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Algorithm 830: Another Visit with Standard and
Modified Givens Transformations and a Remark on
Algorithm 539
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and

TIM HOPKINS

University of Kent, UK

First we report on a correction and improvement to the Level 1 Blas routine srotmg for computing
the Modified Givens Transformation (MG). We then, in the light of the performance of the code on
modern compiler/hardware combinations, reconsider the strategy of supplying separate routines to
compute and apply the transformation. Finally, we show that the apparent savings in multiplies
obtained by using MG rather than the Standard Givens Transformation (SG) do not always
translate into reductions in execution time.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Numerical Algo-
rithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.4 [Mathematical Soft-
ware|: — Certification and testing; Efficiency; Algorithm design and analysis

General Terms: Algorithms; Performance

Additional Key Words and Phrases: BLAS, Givens rotation, linear algebra

1. INTRODUCTION

The Standard Givens orthogonal transformation is a low-level operation of numer-
ical linear algebra. This plane rotation transformation eliminates z; in the identity

B cs|[wi...w,
GW = {s c} [zlzn}
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2 . R. J. Hanson and Tim Hopkins

Thus ¢ = wy/r, s = z1/r, r = + (wi + zf)% for r # 0. The orthogonality of G
follows from c? 4+ s> = 1. Applying the transformation to the columns requires
4(N — 1) multiplies and 2(N — 1) adds. Constructing the transformation requires
at least four multiplies, one add, one divide, and one square-root operation. This is
well-known material. Gentleman [Gentleman 1973] and Hammarling [Hammarling
1974], showed how the computation could be reorganized to reduce the operation
count for applying the transformation to the remaining columns. The central idea
is to regard the matrix in factored form

1
0 dz | Lyr-vn

The product is re-factored

1 =1 _ ldl% 0 ]
GW =GD?*X =D2HX = a1 | HX
0 d;

The matrix H is selected so that two of its four entries are units. This implies
that 2(N — 1) multiplies and 2(N — 1) adds are needed to compute HX. This
Modified Givens yields a saving of 2(IN — 1) multiplies compared with the Standard
Givens. For MG, the additional cost of updating the diagonal terms and computing
the non-unit entries of H was not regarded as significant in [Lawson et al. 1979b].
The decision to include the MG as a module was based on timings that were com-
pelling. Our testing indicates that on modern computers, the netlib SG pair of
routines (_rotg and _rot) are typically more efficient that the MG pair (_rotmg
and _rotm). This seems to indicate that MG is relatively inefficient and, therefore,
has little to recommend it. We believe that this is due to the coding itself and a
critical mathematical detail. We implemented a Fortran 90 version of MG given
in [Golub and Van Loan 1996] that is typically more efficient than our Fortran 90
version of SG. This is the result one expects since MG requires fewer operations
per elimination step. We organized both routines so that a single subprogram call
constructs and then applies the transformation. This saves the overhead of an
additional call. The resulting codes are almost always more efficient that the cor-
responding netlib versions. Our version of SG includes an additional feature of a
hyperbolic transformation, useful for dropping data, provided in both the old and
new version of MG. Now SG and MG have the same functionality. Several ideas are
presented here that enhance both methods. Some of these principles may be new,
but that is hard to determine from the apocryphal literature. In the implementa-
tions of the most frequently taken paths through the sections of code that compute
the basic plane rotation parameters MG trades five floating-point multiply/divide
operations against two floating-point adds and a square root used by SG. Exper-
iments on a number of currently available compiler/platform combinations failed
to provide a definitive answer as to which of the two methods performs the better.
Therefore, as part of the software accompanying this paper, a benchmark program
has been provided to allow a software developer to make an informed decision on
whether MG will provide better performance than the simpler SG based on both
the run-time environment and typical problem size.

Recently, Anda and Park [Anda and Park 1994] point out the apparent reticence
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Another Visit with Standard and Modified Givens Transformations . 3

by software developers to use the modified plane rotation and they suggest a revised
algorithm incorporating their idea of dynamic scaling to prevent problems with
over- and underflows. Their algorithm for calculating the plane rotation requires
an additional divide step compared to our implementation.

Their application step requires the same amount of work as our implementation
but assumes that a form of “chaining” allows a completed sub-expression to be
used again as a multiplier. Although this is a reasonable assumption for vector
machines, for modern scalar machines it implies that an intermediate result must
complete before the transformation is finished.

2. CODE UPDATE

The routines srotmg and drotmg given in [Lawson et al. 1979a] generate incorrect

results when the input vector {

3
wl] is defined as [dl 1] [ml} with d; = 0.
2 dz Y1

This may be a contorted way of generating an input vector of the form [ 2 } whose

_01 (1)} The published code generates the

correct transformation matrix, H, is [

result H = by setting ¢ = 0 and s = 1 in the equations (A7a) to (A7d)

-1 =
Y
below. Unlike the 1case z1 = 0 and d; # 0, the general formula cannot be used in

-1
this case since di cannot be factored out of the equation (A5) in [Lawson et al.
1979h).

We have, thus, replaced the line

IF(.NOT. SD1 .LT. ZERO) GO TO 10
by
IF((SD1 .GT. ZERO) .AND. (SD2 .NE. ZERO)) GO TO 10

and introduced an error flag, SFLAG = 2, directly following the label 60. Either
of the d;, i = 1,2 having value zero corresponds to an equality constraint in a
least squares problem. A large weight on a row can be used to achieve an equality
constraint. This corresponds to a small positive value of the reciprocal weight, for
example, di. A value of zero for the reciprocal is treated as an error. A further
discussion of this class of weighting methods may be found in Chapter 22 of [Lawson
and Hanson 1995].

The value of GAM, which determines when scaling of the d; values takes place, was
chosen at a time when Fortran lacked any standard means of obtaining information
about the underlying floating-point arithmetic. The value used in both the original
single and double precision codes, 4096.0, was chosen deliberately small to ensure
that the routine would operate correctly on all known systems. With access to new
intrinsic inquiry functions in Fortran 90 it is now possible to set this value in a
hardware dependent way

GAMSQ = MIN(HUGE(ONE), ONE/TINY(ONE))*QUARTER
GAM = SQRT(GAMSQ)
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4 . R. J. Hanson and Tim Hopkins

RGAMSQ = ONE/GAMSQ

where ONE is set to either 1.0EO or 1.0D0 and QUARTER to either 0.25E0 or 0.25D0
for single and double precision respectively.

For IEEE arithmetic this sets GAM to 4.62E+18 (single precision) and 3.35D+153
(double precision); thus reducing dramatically the number of times scaling may take
place. In addition, for IEEE arithmetic, the values assigned to GAM and RGAMSQ are
exact.

Since the assigned goto statement has been formally removed from the Fortran
95 language [ISO/IEC 1997], occurrences of the statement have been replaced by
computed gotos in both the single and double precision routines. In addition, the
use of the specific intrinsic function DABS has been replaced by the generic ABS in
the double precision routine.

The original coding of these routines was extremely contorted and a more read-
able, corrected version, in Fortran 90, may be found in [Hopkins 1997].

3. DEVELOPMENT
3.1 Modified Givens

There is a saving in constructing MG by storing and updating the reciprocal squares,
d;l, j =1,2. In [Lawson et al. 1979b] the d; are updated. The reformulation found
in [Golub and Van Loan 1996] p. 221, eliminates two divides for each transforma-
tion.

Storage locations for these reciprocal squares are passed to the subprogram that
constructs and applies the transformation. In this development we note that the
mathematical quantities d;l, j = 1,2 each occupy a memory location. Thus we
may associate a sign with these values. To designate that a datum is dropped, the
sign of the location for d; ' is set negative. The sign of d, ' is always positive.

Note that the use of reciprocal squares is often what a user desires when calling
MG routines to solve a linear least squares regression problem. If the quantity to
be minimized is p(z) = > i, ri/oi|?, 7; = aTax — b;, then the initialization for the
reciprocal squares is di_1 =o0?,i=1,...,m. Thus there is no need to directly apply
scale factors 0’;1 to the row vectors [aZT : bi]. This scaling step occurs implicitly
during the QR factorization leading to the weighted least squares estimate z = Z.
If the scaling factors are the same for all the rows, or if the weighting is already
applied to the row vectors, then initially set d;l =1:=1,...,m.

Using the numbering given in [Lawson et al. 1979b], Equations A6a—ATg are
recast in terms of the reciprocal squares.

The absolute value used below on the quantity d; defines the construction of the
transformation for both cases, either when data is being added or dropped. We use
the sub-expressions p; = d;lml, P2 = dl_lyl.

If p1z1 > [paysl, then
If po = 0 then H = I, the identity matrix
else
hi1=1, hoy =—yi/z; (A6a)
hia = —p2/p1, haa =1 (A6b)
ACM Journal Name, Vol. V, No. N, Month 20YY.
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u=1— hathia (A6c)
dit « di'u (A6d)
dy' «—dy'u (A6e)
Ty < T1U (A6f)

If pyzy < |paya|, then
hi1 =p1/p2, ha1 = -1 (AT7a)
his =1, hos =2z1/11 (ATDb)
w=14hyrhy (A7c)
v=d'u (A7d)
di' «dy'u (A7e)
dyt v (AT7f)
Tl Y1u (A7g)

The relations A6d—A6Ge and A7d—AT7f show that two of the floating point divides
found in [Lawson et al. 1979b] can be replaced by two multiplies. this is important
because divides are relatively slow on modern computers. The reciprocal squares
increase by as much as a factor of two with each transformation. They can also
decrease, when data is dropped, but this is unlikely to cause problems. A re-scaling
of a row of the transformation may be required. Re-scaling of either row occurs if

di' [ +dy " > GAM

following the update steps A6d—A6e and A7d-AT7f. This allows values of z; and y;
to be as large as SQRT (HUGE (ONE) ) without overflow occurring.

Storing the MG transformations requires an integer flag, and two or four floating
point values per elimination step. An integer flag and four floating point values are
required only when re-scaling occurs, and this is now rare indeed, thanks to the
large machine-dependent scale factor GAMSQ. The SG has an edge here, since the
transformations can be saved in the same store as the input data, using the idea of
Stewart documented in [Lawson et al. 1979b].

3.2 Standard Givens

The MG and SG are typically used in row accumulation mode. For some applica-
tions it is efficient to remove the row, once accumulated. This saves the expense
of refactoring the least-squares matrix with the row removed. This is not a numer-
ically stable process, so refactoring may be necessary under some circumstances.
When using MG this mathematically requires d2 < 0, which is flagged in our code
by d; < 0.

For SG one can use hyperbolic rotations (see [Bjorck 1996], page 144)

ch —sh

H= {sh ch

[ERCIECOE

The H matrix is constructed to zero the second component in a vector (a,b)T,
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6 . R. J. Hanson and Tim Hopkins

|a| > |b|. This leads to

S =

b
-, c=+(14+s)(1-s), o =ac
a

With ch = ¢~ ! and sh = s™!, we see that

7=l

and, incidentally, that ¢ + s2 = 1. We may form the product

a[!)=[7].

in a relationally stable way, by using the 2-step evaluation

z = (ch)(u— sv)

Yy = —8r+cv

This is based on the intermediate Givens transformation

c s|[x u
G-
Either the error condition |a| < [b| or the computed value (1 + s)(1 —s) <0, is
flagged in our code by returning ¢ = s = 0.
The form of this row removal method goes back to Chambers [Chambers 1971]
and was further refined by Stewart and Stewart [Stewart and Stewart 1998).

3.3 Applying the Rotations

Advocates of either MG or SG must observe that the primary efficiency issue is
access to the data during the formation of products of the rotations. The fact that
MG saves arithmetic may be important. This depends on the problem size and
machine characteristics. But the choice is not as crucial as organizing the data
access with a unit stride between matrix rows or columns wherein the rotation will
be applied. A developer would choose MG or SG, depending on the problem size,
and employ unit strides in the application phase. This will involve design of the
matrix storage for some problems.

We have found that loop unrolling has little or no useful effect when high levels
of optimization are used. Thus, as with the Level-1 BLAS routines srotm and srot
no loop unrolling has been implemented.

Finally, we would mention that the MG code would not be at all suited to pro-
viding readable code in the case of a series of blocked rotations which are applied
to a series of column vectors. The situation is improved by using SG by at least
making the code easier to follow.

4. IMPLEMENTATION

We have implemented the new routines as a Fortran 90 module, Givens_Rotations.
This provides two ways in which to call both the standard and modified Givens
transformations; in each case the pair of Blas Level 1 routines are replaced by a
single call that computes the rotation and applies it to a 2 x N array of data.
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First there are single and double precision versions (p_rot and p_rotm where p
is either s or d) and, second, we have included a simple generic interface to both
algorithms that allows the names rot and rotm to be used for either precision
provided that the floating point parameters are all of the same type. The calling
sequences

CALL rot(wl, z1, k, x, incx, y, incy, c, s)

CALL rotm(rdl, rd2, x1, x2, k, x, incx, y, incy, param)

are basically formed by combining the calling sequences of the original rot/rotg
and rotm/rotmg pairs of routines. We note here that the common use, in Fortran
77, of an array element as an actual argument for a vector dummy argument is
illegal when calling the generic interface.

We experimented with a pair of generic interfaces to these Fortran 77 compatible
routines which required shorter calling sequences. By using assumed shape arrays
it is possible to dispense with the INCX and INCY parameters since their effect may
be obtained using array slices with a non-unit stride. Furthermore, the length
of the data arrays may be ascertained from the array arguments using the SIZE
intrinsic function. For the rotm routine we could also define a derived type to
replace the PARAM array; this allows the use of an integer return code signifying
the type of the transformation matrix rather than using the first element of the
floating-point PARAM array. However, any gains obtained from having shorter, and
cleaner, argument lists were far outweighed by increases in execution time. This
was especially true when INCX and INCY did not have the value one. In this case
we passed the actual arguments as array slices with a non-unit stride, and this,
along with the additional routine call overhead, appeared to exact a high penalty
with execution times up to five times slower than using the Fortran 77 compatible
routines with non-unit increments. This additional overhead made these routines
up to twenty times slower than the optimal.

On studying the assembler produced by the Sun f90 compiler for the rotm rou-
tines, we discovered that we could improve the overall execution speed by using the
array elements of the PARAM array argument rather than locally defined simple vari-
ables in the transformation loops. The released software uses these array elements
although this may not be optimal across all platform/compiler combinations.

There are a number of differences between the features available from the original
BLAS routines and those presented here

(1) the standard transformation routines allow for row removal,

(2) the rotation is no longer saved in the standard transformation routines. Details
of how this may be calculated can be found in [Lawson et al. 1979b].

(3) negative values for INCX and INCY are no longer catered for,

(4) the new routines require and return the reciprocal squares, d;l, 1=1,2,

(5) error returns from the standard transformation routines are signalled by setting
c=s=0,

(6) scaling only occurs in the new modified transformation routines when the re-
ciprocal squares are extremely large,
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8 . R. J. Hanson and Tim Hopkins

Test routines, providing 100% statement coverage, were constructed for all the
new user callable routines. These executed all but two of the basic blocks of code;
these missed blocks test for an error condition that we have been unable to generate
using IEEE arithmetic but may occur with other, less stringent, arithmetics.

5. BENCHMARKING AN IMPLEMENTATION

Single precision codes s_rotm and s_rot were written for the above MG algorithm
and SG implementing hyperbolic transformations. Therefore either code can be
used for adding and then dropping data from least squares problems. Note that
the Level-1 BLAS codes srotmg/srotm allowed this add/drop step, but the pair
srotg/srot can only add data. Including this extra capability levels the choice for
a developer, who often wants to use Givens transformations for row operations on
a dense matrix for a least squares problem. A natural choice is to store the matrix
elements a;; in Fortran assumed-size array locations A(I,J). As our benchmarks
show, this is not the optimal organization in terms of efficiency. The matrix ele-
ments are best organized in transposed form, with unit strides when applying the
transformations. Other choices, including the choice of MG vs. SG, are secondary
in importance. At first blush it appears obvious, therefore, to use MG instead of
SG. The argument goes like this: FEventually MG has fewer operations when ap-
plying the transformation. So when the problem is large enough, this choice will be
more efficient that SG.

Our benchmark program triangularizes 2n x n random matrices using Givens
transformations. However, extensive experimentation with this benchmark code
failed to confirm our conjecture above regarding the superiority of the MG imple-
mentation. While different combinations of compiler options may greatly affect the
run-time of the resultant executable code, it is not possible, due to the large num-
ber of options available, to conduct exhaustive trials. Combined with the advances
in the provision of various levels of cache memory and the way compilers utilize
such memory, it is impossible to provide a definitive answer as to which routine
will be the most efficient for any particular hardware/compiler/compiler options
combination without running a benchmarking program.

What our experiments did show was that, using unit strides, the original Blas
Level 1 MG pair never produced the best performance. Each of the other routines,
the proposed MG/SG and the original Blas Level 1 SG pair, performed best for
at least one experiment. On large problems (n > 100) the benefit obtained from
using the most efficient over the least efficient of the other three routines could be
as high as 40%.

When it is critical to obtain maximum performance from an application which
makes intensive use of Givens transformations, we thus propose that our benchmark
program be run for typical size problems to determine the optimal routine for the
hardware/compiler combination being used.
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