
Algorithm 830: Another Visit with Standard andModi�ed Givens Transformations and a Remark onAlgorithm 539RICHARD J. HANSONCenter for High Performane Software Researh, Rie UniversityandTIM HOPKINSUniversity of Kent, UK
First we report on a orretion and improvement to the Level 1 Blas routine srotmg for omputingthe Modi�ed Givens Transformation (MG). We then, in the light of the performane of the ode onmodern ompiler/hardware ombinations, reonsider the strategy of supplying separate routines toompute and apply the transformation. Finally, we show that the apparent savings in multipliesobtained by using MG rather than the Standard Givens Transformation (SG) do not alwaystranslate into redutions in exeution time.Categories and Subjet Desriptors: G.1.0 [Numerial Analysis℄: General|Numerial Algo-rithms; G.1.3 [Numerial Analysis℄: Numerial Linear Algebra; G.4 [Mathematial Soft-ware℄: |Certi�ation and testing; EÆieny; Algorithm design and analysisGeneral Terms: Algorithms; PerformaneAdditional Key Words and Phrases: BLAS, Givens rotation, linear algebra
1. INTRODUCTIONThe Standard Givens orthogonal transformation is a low-level operation of numer-ial linear algebra. This plane rotation transformation eliminates z1 in the identityGW = �  s�s  � � w1 : : : wnz1 : : : zn �
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2 � R. J. Hanson and Tim HopkinsThus  = w1=r, s = z1=r, r = � �w21 + z21� 12 for r 6= 0. The orthogonality of Gfollows from 2 + s2 = 1. Applying the transformation to the olumns requires4(N � 1) multiplies and 2(N � 1) adds. Construting the transformation requiresat least four multiplies, one add, one divide, and one square-root operation. This iswell-known material. Gentleman [Gentleman 1973℄ and Hammarling [Hammarling1974℄, showed how the omputation ould be reorganized to redue the operationount for applying the transformation to the remaining olumns. The entral ideais to regard the matrix in fatored formW = " d 121 00 d 122 # � x1 : : : xny1 : : : yn � � D 12XThe produt is re-fatoredGW = GD 12X = ~D 12HX � " ~d 121 00 ~d 122 #HXThe matrix H is seleted so that two of its four entries are units. This impliesthat 2(N � 1) multiplies and 2(N � 1) adds are needed to ompute HX. ThisModi�ed Givens yields a saving of 2(N � 1) multiplies ompared with the StandardGivens. For MG, the additional ost of updating the diagonal terms and omputingthe non-unit entries of H was not regarded as signi�ant in [Lawson et al. 1979b℄.The deision to inlude the MG as a module was based on timings that were om-pelling. Our testing indiates that on modern omputers, the netlib SG pair ofroutines ( rotg and rot) are typially more eÆient that the MG pair ( rotmgand rotm). This seems to indiate that MG is relatively ineÆient and, therefore,has little to reommend it. We believe that this is due to the oding itself and aritial mathematial detail. We implemented a Fortran 90 version of MG givenin [Golub and Van Loan 1996℄ that is typially more eÆient than our Fortran 90version of SG. This is the result one expets sine MG requires fewer operationsper elimination step. We organized both routines so that a single subprogram allonstruts and then applies the transformation. This saves the overhead of anadditional all. The resulting odes are almost always more eÆient that the or-responding netlib versions. Our version of SG inludes an additional feature of ahyperboli transformation, useful for dropping data, provided in both the old andnew version of MG. Now SG and MG have the same funtionality. Several ideas arepresented here that enhane both methods. Some of these priniples may be new,but that is hard to determine from the aporyphal literature. In the implementa-tions of the most frequently taken paths through the setions of ode that omputethe basi plane rotation parameters MG trades �ve oating-point multiply/divideoperations against two oating-point adds and a square root used by SG. Exper-iments on a number of urrently available ompiler/platform ombinations failedto provide a de�nitive answer as to whih of the two methods performs the better.Therefore, as part of the software aompanying this paper, a benhmark programhas been provided to allow a software developer to make an informed deision onwhether MG will provide better performane than the simpler SG based on boththe run-time environment and typial problem size.Reently, Anda and Park [Anda and Park 1994℄ point out the apparent retieneACM Journal Name, Vol. V, No. N, Month 20YY.



Another Visit with Standard and Modi�ed Givens Transformations � 3by software developers to use the modi�ed plane rotation and they suggest a revisedalgorithm inorporating their idea of dynami saling to prevent problems withover- and underows. Their algorithm for alulating the plane rotation requiresan additional divide step ompared to our implementation.Their appliation step requires the same amount of work as our implementationbut assumes that a form of \haining" allows a ompleted sub-expression to beused again as a multiplier. Although this is a reasonable assumption for vetormahines, for modern salar mahines it implies that an intermediate result mustomplete before the transformation is �nished.2. CODE UPDATEThe routines srotmg and drotmg given in [Lawson et al. 1979a℄ generate inorretresults when the input vetor � w1z1 � is de�ned as " d 121 d 122 # � x1y1 � with d1 = 0.This may be a ontorted way of generating an input vetor of the form � 0r � whoseorret transformation matrix, H, is � 0 1�1 0 �. The published ode generates theresult H = � 0 1�1 x1y1 � by setting  = 0 and s = 1 in the equations (A7a) to (A7d)below. Unlike the ase x1 = 0 and d1 6= 0, the general formula annot be used inthis ase sine ~d 121 annot be fatored out of the equation (A5) in [Lawson et al.1979b℄.We have, thus, replaed the lineIF(.NOT. SD1 .LT. ZERO) GO TO 10byIF((SD1 .GT. ZERO) .AND. (SD2 .NE. ZERO)) GO TO 10and introdued an error ag, SFLAG = 2, diretly following the label 60. Eitherof the di, i = 1; 2 having value zero orresponds to an equality onstraint in aleast squares problem. A large weight on a row an be used to ahieve an equalityonstraint. This orresponds to a small positive value of the reiproal weight, forexample, d1. A value of zero for the reiproal is treated as an error. A furtherdisussion of this lass of weighting methods may be found in Chapter 22 of [Lawsonand Hanson 1995℄.The value of GAM, whih determines when saling of the di values takes plae, washosen at a time when Fortran laked any standard means of obtaining informationabout the underlying oating-point arithmeti. The value used in both the originalsingle and double preision odes, 4096.0, was hosen deliberately small to ensurethat the routine would operate orretly on all known systems. With aess to newintrinsi inquiry funtions in Fortran 90 it is now possible to set this value in ahardware dependent wayGAMSQ = MIN(HUGE(ONE), ONE/TINY(ONE))*QUARTERGAM = SQRT(GAMSQ) ACM Journal Name, Vol. V, No. N, Month 20YY.



4 � R. J. Hanson and Tim HopkinsRGAMSQ = ONE/GAMSQwhere ONE is set to either 1.0E0 or 1.0D0 and QUARTER to either 0.25E0 or 0.25D0for single and double preision respetively.For IEEE arithmeti this sets GAM to 4.62E+18 (single preision) and 3.35D+153(double preision); thus reduing dramatially the number of times saling may takeplae. In addition, for IEEE arithmeti, the values assigned to GAM and RGAMSQ areexat.Sine the assigned goto statement has been formally removed from the Fortran95 language [ISO/IEC 1997℄, ourrenes of the statement have been replaed byomputed gotos in both the single and double preision routines. In addition, theuse of the spei� intrinsi funtion DABS has been replaed by the generi ABS inthe double preision routine.The original oding of these routines was extremely ontorted and a more read-able, orreted version, in Fortran 90, may be found in [Hopkins 1997℄.3. DEVELOPMENT3.1 Modi�ed GivensThere is a saving in onstruting MG by storing and updating the reiproal squares,d�1j , j = 1; 2. In [Lawson et al. 1979b℄ the dj are updated. The reformulation foundin [Golub and Van Loan 1996℄ p. 221, eliminates two divides for eah transforma-tion.Storage loations for these reiproal squares are passed to the subprogram thatonstruts and applies the transformation. In this development we note that themathematial quantities d�1j , j = 1; 2 eah oupy a memory loation. Thus wemay assoiate a sign with these values. To designate that a datum is dropped, thesign of the loation for d�11 is set negative. The sign of d�12 is always positive.Note that the use of reiproal squares is often what a user desires when allingMG routines to solve a linear least squares regression problem. If the quantity tobe minimized is �(x) = Pmi=1 jri=�ij2, ri = aTi x� bi, then the initialization for thereiproal squares is d�1i = �2i , i = 1; : : : ;m. Thus there is no need to diretly applysale fators ��1i to the row vetors �aTi : bi�. This saling step ours impliitlyduring the QR fatorization leading to the weighted least squares estimate x = x̂.If the saling fators are the same for all the rows, or if the weighting is alreadyapplied to the row vetors, then initially set d�1i = 1, i = 1; : : : ;m.Using the numbering given in [Lawson et al. 1979b℄, Equations A6a{A7g arereast in terms of the reiproal squares.The absolute value used below on the quantity d1 de�nes the onstrution of thetransformation for both ases, either when data is being added or dropped. We usethe sub-expressions p1 = d�12 x1, p2 = d�11 y1.If p1x1 � jp2y2j, thenIf p2 = 0 then H = I, the identity matrixelse h11 = 1; h21 = �y1=x1 (A6a)h12 = �p2=p1; h22 = 1 (A6b)ACM Journal Name, Vol. V, No. N, Month 20YY.



Another Visit with Standard and Modi�ed Givens Transformations � 5u = 1� h21h12 (A6)d�11  d�11 u (A6d)d�12  d�12 u (A6e)x1  x1u (A6f)If p1x1 < jp2y2j, then h11 = p1=p2; h21 = �1 (A7a)h12 = 1; h22 = x1=y1 (A7b)u = 1 + h11h22 (A7)v = d�11 u (A7d)d�11  d�12 u (A7e)d�12  v (A7f)x1  y1u (A7g)The relations A6d{A6e and A7d{A7f show that two of the oating point dividesfound in [Lawson et al. 1979b℄ an be replaed by two multiplies. this is importantbeause divides are relatively slow on modern omputers. The reiproal squaresinrease by as muh as a fator of two with eah transformation. They an alsoderease, when data is dropped, but this is unlikely to ause problems. A re-salingof a row of the transformation may be required. Re-saling of either row ours if��d�11 ��+ d�12 > GAMfollowing the update steps A6d{A6e and A7d{A7f. This allows values of x1 and y1to be as large as SQRT(HUGE(ONE)) without overow ourring.Storing the MG transformations requires an integer ag, and two or four oatingpoint values per elimination step. An integer ag and four oating point values arerequired only when re-saling ours, and this is now rare indeed, thanks to thelarge mahine-dependent sale fator GAMSQ. The SG has an edge here, sine thetransformations an be saved in the same store as the input data, using the idea ofStewart doumented in [Lawson et al. 1979b℄.3.2 Standard GivensThe MG and SG are typially used in row aumulation mode. For some applia-tions it is eÆient to remove the row, one aumulated. This saves the expenseof refatoring the least-squares matrix with the row removed. This is not a numer-ially stable proess, so refatoring may be neessary under some irumstanes.When using MG this mathematially requires d2 < 0, whih is agged in our odeby d1 < 0.For SG one an use hyperboli rotations (see [Bj�ork 1996℄, page 144)H = � h �sh�sh h � ; (h)2 � (sh)2 = 1The H matrix is onstruted to zero the seond omponent in a vetor (a; b)T ,ACM Journal Name, Vol. V, No. N, Month 20YY.



6 � R. J. Hanson and Tim Hopkinsjaj > jbj. This leads tos = ba ;  =p(1 + s)(1� s); � = aWith h = �1 and sh = s�1, we see thatH hab i = h�0 i ;and, inidentally, that 2 + s2 = 1. We may form the produtH huv i � �xy � ;in a relationally stable way, by using the 2-step evaluationx = (h)(u� sv)y = �sx+ vThis is based on the intermediate Givens transformation�  s�s  � hxv i = �uy �Either the error ondition jaj � jbj or the omputed value (1 + s)(1� s) � 0, isagged in our ode by returning  = s = 0.The form of this row removal method goes bak to Chambers [Chambers 1971℄and was further re�ned by Stewart and Stewart [Stewart and Stewart 1998℄.3.3 Applying the RotationsAdvoates of either MG or SG must observe that the primary eÆieny issue isaess to the data during the formation of produts of the rotations. The fat thatMG saves arithmeti may be important. This depends on the problem size andmahine harateristis. But the hoie is not as ruial as organizing the dataaess with a unit stride between matrix rows or olumns wherein the rotation willbe applied. A developer would hoose MG or SG, depending on the problem size,and employ unit strides in the appliation phase. This will involve design of thematrix storage for some problems.We have found that loop unrolling has little or no useful e�et when high levelsof optimization are used. Thus, as with the Level-1 BLAS routines srotm and srotno loop unrolling has been implemented.Finally, we would mention that the MG ode would not be at all suited to pro-viding readable ode in the ase of a series of bloked rotations whih are appliedto a series of olumn vetors. The situation is improved by using SG by at leastmaking the ode easier to follow.4. IMPLEMENTATIONWe have implemented the new routines as a Fortran 90 module, Givens Rotations.This provides two ways in whih to all both the standard and modi�ed Givenstransformations; in eah ase the pair of Blas Level 1 routines are replaed by asingle all that omputes the rotation and applies it to a 2�N array of data.ACM Journal Name, Vol. V, No. N, Month 20YY.



Another Visit with Standard and Modi�ed Givens Transformations � 7First there are single and double preision versions (p_rot and p_rotm where pis either s or d) and, seond, we have inluded a simple generi interfae to bothalgorithms that allows the names rot and rotm to be used for either preisionprovided that the oating point parameters are all of the same type. The allingsequenesCALL rot(w1, z1, k, x, inx, y, iny, , s)CALL rotm(rd1, rd2, x1, x2, k, x, inx, y, iny, param)are basially formed by ombining the alling sequenes of the original rot/rotgand rotm/rotmg pairs of routines. We note here that the ommon use, in Fortran77, of an array element as an atual argument for a vetor dummy argument isillegal when alling the generi interfae.We experimented with a pair of generi interfaes to these Fortran 77 ompatibleroutines whih required shorter alling sequenes. By using assumed shape arraysit is possible to dispense with the INCX and INCY parameters sine their e�et maybe obtained using array slies with a non-unit stride. Furthermore, the lengthof the data arrays may be asertained from the array arguments using the SIZEintrinsi funtion. For the rotm routine we ould also de�ne a derived type toreplae the PARAM array; this allows the use of an integer return ode signifyingthe type of the transformation matrix rather than using the �rst element of theoating-point PARAM array. However, any gains obtained from having shorter, andleaner, argument lists were far outweighed by inreases in exeution time. Thiswas espeially true when INCX and INCY did not have the value one. In this asewe passed the atual arguments as array slies with a non-unit stride, and this,along with the additional routine all overhead, appeared to exat a high penaltywith exeution times up to �ve times slower than using the Fortran 77 ompatibleroutines with non-unit inrements. This additional overhead made these routinesup to twenty times slower than the optimal.On studying the assembler produed by the Sun f90 ompiler for the rotm rou-tines, we disovered that we ould improve the overall exeution speed by using thearray elements of the PARAM array argument rather than loally de�ned simple vari-ables in the transformation loops. The released software uses these array elementsalthough this may not be optimal aross all platform/ompiler ombinations.There are a number of di�erenes between the features available from the originalBLAS routines and those presented here(1) the standard transformation routines allow for row removal,(2) the rotation is no longer saved in the standard transformation routines. Detailsof how this may be alulated an be found in [Lawson et al. 1979b℄.(3) negative values for INCX and INCY are no longer atered for,(4) the new routines require and return the reiproal squares, d�1i , i = 1; 2,(5) error returns from the standard transformation routines are signalled by setting = s = 0,(6) saling only ours in the new modi�ed transformation routines when the re-iproal squares are extremely large, ACM Journal Name, Vol. V, No. N, Month 20YY.



8 � R. J. Hanson and Tim HopkinsTest routines, providing 100% statement overage, were onstruted for all thenew user allable routines. These exeuted all but two of the basi bloks of ode;these missed bloks test for an error ondition that we have been unable to generateusing IEEE arithmeti but may our with other, less stringent, arithmetis.5. BENCHMARKING AN IMPLEMENTATIONSingle preision odes s rotm and s rot were written for the above MG algorithmand SG implementing hyperboli transformations. Therefore either ode an beused for adding and then dropping data from least squares problems. Note thatthe Level-1 BLAS odes srotmg/srotm allowed this add/drop step, but the pairsrotg/srot an only add data. Inluding this extra apability levels the hoie fora developer, who often wants to use Givens transformations for row operations ona dense matrix for a least squares problem. A natural hoie is to store the matrixelements aij in Fortran assumed-size array loations A(I,J). As our benhmarksshow, this is not the optimal organization in terms of eÆieny. The matrix ele-ments are best organized in transposed form, with unit strides when applying thetransformations. Other hoies, inluding the hoie of MG vs. SG, are seondaryin importane. At �rst blush it appears obvious, therefore, to use MG instead ofSG. The argument goes like this: Eventually MG has fewer operations when ap-plying the transformation. So when the problem is large enough, this hoie will bemore eÆient that SG.Our benhmark program triangularizes 2n � n random matries using Givenstransformations. However, extensive experimentation with this benhmark odefailed to on�rm our onjeture above regarding the superiority of the MG imple-mentation. While di�erent ombinations of ompiler options may greatly a�et therun-time of the resultant exeutable ode, it is not possible, due to the large num-ber of options available, to ondut exhaustive trials. Combined with the advanesin the provision of various levels of ahe memory and the way ompilers utilizesuh memory, it is impossible to provide a de�nitive answer as to whih routinewill be the most eÆient for any partiular hardware/ompiler/ompiler optionsombination without running a benhmarking program.What our experiments did show was that, using unit strides, the original BlasLevel 1 MG pair never produed the best performane. Eah of the other routines,the proposed MG/SG and the original Blas Level 1 SG pair, performed best forat least one experiment. On large problems (n > 100) the bene�t obtained fromusing the most eÆient over the least eÆient of the other three routines ould beas high as 40%.When it is ritial to obtain maximum performane from an appliation whihmakes intensive use of Givens transformations, we thus propose that our benhmarkprogram be run for typial size problems to determine the optimal routine for thehardware/ompiler ombination being used.6. ACKNOWLEDGEMENTSRihard Hanson was helped during the ourse of several disussions with Fred T.Krogh. We would also like to thank an anonymous referee for making us aware ofChambers' paper.ACM Journal Name, Vol. V, No. N, Month 20YY.
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