. For example,

an 18 inch Bonner sphere response increases 7 times in the energy range between

1MeV to 10MeV as shown in Fig. 6.3. ISEEM’s response increased about two

orders of magnitude in the same region as shown Fig. 6.7.

6.2.2 Modelling the response in the higher energy region

The event cross-section of a semiconductor device in the higher energy region is

approximately a constant value. It is so called “limiting cross-section”. For an

extended Bonner sphere, the response in this region increases against energy, be-

cause metals have a high neutron production at higher energy, as can be observed

in Fig. 6.1. Energetic neutrons can generate multiple neutrons, and sometimes

more than one neutron can be detected at almost the same time. Therefore,

pulse pile-up is expected to occur. With the increase of a energy, the possibility

of observing pulse pile-up is increased.

For example, the pulse height spectra on 100MeV and 1GeV neutrons of a 18

inch extended Bonner sphere is shown in Fig. 6.6. All peaks in this figure locate

at 0.764MeV and at multiples of that energy. Each 0.764MeV is the energy

deposition of the reaction
3
He(n,p)T. Because the light ions of this reaction have
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Figure 6.6: 100MeV and 1GeV neutrons pulse height spectra

a relatively long range in gas, many of them can hit the wall of the Helium-3

counter. As they are not stopped in the gas, a large portion of their energy is

deposited in the wall. This wall effect can be observed in Fig. 6.6. Before each

peak, there is a constant response followed by a rapid rise. The response peaks

of 1GeV neutrons are higher than the peaks of 100MeV neutrons, similar results

were observed in many other cases. This provides an opportunity to correct the

overall response function of the Bonner sphere. Neutron production becomes

significant above 30MeV. Therefore, the lower limit energy of this region is set

to 30MeV. It’s also the upper limit energy of the median energy region.

The correction of the response function is

σ′(E) = σ1(E)− C1σ2(E)− C2σ3(E) (6.1)

where σ′(E) is the corrected response function, and σ1(E), σ2(E) and σ3(E) are

the response of the events higher than 0.1834MeV,1.5280MeV and 2.2920MeV

respectively. C1 and C2 are the correction coefficients. Their value can be deter-

mined by comparing the event cross-section of the aimed semiconductor and σ(E)

and σh(E) of the Bonner sphere. Double, and triple events become significant

above 30 and 100MeV, respectively. Therefore, the term C1σ2(E) and C2σ3(E)

103



are used to mainly suppress the overresponse above 100MeV. An example esti-

mation of C1 and C2 for ISEEM is given in section 6.3.

6.2.3 Modelling the response in the median energy region

For an extended Bonner sphere, neutron modulation and heavy metal neutron

production are the major detection mechanisms at the lower energy region and

higher energy region, respectively. The median energy region is the transition

region, where the major detection mechanisms switch over. The volume and

location of the lead shell in the extended Bonner sphere are the important factors

to properly model the semiconductor’s event cross-section.

6.3 Designing the extended Bonner sphere as a

proxy for ISEEM

In this section, Monte Carlo simulations were applied to identify the design pa-

rameter of a Bonner sphere to simulate ISEEM response to neutrons. The simu-

lation results were used to estimate the event rate enhancement of the extended

Bonner sphere against ISEEM in the fields defined by JESD89A[6], ANITA, and

LANSCE. It has been observed that the enhancement is almost a constant at all

these fields. The time requirement of ISEEM life testing could be reduced from

several years to several days, if the Bonner sphere is used in the place of ISEEM.

The cross-section of ISEEM in Table 3.4 is used as the benchmark. It’s il-

lustrated in Fig. 6.7. The event threshold is 8 fC. The calculated event rate,

by folding the functions with the neutron spectra, results a discrepancy of 20%

with our measurements at all the neutron beams. Overall, the accuracy is good.

This response function is divided into three regions by two energies at 10MeV

and 50MeV.

The upper limit energy of the lower energy region is effected by the size of

the sphere as discussed in section 6.2.1. 15 inch and 18 inch spheres may be both
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Figure 6.7: The response function of ISEEM

D D1 D2 D3 D4

(inch) (inch) (inch) (inch) (inch)

Type A 18 2 0 1 7

Type B 18 2 0 1.5 6.5

Type C 18 2 0 2 6

Type D 18 2 1 1 6

Table 6.3: Extended Bonner sphere geometry parameters

valid. However, to re-use the simulated data of the 18 inch sphere, the size of the

Bonner sphere is taken to be 18 inch.

A half inch thick lead shell was added to the sphere. The simulated response

is shown in Fig. 6.8. The response in the median energy region has an increasing

negative slope instead of a decreasing positive slope. This indicated that the

volume of lead shell is not large enough. To investigate how much lead is adequate,

a set of configurations were simulated. The geometry is shown Fig. 6.9. The

parameters in this figure are tabulared in Table. 6.3.

In type A to C, the lead shells contact with the counter. The thickness of the

lead shell is increased by 0.5 inch each type. The lead shell in type D has a gap

of 1 inch before the counter.
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Figure 6.8: Response function of a 18 inch Bonner sphere with half a inch lead

shell

D

Lead

Polyethylene

CounterD1D2 D3D4

Figure 6.9: The simulated Bonner sphere geometry (not to scale)

Fig. 6.10 shows the response functions of type A to type D. The absolute

value of the slope of transition region (10 to 50MeV) is decreased towards few

when a thicker lead shell is used. Dips were observed in the functions of type A

and B in this region. Therefore, they are not the ideal candidates. Type B and D

contain 15kg and 16kg of lead, respectively. However, type D shows a smoother

transition in this region. This may be due to the fact that the lead shell contacts

with the sensor. In that case, low energy neutrons generated by 10MeV neutrons
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Figure 6.10: Response functions Type A to D

had higher probability to enter the counter. Both type C and type D can provide

a smooth transition in this region, these two spheres have very similar shape, and

type D contains less lead than type C (i.e. about 24kg). Type D is lighter, and

seems less sensitive to neutrons below 1MeV. Therefore, type D was chosen to be

used.

The response functions defined in Equ. 6.1 of a type D Bonner sphere is shown

in Fig. 6.12. The response is corrected according to Equ. 6.1 with C1 = 4 and

C2 = 0. Those coefficients can be adjusted in another iteration of the design, if

the agreement of the proxy and target device are not satisfied in specified fields.

6.4 Evaluating the performance of the extended

Bonner sphere

The event rate of the Bonner sphere and ISEEM in different fields are tabulated

in Table 6.4. The response enhancement factors, H, were calculated as

H =

∫

σb(E)ϕ(E) dE
∫

σi(E)ϕ(E) dE
(6.2)
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Figure 6.12: The corrected response of type D

where σb and σi are the response functions of the Bonner sphere and ISEEM,

respectively. ϕ(E) is the neutron spectrum. Simulations didn’t cover the whole

energy range. The cross-sections, which were not calculated, were assumed equal

to the cross-section of the closest calculated energy. This assumption is almost

valid at high energy. However, it overestimates the influence of thermal neutrons

for the Bonner sphere, because a large Bonner sphere has a very weak response

for thermal neutrons. The neutron spectrum at Jungfraujoch is predicted by
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Bonner event rate ISEEM event rate enhancement

(106 cm2) (cm2) (105 )

Jungfraujoch 4.54× 10−7 2.87× 10−6 1.57

LANSCE 5.16 32.2 1.60

ANITA 8.54 50.0 1.71

TRIUMF 23.5 164 1.43

TSL25MeV 1.20 7 1.71

TSL108MeV 12.9 98.2 1.32

TSL180MeV 1.71 11.5 1.48

Table 6.4: Simulated event rates of the extended Bonner sphere and of ISEEM

in different neutron fields

QARM; it is from 10−6MeV. All other fields are artificial beams, the neutron

spectra begin from 0.1MeV. The equilethargic contributions at Jungfraujoch

are compared in Fig. 6.13. Though the Bonner sphere’s response to thermal

neutrons is overestimated, those neutrons have very weak contribution to the

overall response. Contributions from the neutrons in the range of 0.1MeV to

1MeV are very weak. Comparing with ISEEM, the Bonner sphere has more

events contributed by neutrons in the range between 1MeV to 10MeV. This

effect was explained in section 6.2.1. Later analysis shows that this effect is too

weak to influence the results. However, it can be further reduced by increasing

the thickness of the polyethylene.

The enhancement factors of the Bonner sphere are very close to a constant.

At TSL QMN 25MeV, the constant is 1.32× 105which is 15% lower than the

enhancement at Jungfraujoch. That’s because this Bonner sphere is relatively

poor to simulate the response below the saturated energy.

6.5 Discussion

A
3
He counter based extended Bonner sphere is purposed to be a proxy device of

microelectronics. Methods of designing an appropriate sphere is introduced. To
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Figure 6.13: The equilethargic contribution of type D Bonner sphere as a function

of energy

take an example, one sphere is designed as the proxy of ISEEM. Actually, any

thermal sensor can be used in the place of the
3
He counter. Sensor replacement

may only effect the detection efficiency but not the shape of the response function.

Therefore, it is possible to use metal foil in a high flux density field, while using

gaseous counters in a low flux density neutron field.

It is notable that the Bonner sphere was used as a proxy device for another

system. In the 1960s, during Bramblett, Ewing, and Bonner’s investigation [40]

of this new spectrometer, they have found that the 12 inch sphere had a similar

shape as the dose equivalent delivered per neutron as a function of energy. This

sphere was the only detector that could be used to estimate neutron dose in a

wide energy range (from thermal to MeV) at that time [43].
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Chapter 7

Summary and discussion

7.1 Contribution to knowledge

This work is aimed at investigating an alternative method (see section 1.6) of

estimating the real-time SEU rate of a microelectronic device.

In the first year of study, a preliminary analysis of the measured data in

accelerated beam and atmospheric radiation environment contributed to a part

of a paper [72] published in the European Conference on Radiation and its Effects

on Components and Systems (RADECS) 2007. Efforts were made to improve the

system performance of the original ISEEM to make it more convenient for life

testings. Two re-engineered systems were later (in 2008) used in a 6-month life

testing at ASTEP[34] (section 4.3.2), and for a life testing at Preston to evaluate

the alpha contamination effects of a large CCD (section 4.2.1), respectively.

The second year of study was dedicated to develop models to simulate interac-

tions of neutrons with ISEEM. A preliminary CCD model (Chapter 2) based on

GEANT4 was constructed. Some device parameters were determined from openly

published data, and some others were derived from the alpha particle irradiations

of the CCD. The simulated results were presented at in RADECS 2008 [?]. An

extended revision of this paper [124] was published in the IEEE Transaction on

Nuclear Science (TNS). This model overestimated event cross-sections in accel-
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erated neutron fields by 14.0% to 116%, because of inaccurate charge collection

behaviour in this model. Later, methods were evaluated to improve the perfor-

mance of the preliminary CCD model. During that time, it was realized that

ISEEM has poor performance in atmospheric radiation environment due to more

that half of the events being caused by alpha contaminations or low energy proton

direct ionization. The activities of searching for a better proxy device started.

An improved CCD model (Chapter 3) was successfully developed in the third

year of study. The discrepancy of simulated and measured event cross-sections at

LANSCE and TRIUMF were smaller than 30%, which is within the quoted error

of the facilities. The calculated response function of ISEEM was used in Prokofiev

et al. [129] to calculate the LANSCE-equivalence flux density of TSL ANITA and

in Platt et al. [133] as an example device to evaluate the fidelity of neutron

beam spectra for accelerated testing. A paper introducing this improved model

has been accepted for presentation at RADECS 2010. The response function of

an extended 18 inch Bonner sphere introduced by Hsu et al. [44] attracted much

attention. The shape of the response function is very similar to the response shape

of memory devices. The predicted performance of the large extended Bonner

sphere as a proxy device of semiconductor devices was analyzed in Chapter 6.

The results will be presented at RADECS 2010.

7.2 Further work

7.2.1 Evaluating the simulated ISEEM response

Calibration trials are needed to evaluate the correctness of the simulated re-

sponse functions and event rate. However, there is no monoenergetic neutron

source above 19MeV. To calibrate the response function of a device at higher en-

ergy, quasi-monoenergetic neutron beams are usually used. For example, one

set of Bonner sphere spectrometers developed by the Physikalisch-Technische

Bundesanstalt (PTB) was calibrated by monoenergetic neutrons from 1.2 keV
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to 19MeV, and by a quasi-monoenergetic neutron beam at 60MeV. [61] At

higher energy, the calibration becomes difficult. For SRAM’s response function,

it’s common to used proton sources as proxy to neutrons at those energies.

In this work, no trials were designed to calibrate the response function. Sim-

ulations show better agreement with measurements in white neutron beams than

in quasi-monoenergetic neutron beams. (See Table 3.3 and Table 3.1) It’s inter-

esting to observe that the discrepancy of simulated and measured cross-section

at TSL QMN increases when the mono-energetic peak moves to higher energy.

In that beam, high energy neutrons are the dominant component, and the binary

cascade model in GEANT4 is used to model the interactions of the high energy

neutrons with matter. Researchers from Vanderbilt University have noted that

GEANT4 underestimates the production of secondaries of 173MeV protons on

aluminium, and similar results were obtained for other residual nuclei[99]. Further

investigations are needed to evaluate the correctness of the response function.

7.2.2 Designing a smaller shield for the Bonner spheres

The extended Bonner sphere is firstly proposed by Hsu et al. in 1997. [44] Their

main purpose of developing this device was to enhance the response of a Bonner

sphere at high energy. Chapter 6 designed a 18 inch Bonner sphere which has

similar response to ISEEM. However, the size may be larger than the beam areas

in many accelerated beams. This may limit the usage of it. Techniques can

be investigate to shrink the size. The thick polyethylene used in this sphere is

to minimize the impact from low energy neutrons. Thermal neutron absorbers,

which are the materials that have very high cross-section for thermal neutron

capture, can be added in the sphere to achieve a similar effect at a smaller size. A

similar method can be found used in the extended REM counter [134], which uses

a thin layer of borated materials in the middle to attenuate neutrons moderated

by polyethylene.
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7.2.3 Experimental validation of the indirect method for

accelerated testing

The indirect accelerated testing method was not experimentally validated in this

work. Further work may focus on this. The real-time neutron event rate of a

memory device predicted by this method can be evaluated by the actual results

from SSER testings. As SSER testings are very expensive, results from the lit-

erature can be used. There are many SSER testings which have taken place in

high altitude laboratories. For example, Autran et al. [34, 37] published real-time

neutron event rates of many devices at Altitude SEE Test European Platform

(ASTEP). Proxy spheres can be made for some of those devices. The indirect

accelerated testing method can be used to predict the event rates. Results given

by Autran can justify the performance of this new accelerated method.
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Appendix A

Publications

1. Z. Török, S. P. Platt, and Xiao Xiao Cai, “SEE-inducing effects of cosmic

rays at the high-altitude research station Jungfraujoch compared to accel-

erated test data”, RADECS 2007, September 2007

Preliminary analysis of the measured data at LANSCE and Jungfraujoch

was contributed to this paper

2. Cai Xiao Xiao, S. P. Platt, Chen Wei, “Modelling neutron interactions

in the Imaging SEE Monitor”, RADECS 2008 The model introduced in

Chapter 2 was published in this paper

3. Extended paper of paper 2 was selected to be published in IEEE Transac-

tions on nuclear science, Vol. 56, no. 4, Aug 2009

4. Alexander V. Prokofiev, Jan Blomgren, Mitja Majerle, Ralf Nolte, Stefan

Röttger, Simon P. Platt, Cai Xiao Xiao, and Andrey N. Smirnov, “Char-

acterization of the ANITA neutron source for accelerated SEE testing at

The Svedberg Laboratory”, NSREC 2009

Simulated response function of ISEEM from the improved model, which is

introduced in Chapter 3, was used in this paper to calculate the LANSCE-

equivalent flux density of ANITA

5. S. P. Platt, A. V. Prokofiev, Cai Xiao Xiao , “Fidelity of energy spectra

at neutron facilities for single-event effects testing”, IRPS 2010
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Simulated response function of ISEEM from the improved model was used

as an example to evaluate neutron spectra.

6. Cai Xiao Xiao, S. P. Platt, “Improved simulation model for Imaging Single

Event Effects Monitor”, submitted to RADECS 2010

The improved ISEEM model (Chapter 3) was published in RADECS 2010

7. Cai Xiao Xiao, S. P. Platt, S. Monk, “Simulating the neutron response

function of the Imaging SEE monitor by a Bonner sphere”, RADECS

2010

Work described in Chapter 6 has published in RADECS 2010
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