
 
 

Birkbeck ePrints: an open access repository of the 
research output of Birkbeck College 

 
http://eprints.bbk.ac.uk

 
 

Yule, Peter and Cooper, Richard P. (2003). 
Express: a web-based technology to support 
human and computational experimentation. 
Behavior Research Methods, Instruments, & 
Computers 35 (4) 605-613. 
 
 

This is an exact copy of a paper published in Behavior Research Methods, 
Instruments, & Computers (ISSN 0743-3808). Copyright and all rights therein 
are retained by authors or by other copyright holders. All persons 
downloading this information are expected to adhere to the terms and 
constraints invoked by copyright. © 2003 Psychonomic Society, Inc. 

 
 
Citation for this copy: 
Yule, Peter and Cooper, Richard P. (2003). Express: a web-based technology 
to support human and computational experimentation. London: Birkbeck 
ePrints. Available at: http://eprints.bbk.ac.uk/archive/00000557
 
 
 
Citation as published:  
Yule, Peter and Cooper, Richard P. (2003). Express: a web-based technology 
to support human and computational experimentation. Behavior Research 
Methods, Instruments, & Computers 35 (4) 605-613. 

 
http://eprints.bbk.ac.uk

Contact Birkbeck ePrints at lib-eprints@bbk.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/6622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/
http://eprints.bbk.ac.uk/archive/00000557
http://eprints.bbk.ac.uk/
mailto:lib-eprints@bbk.ac.uk


Behavior Research Methods, Instruments, & Computers
2003, 35 (4), 605-613

Many researchers and teachers of research methods
now routinely use computer-based experimentation pack-
ages to generate and present a wide variety of experiments
to participants via standard desktop computer hardware.
However, most experiment presentation packages provide
limited support for coordinating multiple participants and
collating the resulting data. Typically, a data file is gen-
erated for each participant, and the experimenter must
collect all of these files (often from multiple computers,
especially if the experiment is run as part of a laboratory
class) and merge those data files, using a utility program
supplied with the experiment presentation package. The
process of collating data in this manner is laborious,
time-consuming, and prone to error. In the case of exper-
iments with between-subjects factors, it also requires that
the experimenter monitor group sizes and explicitly assign
individuals to each group to ensure that group sizes are
balanced across conditions.

Perhaps surprisingly, similar issues arise within the
field of computational modeling (Yule & Cooper, 2001).
Many computational models of cognitive processes con-
tain parameters (e.g., learning rate or level of noise) on

which the model’s behavior is dependent, and in these
cases model evaluation requires exploring the behavior
of the model for different values of the parameters. This
is necessary to determine the best fit to the data, to es-
tablish independence of behavior from parameters thought
to be noncritical, or to determine how the model behaves
when impaired (see Plaut & Shallice, 1993, for an ex-
tended example of the methodology).

There is a direct correspondence between exploring
the behavior of a model for different parameter values
and performing a standard psychological experiment
with human (or indeed animal) participants. Parameters
correspond to between-subjects factors, and different
values for the parameters correspond to different levels
of those factors. As in a standard experiment, the factors
may be ordinal (e.g., degree of connectivity, learning
rate, etc.) or categorical (e.g., if alternative mechanisms
or subprocesses within a model are being explored), and
each run of the model for a given combination of param-
eter values may be thought of as corresponding to one
experimental participant. The behavior of the model, as in
the case of living participants, may be summarized through
values of dependent variables, and within-subjects fac-
tors may be included in both human and model experi-
ments by collecting values of the dependent variables
over multiple trials or multiple blocks of trials. Finally,
models frequently include random elements that affect
their behavior (e.g., noise affecting activation values). In
such cases, it is necessary to run the model multiple times
for each combination of parameter values, to establish
the model’s mean behavior. Running the model N times

605 Copyright 2003 Psychonomic Society, Inc.

We are grateful to John Fox for his continuing support, to David
Glasspool and Rachel McCloy for help with testing Express, and to Ulf-
Dietrich Reips and William Schmidt for insightful comments on an ear-
lier draft of this paper. This research was supported by EPSRC Grant
GR/M89621. Correspondence concerning this article should be ad-
dressed to P. Yule, School of Psychology, Birkbeck College, University
of London, Malet Street, London WC1E 7HX, England (e-mail: p.yule@
bbk.ac.uk).

Express: A Web-based technology to support
human and computational experimentation

PETER YULE and RICHARD P. COOPER
Birkbeck College, Universisty of London, London, England

Experimental cognitive psychology has been greatly assisted by the development of general computer-
based experiment presentation packages. Typically, however, such packages provide little support for
running participants on different computers. It is left to the experimenter to ensure that group sizes are
balanced between conditions and to merge data gathered on different computers once the experiment
is complete. Equivalent issues arise in the evaluation of parameterized computational models, where
it is frequently necessary to test a model’s behavior over a range of parameter values (which amount
to between-subjects factors) and where such testing can be speeded up significantly by the use of mul-
tiple processors. This article describes Express, a Web-based technology for coordinating “clients”
(human participants or computational models) and collating client data. The technology provides an
experiment design editor, client coordination facilities (e.g., automated randomized assignment of
clients to groups so that group sizes are balanced), general data collation and tabulation facilities, a
range of basic statistical functions (which are constrained by the specified experimental design), and
facilities to export data to standard statistical packages (such as SPSS). We report case studies demon-
strating the utility of Express in both human and computational experiments. Express may be freely
downloaded from the Express Web site (http://express.psyc.bbk.ac.uk/).

http://express.psyc.bbk.ac.uk/


606 YULE AND COOPER

in this way corresponds to running a group of N partici-
pants in the same condition.

There are just two differences between the standard
experimental situation and the situation of model evalu-
ation: participant type (living participants vs. computer
models) and scale (tens or hundreds of participants vs.
tens of thousands of model runs). The difference in scale
arises because, even with just a few parameters, the
space of model instances (i.e., the number of conditions)
can quickly become large. For example, if there are just
three parameters (e.g., connectivity, learning rate, and
noise) having 4, 3, and 10 levels respectively, then 120
(4 3 3 3 10) model instances must be explored. With,
say, 100 replications for each model instance, we find
that we require 12,000 simulations to fully explore the
model.

The scale of model evaluation means that thorough
evaluation can require massive computing power and can
generate several orders of magnitude more data than a
standard experiment. With regard to the former, it is not
uncommon in the computational literature for models to
take weeks or months of processor time to develop and
evaluate. Advances in computing technology have not
helped reduce this time; rather, they have allowed ever
more complex models to be evaluated. It is, therefore,
common practice for modelers to run simulations on sev-
eral computers simultaneously (when they are available),
with each machine exploring a different region of the pa-
rameter space. Once all the machines are finished, the
results can be collated. This use of multiple machines to
speed up model evaluation raises exactly the same issues
as those raised by current experiment presentation pack-
ages: The modeler must manually allocate machines to
regions of the parameter space so that all combinations
of parameter values are explored with approximately the
same number of simulations (i.e., the modeler must man-
ually balance the size of groups for each condition), and
when the evaluation is complete, the modeler must man-
ually collate the data from the various machines (or write
a special purpose computer program to automate the
job). The first of these issues can be complicated further
by the fact that the available machines may run at differ-
ent speeds, so optimizing the assignment of regions of
parameter space to machines in such a way that every-
thing is done in the least possible time is nontrivial.

This article describes Express, a Web-based system
that automates the coordination of “clients” and the col-
lation of the data that they generate. It has a variety of
other features, including an experiment design editor, fa-
cilities for tabulation of data and export of raw data as
text files, a range of common statistical tests, and an ex-
tensive help system. In the remainder of this article, the
basic client–server model of Express is described. This
is followed by a detailed discussion of the capabilities of
the Express server and a description of the client–server
interface. Two case studies, illustrating use of the server
both in a standard experimental setting and as a harness
for evaluating a computational model, are then de-

scribed. We conclude by discussing a number of residual
issues, including security, system requirements, and the
distribution policy.

EXPRESS: A GENERAL CLIENT–SERVER
SOLUTION

The Internet provides a means by which the difficul-
ties described above may be overcome. The essence of
the approach adopted by Express is to treat both human
participants interacting through experiment presentation
software and computational models as clients that inter-
act across the Internet (or across an intranet) with a
server. The complete Express system consists of the Ex-
press server (a set of programs that run on a standard
Web server and respond to Web requests) and an inter-
face definition that specifies how clients may interact
with the server.

The role of the Express server is to coordinate clients,
independently of client type, and collate their results.
When a client is run, it begins by querying the server for
a set of parameters (typically values of the experiment’s
independent variables). It then operates on these param-
eters to produce a set of dependent measures (i.e., values
for the experiment’s dependent variables). These measures
are then returned to the server, which stores them for
analysis. In the case of experiments with within-subjects
variables (where each client is required to perform under
a variety of conditions), the server will return further pa-
rameters that define the next experimental condition.
Client–server interactions will continue until the client
has returned dependent measures for all the conditions.
Figure 1 shows this interaction.

At present, two forms of clients are supported by the
Express system: HTML/script clients, consisting of a
system written in HTML and a browser scripting lan-
guage (JavaScript or VBScript), for displaying an inter-
face to a (presumably human) participant within a Web
browser, and C/C++ clients, consisting of a computer
program written in C or C++ and using a C Application
Programming Interface (API) to interact with the Ex-
press server. This second form of client is particularly
useful in computational modeling work, in which the
model may be augmented to allow interaction with the
Express server. However, it may also be of use for human
experiments written within any programming language
that allows interface to C. In either case, the server does
not know or care whether the clients with which it inter-
acts are humans performing a computer-based experi-
ment or computer models attempting to simulate human
behavior.

The use of a Web-based client–server system ad-
dresses the problems raised above and, hence, has major
benefits for both standard experimental psychology and
cognitive modeling. With respect to standard experi-
mental psychology, it allows both the assignment of par-
ticipants to groups and the collation of data to be auto-
mated. It also allows real-time monitoring of results, via



A WEB-BASED TECHNOLOGY FOR EXPERIMENTATION 607

the built-in statistical facilities. This has proven to be
particularly useful when upward of 20 participants are
completing an experiment simultaneously during labo-
ratory classes, and real-time monitoring can provide an
early indication of a bug in a client or a problem with an
experimental design, allowing remedial action to be
taken quickly. With respect to cognitive modeling, the
client–server system makes large-scale parameter stud-
ies, with many parameters and/or levels, more practica-
ble than they might otherwise be, since it enables the dis-
tributed parallel execution of the client on all available
processors, to avoid the typically long execution times
on single-processor systems.

The use of a client–server architecture is not new in
experimental psychology; in fact, it is inherent in Web-
based experiment presentation systems (e.g., Birnbaum,
2000; Birnbaum & Wakcher, 2002; Hewson, Yule, Lau-
rent, & Vogel, 2003; Reips, 2001; Schmidt, 1997), and
several systems of this type are available, such as WEX-
TOR (Reips & Neuhaus, 2002),1 and SurveyWiz and
FactorWiz (Birnbaum, 2000).2 However, to our knowl-
edge, none of these systems offers explicit support for
modeling applications or even real-time analysis facili-
ties. The problem of large-scale parameter manipulation
in distributed computing has also been addressed by a
number of general purpose systems, such as screensaver
supercomputing systems (such as the United Devices
toolkit),3 and the Grid project.4 None of these systems
has support for both human and model participants,
since this is a rather specialized requirement of the social
and cognitive sciences.

The aim of Express is to provide a general facility for all
experimental purposes in the social and cognitive sciences.
In principle, Express could even be used as a back end for
existing stand-alone computer-based experiment presenta-
tion packages, such as E-Prime (MacWhinney, St. James,
Schunn, Li, & Schneider, 2001), ERTS (Beringer, 1994),
SuperLab (Haxby, Parasuraman, Lalonde, & Abboud,
1993) and PsyScope5 (Cohen, MacWhinney, Flatt, &

Provost, 1993); interfaces for these systems may be de-
veloped in future work.

In the case of cognitive modeling, this generalized ap-
proach has an additional methodological advantage: It
allows both models and human participants to interact
with the same experimenter system. Human and model
behavior may be directly compared by declaring client
type as a between-subjects factor and allowing clients of
both types to perform the same task. This ensures that
all the factors of the experimental design (including
within-subjects and between-subjects variables, stimu-
lus randomization, and dependent measures) are held
fixed between the two cases, which in turn ensures max-
imum possible comparability between human and model
data sets. Several authors (e.g., Anderson & Lebiere,
1998; Ritter, Baxter, Jones, & Young, 2000; Yule &
Cooper, 2001) have recently argued that this is an im-
portant step in improving the methodology of cognitive
modeling.

THE EXPRESS SERVER

The functions of the Express server may be divided
into two categories: functions involved in experiment ad-
ministration and functions involved in client–server
interaction. Express is implemented as a pair of CGI
(common gateway interface) server programs, one for
each set of functions. Both programs share a set of con-
figuration and data files.

The Experiment Administration System
The experiment administration system provides Web-

based tools for specifying the design of an experiment
and for monitoring the experiment while it is being run.

The design editor. The design editor appears as a
Web page with a series of buttons on the left and one of
a number of forms on the right (see Figure 2). The but-
tons provide access to the various aspects of the design
that may be configured via the editor, and the forms

Figure 1. The relation of the server to clients and the sequence of interactions between the two. Clients
may be human participants performing at a networked computer or computational models simulating
some task. IV, independent variable; DV, dependent variable.



608 YULE AND COOPER

allow the experimenter to specify details of those aspects.
Specifically, the design elements allow the experimenter
to do the following: provide a title and description of the
experiment; declare independent (between-subjects and
within-subjects) and dependent variables; declare scales
and levels for all variable types; define pseudovariables
or aliases (defined as functions of real variables); spec-
ify the sequential structure of the experiment in terms of
blocks of trials and of trial-by-trial variable assignments
and materials sequences; specify “include” files (typi-
cally containing HTML and JavaScript or VBScript, for
use in human Web-based experiments); specify the num-
ber of replications in each between-subjects condition
(typically used for model-based experiments); and spec-
ify various types of tabulations and statistical analyses
based on previously declared variables. Information
specified through the design editor is stored on the server
as a design file. When the experimenter makes a request
(e.g., by selecting to view a tabulation) or when a client
makes a request (as will be described below), the server
program uses the design file to determine how to fulfill
the request.

Monitoring: Tabulations and statistical tests. The
administration system allows real-time monitoring of an
experiment’s progress. The form of this monitoring is

dictated by the tables and statistics specified within the
design editor, as has been described above. Tabulations
may show means, standard deviations, or other common
descriptive statistics and may be defined for multiple in-
dependent and dependent variables. Statistics functions
include a variety of standard parametric and nonpara-
metric univariate and multivariate statistical tests. The
integrity of these tests has been validated by comparing
their results with those of SPSS on a range of test cases.

Tables and statistics are recalculated on request, allow-
ing the experimenter to monitor results as the experiment
progresses. Thus, the experimenter can use a Web browser
on one machine to monitor the progress of a class of par-
ticipants completing a lab. This may involve monitoring
the number of participants who have completed each trial
or monitoring trends in the data as they emerge.

Data may be displayed either in the form of HTML ta-
bles for human inspection or as tab-formatted plain text
for export to commonly used statistical packages and
spreadsheets, such as SPSS and Excel.

Other administrative functions. Express provides a
variety of other administrative functions. These include
the following: a status page (see Figure 3), which may
be refreshed at any stage to show the progress of an ex-
periment and which functions as a front end to the ex-

Design
editor

Variables

Design

Analyses

Comments

Options

Variables

Sequence

Aliases

Tabulations

Comparisons

Correlations

Frequency

Help

Exit

between variables

within variables

Levels

Levels

dependent variables Levels

Del freqdis 0 1 2

New between variable

Del set 1 2 3

Del blktype diagnosis onequery

Del trials 16

New within variable

Del score ordinal

Del time ordinal

Del firstquery0 1 2 3 4

Del f irstquery1 0 2 3 4

Del f irstquery2 0 1 3 4

Del f irstquery3 0 1 2 4

Document:Done

Figure 2. The Express design editor, showing the categories of design features on the left
and the variables declaration form on the right.



A WEB-BASED TECHNOLOGY FOR EXPERIMENTATION 609

periment administration system; a design summary page,
which summarizes in one place key aspects of the ex-
perimental design, such as the number of factors and the
levels of each factor; a host summary page to monitor
the performance and activity of participating hosts; con-
trol functions for creating, copying, deleting, archiving,
and renaming experiments (accessed through a special
control panel); control functions for initialization of the
experiment and starting and stopping execution; a mech-
anism for excluding selected participants from the analy-
sis (allowing the experimenter to exclude outliers or par-
ticipants whose data may be incomplete or otherwise
suspect); and a contextual help system that provides doc-
umentation on all aspects of the server and that is keyed
to automatically load the help text associated with the
currently displayed administration page.

Client–Server Interaction
The experiment administration system is comple-

mented by a client–server interaction system that re-
sponds to client requests. A client is any program that
periodically delivers data to the server. As has been ex-

plained above, the data may be generated either by a
human participant interacting through a front end that is
presenting the experiment or by a computer model or
other program using the C API.

The primary functions of the client–server interaction
system are to control client access and assign clients to
appropriate experimental conditions, to control the se-
quence of trials within a client, and to collate data re-
turned by clients. Client requests are implemented as
HTTP FORM submissions. Thus, HTML/script experi-
ments may be implemented using standard HTML FORM

elements or raw URLs. In such cases, the server responds
to client requests by generating an HTML page (based on
a template provided by the experimenter) containing a list
of variable assignments embedded within a script envi-
ronment. The API used for server interaction by models
and experiments written in C includes functions that en-
code and submit client requests, wait for a response from
the server, and decode the resulting variable assignments.

Participant identifier assignment and access con-
trol. Before a client begins an experiment, it should re-
quest a participant identifier (PID) from the Express

Document:Done

Express

JDM 6 (human)

Status

Setup

Analyses

Incomplete jobs

Experiment is running

JDM 6 (human)

Tabulations

Comparisons

Correlations

Frequency

Help

Design summary

Design wizard

Design editor

Control panel

Status

Monitoring

Client

Overview Host
summary

Commit changes

Continuing the series of JDM experiments. This one varies base-rates,
in an effort to see if this has any effect on accuracy or querying
strategies. The hypotheses are that it will not affect accuracy, but will
affect strategy.

Assignment categories     3

Total completed jobs 146

Min completed jobs per category   47

Max completed jobs per category    50

Incomplete jobs     2

Excluded jobs   58

ID Host Excluded Comment

13397685

13463226

wallaroo.psyc.bbk.ac.uk

wallaroo.psyc.bbk.ac.uk

Test run for BRMIC screen dump

Test run for BRMIC screen dump

    Trials

1

2

Figure 3. An Express status page, showing an experiment in progress. The experiment has three
groups (one between-subjects variable with three levels). One hundred forty-six participants have
completed the experiment, and another 2 are currently working on it. Data from 58 participants
have been excluded.



610 YULE AND COOPER

server. The server will respond with a unique identifier
code, and a sequence of <Var = Val> pairs specifying lev-
els of between- and within-subjects variables. This al-
lows the client to begin the experiment.

Between-subjects balancing. If there are between-
subjects variables, the server assigns PIDs to each com-
bination of levels of these variables (i.e., each between-
subjects condition) in a balanced way. When a client
requests a new PID, the PID is assigned to the condition
that currently has the fewest PIDs assigned to it (or if
more than one such condition exists, to a randomly se-
lected condition from this set). This method combines
randomness of assignment of PIDs to conditions with
evenness of assignment and ensures that group sizes are
balanced whenever possible.

The participant assignment method is also able to
cope with cases in which a between-subjects variable is
a natural group variable, rather than an experimenter-
assigned variable (e.g., sex). If a client request for a PID
specifies a value for one or more between-subjects vari-
ables, participant assignment is constrained to the con-
ditions defined by those values.

If the experimenter has specified a maximum number
of replications in the experimental design and there are
no conditions with fewer than this number of completed
clients, a request for a new PID will yield a PID of 0
(zero). This indicates that the experiment is complete
and that no further clients are required. This mechanism
errs on the side of overassignment, in that it continues
issuing new (nonzero) PIDs until all replications are com-
plete. Replications in progress are discounted. This en-
sures that the requested number of replications is met,
even if one or more clients fail, for one reason or another,
to complete the experiment. However, it can lead to over-
assignment, where one or more conditions end up with
more replications than requested. If necessary, the par-
ticipant exclusion system (as used for excluding outliers
or otherwise suspect data) may be applied to rebalance
group sizes and exclude any excess replications from all
the analyses.

Sequencing. When the client initiates the experiment
or submits data (as at the end of a trial), the server must
provide the next set of within-subjects variable assign-
ments to the client (or a stop signal if there are no further
within-subjects assignments for the current client). Each
set of variable assignments defines a single trial, and
each PID can participate in multiple trials, one after the
other. Although between-subjects variable assignments
are necessarily constant across trials for the same PID,
within-subjects variables are typically varied across trials.

Express supports the specification of one or more series
of blocks, where each block contains a series of trials.
There is full control over within-subjects variable assign-
ments both between and within blocks, and different types
of trials may be presented in the same block. If desired,
trial order can be randomized within each block. Finally,
different sequences of blocks can be associated with levels
of a between-subjects variable, allowing between-subjects
order counterbalancing.

Data collation. When the client submits data, the
server saves them as a data record, using the client’s PID
to ensure that data records from the same participant are
appropriately tagged. The primary mechanism saves the
values of declared dependent variables; the built-in tab-
ulation and statistics facilities may be configured to use
these data as described above. Express also supports a
secondary mechanism for saving arbitrary raw or unin-
terpreted data.

Restarting client sessions. Sometimes a client ses-
sion can be interrupted due to software or hardware error
or because a participant inadvertently closes the browser
window. Express supports a means of continuing an in-
terrupted experiment, provided the original PID is sup-
plied. This presents the last, uncompleted trial again,
after which the sequence continues as normal. An addi-
tional mechanism allows the client to save some state in-
formation to the server on each trial, enabling even those
clients that maintain their own state information across
trials to be restarted properly.

TWO CASE STUDIES

Case Study 1: Harnessing a Standard
Experiment

Much of our own empirical work has been concerned
with categorization and information-seeking behavior in
such tasks as medical diagnosis (e.g., Cooper & Yule,
1999; Cooper, Yule, & Fox, 2003; Yule, Cooper, & Fox,
1998). This work has been supported by successive ver-
sions of the Express server, driving a client written in
JavaScript and HTML and presented through a standard
Web browser.

The experiments have consisted of between four and six
blocks, each of between 12 and 20 trials. The participants’
goal was to learn the associations or correspondences be-
tween symptom patterns and hypothetical diseases, whose
correspondences were generally not deterministic: Symp-
toms were typically unreliable indicators of diseases. Two
types of block have been used. In one, participants are
presented with full information about all the symptoms
(i.e., which symptoms are present and which are absent),
and they are required to use this information to make
their diagnoses. Feedback indicating the correct diagno-
sis is then given, allowing them to learn the symptoms
for that disease. In the other type of block, participants
are given just one presenting symptom (e.g., The patient
has headache) and must query additional symptoms
(e.g., Is vomiting present?) before making a diagnosis.
Again, feedback indicating the correct diagnosis is then
given.

A relatively complex JavaScript /HTML client was
used for these experiments. The client creates a new
browser window that is divided horizontally into three
sections. The top portion shows a row of colored rectan-
gles depicting cards corresponding to each symptom.
Each card indicates whether the symptom is present, ab-
sent, or (in the case of blocks in which only the present-
ing symptom is given) unknown, and the symptom order



A WEB-BASED TECHNOLOGY FOR EXPERIMENTATION 611

is randomized within the row on each trial. Cards are
sensitive to mouse clicks, so that clicking on a symptom
whose status is unknown reveals that symptom’s status.
The lower third of the window contains a randomized
row of cards representing diseases, which are also sensi-
tive to mouse clicks. The middle panel of the window is
reserved for feedback that is provided after the participant
makes a diagnosis. Prior to each block, block-specific
instructions are presented in the client window.

Different versions of the experiment have used differ-
ent independent variables. Between-subjects variables
have included the matrix of conditional probabilities of
symptoms, given diseases, and the base rates of diseases.
Within-subjects variables have included block number
(i.e., level of practice) and block type. Dependent vari-
ables have included diagnostic accuracy over the block (i.e.,
the percentage of correct trials in each block), block time,
and (in query blocks) the first symptom queried for each
presenting symptom.

The design is clearly complex. All of these complexi-
ties were programmed through a mix of JavaScript and
HTML, with the Express server specifying values of the
independent variables on each block and collating val-
ues for all the dependent variables.

The experiments were run within a student laboratory
class, using the departmental intranet. Over 100 partici-
pants completed each experiment, normally in batches
of up to 25 participants (using the 25 networked PCs in
the lab). The participants generally took between 20 and
30 min to complete the experiment, and the progress of
the entire class was monitored throughout the session by
the instructors from a further networked PC.

The results of the experiments were interesting in their
own right (see Cooper & Yule, 1999; Cooper et al., 2003;
Yule et al., 1998), but for present purposes it is the suc-
cessful use of the Express server as a harness for the ex-
periment that is of primary interest. Most functions of the
server were employed, including balancing of participant
numbers in each between-subjects condition, sequence
control, data collation, and analysis. The monitoring func-
tions proved to be particularly useful, allowing the ex-
perimenter to see patterns in the data as they emerged and
allowing the full dataset to be analyzed and presented to
the class (using a standard PC projector attached to a PC
showing the relevant Express administration page) as
soon as the final participant completed the experiment.

Case Study 2: Harnessing a Computational
Model

The use of Express in the evaluation of a computa-
tional model is illustrated by our work on modeling ac-
tion selection and its breakdown following neurological
damage (Cooper, Schwartz, Yule, & Shallice, 2003). The
model consists of three interactive activation networks,
with excitatory and inhibitory links between the net-
works. A number of parameters govern the activation dy-
namics within each network, and additional parameters
govern the degree of interaction between the networks.
The result is a model with over a dozen parameters, each

ranging in value from zero to one. (See Cooper & Shal-
lice, 2000, for a detailed description of an earlier version
of the model.) When the model is run, it generates a se-
quence of actions. The dependent variables relate to the
integrity of that action sequence and include measures
of the frequency of different types of action error, in-
cluding, for example, omission errors (leaving out a re-
quired action) and perseverative errors (repeating an ac-
tion or group of actions unnecessarily). The questions of
interest concern the effects of various parameters on the
profile of errors produced by the model and the relation
of such error profiles to data generated by neurologically
impaired individuals (see Schwartz et al., 1998).

The model was originally written in C as a stand-alone
application, and initial evaluation used standard tech-
niques (i.e., running the model over portions of the pa-
rameter space and collating the results manually). More
recently, however, the API has been used to allow evalu-
ation via the Express server. The dependence of the
model on several different parameters, individually and
in combination, has since been explored. Thus, one “ex-
periment” varied the level of decay in all networks, with
20 different decay values and 50 replications for each
value. A second experiment varied the ratio of top-down
to bottom-up influences in the primary network over a
similarly sized parameter space. Since this ratio is not a
simple parameter of the model (it is a function of two
complementary parameters) a pseudovariable was de-
fined within the experiment’s design file to allow ma-
nipulation of the ratio as if it were a parameter of the
model. A third experiment varied four parameters si-
multaneously (levels of noise in two key networks and
the levels of interaction between these two networks). In
all cases, an additional independent variable—whether
distractor objects were available within the model’s sim-
ulated environment—was varied, allowing the model’s
behavior under various conditions to be compared with
data from human participants under the two conditions
(see Schwartz et al., 1998).

Our most extensive simulation experiments have in-
volved over 15,000 runs of the model, with each run gen-
erating values for 10 dependent variables. These runs
were conducted on a heterogeneous network of seven
Linux processors (ranging from a 200-MHz Pentium Pro
to two 1.3-GHz Athlon processors), and each was com-
plete within 8 h. Previously, this kind of evaluation exercise
would involve either running the model for several days
or manually assigning different parts of the parameter
space to different machines and manually collating the
results from the various machines once all the machines
had completed their assigned jobs. Express therefore
greatly simplifies the model evaluation process.

A further benefit of Express in the evaluation of com-
putational models relates to its mechanism for job assign-
ment (i.e., for assigning new clients to between-subjects
conditions). When a new client requests a PID, Express
determines the set of conditions with the fewest complete
jobs and assigns the new client to a random member of
that set. Hence, in cases involving many between-subjects



612 YULE AND COOPER

conditions (i.e., large, possibly multidimensional param-
eter spaces), the conditions are filled in uniformly (rather
than, e.g., from one corner of the parameter space to the
opposite corner). The result is that a picture of model per-
formance over the entire parameter space emerges rela-
tively quickly. This can allow the model evaluator to abort
an evaluation exercise relatively early in processing if it
appears unpromising or, conversely, to extend the param-
eter space being scanned if the evaluation appears promis-
ing in some region. Our evaluation of the action selection
model has employed both of these techniques.

The scale of these simulation experiments raised sev-
eral performance-related issues. First, the experiments
generated up to 5 MB of data each. With such large
amounts of data, there is a noticeable slowing in server
response times. However, Express was still able to gen-
erate all necessary tables of statistics within 15 sec. (This
time is, of course, a function of the machine running the
Web server—in our case, a Pentium III with dual 1-GHz
processors, although a less powerful machine will suf-
fice, such as the 200-MHz Pentium Pro we started with.)
Second, since the individual jobs were small (requiring
less than 5 sec of processor time on our fastest ma-
chines), and since multiple jobs were running in parallel,
the Express server was required to handle frequent in-
teractions. Often these interactions overlapped, with re-
quests from multiple clients being served simultane-
ously. This stressed the abilities of the server to function
in parallel, but the server was, in all cases, able to re-
spond satisfactorily. Finally, there were occasional prob-
lems with clients failing (e.g., through memory manage-
ment problems in the client code and network failure).
Because data from each job are registered on the server
when the job is completed, such failures led to the loss
of data from, at most, one job per client (i.e., less than
10 sec of processing). In any case, Express’s job alloca-
tion mechanism ensured that no “holes” in the scanning
of the parameter space arose through such failed clients.

RESIDUAL ISSUES AND 
CONCLUDING REMARKS

We have presented Express, a Web-based experiment
server for the coordination of both human and computa-
tional experiments. Express automatically manages
between-subjects variable assignment and data collation
and allows real-time monitoring of participant progress.
In addition, it makes the parallel execution of computa-
tional experiments as easy as serial execution, largely
overcoming the practical limitations traditionally asso-
ciated with intensive model evaluation techniques. The
server can provide these benefits, through the use of the
API, to virtually any computational model in the cogni-
tive sciences. In this final section, we consider several
residual issues relating to the use of Express in both
human and computational settings and its relation to
other relevant software.

Comparative Modeling and Model Validation
We have seen that model parameters can be varied au-

tomatically to allow comparison of the same model across
different sets of parameter settings. But it is also possible
to run experiments comparing different models, by using
the natural group variables facility; to do this, each model
just needs to declare its identity (a level of a natural group
variable) at assignment time. The same method can be
used to compare the performance of human participants
with one or more models. Again, each distinct model type
corresponds to a level of the natural group variable, and
human corresponds to another level.

Natural group variables, although not randomly as-
signed, are nonetheless frequently analyzed as ordinary
between-subjects variables in psychological research.
We merely suggest extending this practice to encompass
a wider range of natural group variables applying to
models. Such an approach could be used to identify sig-
nificant differences in performance among models or
between models and humans.

Security
Because Express is a Web-based system, it may be ac-

cessed using a standard Web browser from any machine
connected to the Internet. This can be very convenient,
since it allows the experimenter to access the data re-
motely and participants located at remote sites to com-
plete the experiment. However, it also means that, if ap-
propriate security measures are not taken, malicious (or
merely curious) individuals may access an experiment,
view sensitive data, and even possibly damage data.

In order to guard against this possibility, Express has
been designed to support a range of security policies, via
the Web server’s access control mechanism. The simplest
security policy is unrestricted access, allowing everyone
access to read and modify all administration settings and
data. This is clearly inadequate for most, if not all, pur-
poses. Beyond this, an experimenter may adopt a range
of policies, including unrestricted read access coupled
with restricted write access and complete restriction of
both read and write mechanisms. Because the client–
server interaction script is separate from the administra-
tion system, they can be treated separately—for exam-
ple, to allow unrestricted access to the experimental client
while controlling access to the administration system.

JavaScript
Arguably, a possible weakness of the system is its re-

liance on JavaScript for client systems. Any Web-based
client must make at least some use of JavaScript (or VB-
Script) to communicate with the Express server. Thus,
clients cannot be completely developed in HTML. Al-
though this makes client development more difficult,
most clients will require JavaScript for their own pur-
poses (e.g., form validation, timings). It therefore seems
pointless to try to eliminate the use of JavaScript for
client–server communication.



A WEB-BASED TECHNOLOGY FOR EXPERIMENTATION 613

Buchanan and Reips (2001) have shown that a small
minority of users, but especially those with a high edu-
cational level, tend to disable JavaScript in order to avoid
pop-ups and other on-line irritations, so such people
might be excluded from script-reliant experiments.
However, scripting is enabled by default on modern
browsers, and those who elect to disable it should be able
to reenable it temporarily if this is required for an exper-
iment. This issue, therefore, does not raise insuperable
difficulties.

Availability and System Requirements
The Express server is currently available only for var-

ious flavors of UNIX (currently, Linux, Solaris, and
MacOS X), running standard Web server software (e.g.,
Apache, but others should be usable). We are investigating
the feasibility of porting the server to Microsoft Windows.

Access to the Express administration system requires
a networked machine with a standard Web browser (e.g.,
Version 4 or higher of Netscape Navigator or Internet
Explorer, on any platform). The administration system
can run with JavaScript disabled on the administrator’s
Web browser if necessary, but with a less user-friendly
interface and without design-editing capabilities.

Binary versions of the Express server (Version 1), as
well as ANSI C source code and documentation for the
client-side API, may be downloaded for free from the
Express project Web site at http://express.psyc.bbk.ac.uk/.

CONCLUSIONS

We have argued that Express provides a general server
facility to support experimentation with human and model
participants. Unlike other Web-based human experi-
mentation systems, and in order to maximize the flexi-
bility of client design, Express makes no attempt to gen-
erate client-side code. It is, therefore, explicitly compatible
with the use of nonbrowser-based clients, such as mod-
els. It also seems to be unique in supporting extensive
statistical analysis of the collected data. Express pro-
vides the multiprocessing capability required for model-
ing, along with psychological experimental design prin-
ciples, making it a good domain-specific solution for
general psychological experimentation and model eval-
uation purposes.

REFERENCES

Anderson, J. R., & Lebiere, C. J. (1998). The atomic components of
thought. Mahwah, NJ: Erlbaum.

Beringer, J. (1994). ERTS: A flexible software tool for developing and
running psychological reaction time experiments on IBM PCs. Be-
havior Research Methods, Instruments, & Computers, 26, 368-369.

Birnbaum, M. H. (2000). SurveyWiz and FactorWiz: JavaScript Web
pages that make HTML forms for research on the Internet. Behavior
Research Methods, Instruments, & Computers, 32, 339-346.

Birnbaum, M. H., & Wakcher, S. V. (2002). Web-based experiments
controlled by JavaScript: An example from probability learning. Be-
havior Research Methods, Instruments, & Computers, 34, 189-199.

Buchanan, T., & Reips, U.-D. (2001). Platform-dependent biases in
online research: Do Mac users really think different? In K. J. Jonas,
P. Breuer, B. Schauenburg, & M. Boos (Eds.), Perspectives on Internet

research: Concepts and methods. Available on line at http://www.
psych.uni-goettingen.de/congress/gor-2001/contrib/buchanan-tom.

Cohen, J., MacWhinney, B., Flatt, M., & P rovost, J. (1993).
PsyScope: An interactive graphic system for designing and control-
ling experiments in the psychology laboratory using Macintosh com-
puters. Behavior Research Methods, Instruments, & Computers, 25,
257-271.

Cooper, R. P ., Schwartz, M., Yule, P ., & Shallice, T. (2003). The sim-
ulation of action disorganisation in complex activities of daily living.
Manuscript submitted for publication.

Cooper, R. P ., & Shallice, T. (2000). Contention scheduling and the
control of routine activities. Cognitive Neuropsychology, 17, 297-
338.

Cooper, R. P ., & Yule, P . (1999). Comparative modelling of learning
in a decision making task. In M. Hahn & S. C. Stoness (Eds.), Pro-
ceedings of the Twenty-First Annual Conference of the Cognitive Sci-
ence Society (pp. 120-125). Mahwah, NJ: Erlbaum.

Cooper, R. P ., Yule, P ., & Fox, J. (2003). Cue selection in category
learning: A systematic comparison of three theories. Cognitive Sci-
ence Quarterly, 3, 143-182.

Haxby, J. V., P arasuraman, R., Lalonde, F., & Abboud, H. (1993).
SuperLab: General-purpose Macintosh software for human experi-
mental psychology and psychological testing. Behavior Research
Methods, Instruments, & Computers, 25, 400-405.

Hewson, C., Yule, P ., Laurent, D., & Vogel, C. (2003). Internet re-
search methods: A practical guide for the social and behavioural sci-
ences. London: Sage.

MacWhinney, B., St. James, J., Schunn, C., Li, P ., & Schneider,W.
(2001). STEP—A System for Teaching Experimental Psychology
using E-Prime. Behavior Research Methods, Instruments, & Com-
puters, 33, 287-296.

P laut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of
connectionist neuropsychology. Cognitive Neuropsychology, 10,
377-500.

Reips, U.-D. (2001). The Web Experimental Psychology Lab: Five
years of data collection on the Internet. Behavior Research Methods,
Instruments, & Computers, 33, 201-211.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for
generating and visualizing experimental designs and procedures. Be-
havior Research Methods, Instruments, & Computers, 34, 234-240.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Sup-
porting cognitive models as users. ACM Transactions on Computer-
Human Interaction, 7, 141-173.

Schmidt, W. C. (1997). Word-Wide Web survey research: Benefits, po-
tential problems, and solutions. Behavior Research Methods, Instru-
ments, & Computers, 29, 274-279.

Schwartz, M. F., Montgomery, M. W., Buxbaum, L. J., Lee, S. S.,
Carew, T. G., Coslett, H. B., Ferraro, M., Fitzpatrick-De
Salme, E. J., Hart, T., & Mayer, N. H. (1998). Naturalistic action
impairment in closed head injury. Neuropsychology, 12, 13-28.

Yule, P ., & Cooper, R. P . (2001). Towards a technology for computational
experimentation. In E. M. Altmann, A. Cleeremans, C. D. Schunn, &
W. D. Gray (Eds.), Proceedings of the Fourth International Conference
on Cognitive Modeling (pp. 223-228). Mahwah, NJ: Erlbaum.

Yule, P ., Cooper, R. P ., & Fox, J. (1998). Normative and information
processing accounts of medical diagnosis. In M. A. Gernsbacher &
S. J. Derry (Eds.), Proceedings of the Twentieth Annual Conference of
the Cognitive Science Society (pp. 1176-1181). Mahwah, NJ: Erlbaum.

NOTES

1. http://www.genpsylab.unizh.ch/wextor/index.html.
2. http://psych.fullerton.edu/mbirnbaum/programs/.
3. United Devices: http://www.ud.com/.
4. Grid forum: http://www.gridforum.org/.
5. See http://www.pstnet.com/E-Prime/e-prime.htm, http://www.erts.

de, http://www.superlab.com, and http://psyscope.psy.cmu.edu, respec-
tively.

(Manuscript received October 23, 2001;
revision accepted for publication November 16, 2002.)

http://express.psyc.bbk.ac.uk/.CONCLUSIONS
http://express.psyc.bbk.ac.uk/.CONCLUSIONS
http://www.psych.uni-goettingen.de/congress/gor-2001/contrib/buchanan-tom
http://www.psych.uni-goettingen.de/congress/gor-2001/contrib/buchanan-tom
http://www.genpsylab.unizh.ch/wextor/index.html
http://psych.fullerton.edu/mbirnbaum/programs/
http://www.ud.com/
http://www.gridforum.org/
http://www.pstnet.com/E-Prime/e-prime.htm
http://www.erts
http://www.superlab.com
http://psyscope.psy.cmu.edu
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2932L.339[aid=1937769]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2934L.189[aid=5563387]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2925L.257[aid=211627]
http://www.ingentaconnect.com/content/external-references?article=/0264-3294^28^2917L.297[aid=1440626]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2925L.400[aid=303642]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2933L.287[aid=5563389]
http://www.ingentaconnect.com/content/external-references?article=/0264-3294^28^2910L.377[aid=19750]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2933L.201[aid=2739671]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2934L.234[aid=5563390]
http://www.ingentaconnect.com/content/external-references?article=/1073-0516^28^297L.141[aid=1522762]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2929L.274[aid=18806]
http://www.ingentaconnect.com/content/external-references?article=/0894-4105^28^2912L.13[aid=296636]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2932L.339[aid=1937769]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2934L.189[aid=5563387]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2925L.257[aid=211627]
http://www.ingentaconnect.com/content/external-references?article=/0264-3294^28^2917L.297[aid=1440626]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2925L.400[aid=303642]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2933L.287[aid=5563389]
http://www.ingentaconnect.com/content/external-references?article=/0264-3294^28^2910L.377[aid=19750]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2933L.201[aid=2739671]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2934L.234[aid=5563390]
http://www.ingentaconnect.com/content/external-references?article=/1073-0516^28^297L.141[aid=1522762]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2929L.274[aid=18806]

	ADP29.tmp
	Cooper PS pub pdf.pdf

