
Algorithm 830: Another Visit with Standard andModi�ed Givens Transformations and a Remark onAlgorithm 539RICHARD J. HANSONCenter for High Performan
e Software Resear
h, Ri
e UniversityandTIM HOPKINSUniversity of Kent, UK
First we report on a
orre
tion and improvement to the Level 1 Blas routine srotmg for
omputingthe Modi�ed Givens Transformation (MG). We then, in the light of the performan
e of the
ode onmodern
ompiler/hardware
ombinations, re
onsider the strategy of supplying separate routines to
ompute and apply the transformation. Finally, we show that the apparent savings in multipliesobtained by using MG rather than the Standard Givens Transformation (SG) do not alwaystranslate into redu
tions in exe
ution time.Categories and Subje
t Des
riptors: G.1.0 [Numeri
al Analysis℄: General|Numeri
al Algo-rithms; G.1.3 [Numeri
al Analysis℄: Numeri
al Linear Algebra; G.4 [Mathemati
al Soft-ware℄: |Certi�
ation and testing; EÆ
ien
y; Algorithm design and analysisGeneral Terms: Algorithms; Performan
eAdditional Key Words and Phrases: BLAS, Givens rotation, linear algebra
1. INTRODUCTIONThe Standard Givens orthogonal transformation is a low-level operation of numer-i
al linear algebra. This plane rotation transformation eliminates z1 in the identityGW = �
 s�s
 � � w1 : : : wnz1 : : : zn �
Authors' addresses: R. J. Hanson, Center for High Performan
e Software Resear
h, Ri
e Uni-versity, 6100 Main Street, MS41, Houston, TX 77005-1892; email: koolhans�ri
e.edu; TimHopkins, Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK; email:t.r.hopkins�kent.a
.uk.Permission to make digital/hard
opy of all or part of this material without fee for personalor
lassroom use provided that the
opies are not made or distributed for pro�t or
ommer
ialadvantage, the ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, andnoti
e is given that
opying is by permission of the ACM, In
. To
opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

 20YY ACM 0000-0000/20YY/0000-0001 $5.00Permission to make digital/hard
opy of all or part of this material without fee for personalor
lassroom use provided that the
opies are not made or distributed for pro�t or
ommer
ialadvantage, the ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, andnoti
e is given that
opying is by permission of the ACM, In
. To
opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

 20YY ACM 0000-0000/20YY/0000-0001 $5.00ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1{9.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 � R. J. Hanson and Tim HopkinsThus
 = w1=r, s = z1=r, r = � �w21 + z21� 12 for r 6= 0. The orthogonality of Gfollows from
2 + s2 = 1. Applying the transformation to the
olumns requires4(N � 1) multiplies and 2(N � 1) adds. Constru
ting the transformation requiresat least four multiplies, one add, one divide, and one square-root operation. This iswell-known material. Gentleman [Gentleman 1973℄ and Hammarling [Hammarling1974℄, showed how the
omputation
ould be reorganized to redu
e the operation
ount for applying the transformation to the remaining
olumns. The
entral ideais to regard the matrix in fa
tored formW = " d 121 00 d 122 # � x1 : : : xny1 : : : yn � � D 12XThe produ
t is re-fa
toredGW = GD 12X = ~D 12HX � " ~d 121 00 ~d 122 #HXThe matrix H is sele
ted so that two of its four entries are units. This impliesthat 2(N � 1) multiplies and 2(N � 1) adds are needed to
ompute HX. ThisModi�ed Givens yields a saving of 2(N � 1) multiplies
ompared with the StandardGivens. For MG, the additional
ost of updating the diagonal terms and
omputingthe non-unit entries of H was not regarded as signi�
ant in [Lawson et al. 1979b℄.The de
ision to in
lude the MG as a module was based on timings that were
om-pelling. Our testing indi
ates that on modern
omputers, the netlib SG pair ofroutines (rotg and rot) are typi
ally more eÆ
ient that the MG pair (rotmgand rotm). This seems to indi
ate that MG is relatively ineÆ
ient and, therefore,has little to re
ommend it. We believe that this is due to the
oding itself and a
riti
al mathemati
al detail. We implemented a Fortran 90 version of MG givenin [Golub and Van Loan 1996℄ that is typi
ally more eÆ
ient than our Fortran 90version of SG. This is the result one expe
ts sin
e MG requires fewer operationsper elimination step. We organized both routines so that a single subprogram
all
onstru
ts and then applies the transformation. This saves the overhead of anadditional
all. The resulting
odes are almost always more eÆ
ient that the
or-responding netlib versions. Our version of SG in
ludes an additional feature of ahyperboli
 transformation, useful for dropping data, provided in both the old andnew version of MG. Now SG and MG have the same fun
tionality. Several ideas arepresented here that enhan
e both methods. Some of these prin
iples may be new,but that is hard to determine from the apo
ryphal literature. In the implementa-tions of the most frequently taken paths through the se
tions of
ode that
omputethe basi
 plane rotation parameters MG trades �ve
oating-point multiply/divideoperations against two
oating-point adds and a square root used by SG. Exper-iments on a number of
urrently available
ompiler/platform
ombinations failedto provide a de�nitive answer as to whi
h of the two methods performs the better.Therefore, as part of the software a

ompanying this paper, a ben
hmark programhas been provided to allow a software developer to make an informed de
ision onwhether MG will provide better performan
e than the simpler SG based on boththe run-time environment and typi
al problem size.Re
ently, Anda and Park [Anda and Park 1994℄ point out the apparent reti
en
eACM Journal Name, Vol. V, No. N, Month 20YY.

Another Visit with Standard and Modi�ed Givens Transformations � 3by software developers to use the modi�ed plane rotation and they suggest a revisedalgorithm in
orporating their idea of dynami
 s
aling to prevent problems withover- and under
ows. Their algorithm for
al
ulating the plane rotation requiresan additional divide step
ompared to our implementation.Their appli
ation step requires the same amount of work as our implementationbut assumes that a form of \
haining" allows a
ompleted sub-expression to beused again as a multiplier. Although this is a reasonable assumption for ve
torma
hines, for modern s
alar ma
hines it implies that an intermediate result must
omplete before the transformation is �nished.2. CODE UPDATEThe routines srotmg and drotmg given in [Lawson et al. 1979a℄ generate in
orre
tresults when the input ve
tor � w1z1 � is de�ned as " d 121 d 122 # � x1y1 � with d1 = 0.This may be a
ontorted way of generating an input ve
tor of the form � 0r � whose
orre
t transformation matrix, H, is � 0 1�1 0 �. The published
ode generates theresult H = � 0 1�1 x1y1 � by setting
 = 0 and s = 1 in the equations (A7a) to (A7d)below. Unlike the
ase x1 = 0 and d1 6= 0, the general formula
annot be used inthis
ase sin
e ~d 121
annot be fa
tored out of the equation (A5) in [Lawson et al.1979b℄.We have, thus, repla
ed the lineIF(.NOT. SD1 .LT. ZERO) GO TO 10byIF((SD1 .GT. ZERO) .AND. (SD2 .NE. ZERO)) GO TO 10and introdu
ed an error
ag, SFLAG = 2, dire
tly following the label 60. Eitherof the di, i = 1; 2 having value zero
orresponds to an equality
onstraint in aleast squares problem. A large weight on a row
an be used to a
hieve an equality
onstraint. This
orresponds to a small positive value of the re
ipro
al weight, forexample, d1. A value of zero for the re
ipro
al is treated as an error. A furtherdis
ussion of this
lass of weighting methods may be found in Chapter 22 of [Lawsonand Hanson 1995℄.The value of GAM, whi
h determines when s
aling of the di values takes pla
e, was
hosen at a time when Fortran la
ked any standard means of obtaining informationabout the underlying
oating-point arithmeti
. The value used in both the originalsingle and double pre
ision
odes, 4096.0, was
hosen deliberately small to ensurethat the routine would operate
orre
tly on all known systems. With a

ess to newintrinsi
 inquiry fun
tions in Fortran 90 it is now possible to set this value in ahardware dependent wayGAMSQ = MIN(HUGE(ONE), ONE/TINY(ONE))*QUARTERGAM = SQRT(GAMSQ) ACM Journal Name, Vol. V, No. N, Month 20YY.

4 � R. J. Hanson and Tim HopkinsRGAMSQ = ONE/GAMSQwhere ONE is set to either 1.0E0 or 1.0D0 and QUARTER to either 0.25E0 or 0.25D0for single and double pre
ision respe
tively.For IEEE arithmeti
 this sets GAM to 4.62E+18 (single pre
ision) and 3.35D+153(double pre
ision); thus redu
ing dramati
ally the number of times s
aling may takepla
e. In addition, for IEEE arithmeti
, the values assigned to GAM and RGAMSQ areexa
t.Sin
e the assigned goto statement has been formally removed from the Fortran95 language [ISO/IEC 1997℄, o

urren
es of the statement have been repla
ed by
omputed gotos in both the single and double pre
ision routines. In addition, theuse of the spe
i�
 intrinsi
 fun
tion DABS has been repla
ed by the generi
 ABS inthe double pre
ision routine.The original
oding of these routines was extremely
ontorted and a more read-able,
orre
ted version, in Fortran 90, may be found in [Hopkins 1997℄.3. DEVELOPMENT3.1 Modi�ed GivensThere is a saving in
onstru
ting MG by storing and updating the re
ipro
al squares,d�1j , j = 1; 2. In [Lawson et al. 1979b℄ the dj are updated. The reformulation foundin [Golub and Van Loan 1996℄ p. 221, eliminates two divides for ea
h transforma-tion.Storage lo
ations for these re
ipro
al squares are passed to the subprogram that
onstru
ts and applies the transformation. In this development we note that themathemati
al quantities d�1j , j = 1; 2 ea
h o

upy a memory lo
ation. Thus wemay asso
iate a sign with these values. To designate that a datum is dropped, thesign of the lo
ation for d�11 is set negative. The sign of d�12 is always positive.Note that the use of re
ipro
al squares is often what a user desires when
allingMG routines to solve a linear least squares regression problem. If the quantity tobe minimized is �(x) = Pmi=1 jri=�ij2, ri = aTi x� bi, then the initialization for there
ipro
al squares is d�1i = �2i , i = 1; : : : ;m. Thus there is no need to dire
tly applys
ale fa
tors ��1i to the row ve
tors �aTi : bi�. This s
aling step o

urs impli
itlyduring the QR fa
torization leading to the weighted least squares estimate x = x̂.If the s
aling fa
tors are the same for all the rows, or if the weighting is alreadyapplied to the row ve
tors, then initially set d�1i = 1, i = 1; : : : ;m.Using the numbering given in [Lawson et al. 1979b℄, Equations A6a{A7g arere
ast in terms of the re
ipro
al squares.The absolute value used below on the quantity d1 de�nes the
onstru
tion of thetransformation for both
ases, either when data is being added or dropped. We usethe sub-expressions p1 = d�12 x1, p2 = d�11 y1.If p1x1 � jp2y2j, thenIf p2 = 0 then H = I, the identity matrixelse h11 = 1; h21 = �y1=x1 (A6a)h12 = �p2=p1; h22 = 1 (A6b)ACM Journal Name, Vol. V, No. N, Month 20YY.

Another Visit with Standard and Modi�ed Givens Transformations � 5u = 1� h21h12 (A6
)d�11 d�11 u (A6d)d�12 d�12 u (A6e)x1 x1u (A6f)If p1x1 < jp2y2j, then h11 = p1=p2; h21 = �1 (A7a)h12 = 1; h22 = x1=y1 (A7b)u = 1 + h11h22 (A7
)v = d�11 u (A7d)d�11 d�12 u (A7e)d�12 v (A7f)x1 y1u (A7g)The relations A6d{A6e and A7d{A7f show that two of the
oating point dividesfound in [Lawson et al. 1979b℄
an be repla
ed by two multiplies. this is importantbe
ause divides are relatively slow on modern
omputers. The re
ipro
al squaresin
rease by as mu
h as a fa
tor of two with ea
h transformation. They
an alsode
rease, when data is dropped, but this is unlikely to
ause problems. A re-s
alingof a row of the transformation may be required. Re-s
aling of either row o

urs if��d�11 ��+ d�12 > GAMfollowing the update steps A6d{A6e and A7d{A7f. This allows values of x1 and y1to be as large as SQRT(HUGE(ONE)) without over
ow o

urring.Storing the MG transformations requires an integer
ag, and two or four
oatingpoint values per elimination step. An integer
ag and four
oating point values arerequired only when re-s
aling o

urs, and this is now rare indeed, thanks to thelarge ma
hine-dependent s
ale fa
tor GAMSQ. The SG has an edge here, sin
e thetransformations
an be saved in the same store as the input data, using the idea ofStewart do
umented in [Lawson et al. 1979b℄.3.2 Standard GivensThe MG and SG are typi
ally used in row a

umulation mode. For some appli
a-tions it is eÆ
ient to remove the row, on
e a

umulated. This saves the expenseof refa
toring the least-squares matrix with the row removed. This is not a numer-i
ally stable pro
ess, so refa
toring may be ne
essary under some
ir
umstan
es.When using MG this mathemati
ally requires d2 < 0, whi
h is
agged in our
odeby d1 < 0.For SG one
an use hyperboli
 rotations (see [Bj�or
k 1996℄, page 144)H = �
h �sh�sh
h � ; (
h)2 � (sh)2 = 1The H matrix is
onstru
ted to zero the se
ond
omponent in a ve
tor (a; b)T ,ACM Journal Name, Vol. V, No. N, Month 20YY.

6 � R. J. Hanson and Tim Hopkinsjaj > jbj. This leads tos = ba ;
 =p(1 + s)(1� s); � = a
With
h =
�1 and sh = s�1, we see thatH hab i = h�0 i ;and, in
identally, that
2 + s2 = 1. We may form the produ
tH huv i � �xy � ;in a relationally stable way, by using the 2-step evaluationx = (
h)(u� sv)y = �sx+
vThis is based on the intermediate Givens transformation�
 s�s
 � hxv i = �uy �Either the error
ondition jaj � jbj or the
omputed value (1 + s)(1� s) � 0, is
agged in our
ode by returning
 = s = 0.The form of this row removal method goes ba
k to Chambers [Chambers 1971℄and was further re�ned by Stewart and Stewart [Stewart and Stewart 1998℄.3.3 Applying the RotationsAdvo
ates of either MG or SG must observe that the primary eÆ
ien
y issue isa

ess to the data during the formation of produ
ts of the rotations. The fa
t thatMG saves arithmeti
 may be important. This depends on the problem size andma
hine
hara
teristi
s. But the
hoi
e is not as
ru
ial as organizing the dataa

ess with a unit stride between matrix rows or
olumns wherein the rotation willbe applied. A developer would
hoose MG or SG, depending on the problem size,and employ unit strides in the appli
ation phase. This will involve design of thematrix storage for some problems.We have found that loop unrolling has little or no useful e�e
t when high levelsof optimization are used. Thus, as with the Level-1 BLAS routines srotm and srotno loop unrolling has been implemented.Finally, we would mention that the MG
ode would not be at all suited to pro-viding readable
ode in the
ase of a series of blo
ked rotations whi
h are appliedto a series of
olumn ve
tors. The situation is improved by using SG by at leastmaking the
ode easier to follow.4. IMPLEMENTATIONWe have implemented the new routines as a Fortran 90 module, Givens Rotations.This provides two ways in whi
h to
all both the standard and modi�ed Givenstransformations; in ea
h
ase the pair of Blas Level 1 routines are repla
ed by asingle
all that
omputes the rotation and applies it to a 2�N array of data.ACM Journal Name, Vol. V, No. N, Month 20YY.

Another Visit with Standard and Modi�ed Givens Transformations � 7First there are single and double pre
ision versions (p_rot and p_rotm where pis either s or d) and, se
ond, we have in
luded a simple generi
 interfa
e to bothalgorithms that allows the names rot and rotm to be used for either pre
isionprovided that the
oating point parameters are all of the same type. The
allingsequen
esCALL rot(w1, z1, k, x, in
x, y, in
y,
, s)CALL rotm(rd1, rd2, x1, x2, k, x, in
x, y, in
y, param)are basi
ally formed by
ombining the
alling sequen
es of the original rot/rotgand rotm/rotmg pairs of routines. We note here that the
ommon use, in Fortran77, of an array element as an a
tual argument for a ve
tor dummy argument isillegal when
alling the generi
 interfa
e.We experimented with a pair of generi
 interfa
es to these Fortran 77
ompatibleroutines whi
h required shorter
alling sequen
es. By using assumed shape arraysit is possible to dispense with the INCX and INCY parameters sin
e their e�e
t maybe obtained using array sli
es with a non-unit stride. Furthermore, the lengthof the data arrays may be as
ertained from the array arguments using the SIZEintrinsi
 fun
tion. For the rotm routine we
ould also de�ne a derived type torepla
e the PARAM array; this allows the use of an integer return
ode signifyingthe type of the transformation matrix rather than using the �rst element of the
oating-point PARAM array. However, any gains obtained from having shorter, and
leaner, argument lists were far outweighed by in
reases in exe
ution time. Thiswas espe
ially true when INCX and INCY did not have the value one. In this
asewe passed the a
tual arguments as array sli
es with a non-unit stride, and this,along with the additional routine
all overhead, appeared to exa
t a high penaltywith exe
ution times up to �ve times slower than using the Fortran 77
ompatibleroutines with non-unit in
rements. This additional overhead made these routinesup to twenty times slower than the optimal.On studying the assembler produ
ed by the Sun f90
ompiler for the rotm rou-tines, we dis
overed that we
ould improve the overall exe
ution speed by using thearray elements of the PARAM array argument rather than lo
ally de�ned simple vari-ables in the transformation loops. The released software uses these array elementsalthough this may not be optimal a
ross all platform/
ompiler
ombinations.There are a number of di�eren
es between the features available from the originalBLAS routines and those presented here(1) the standard transformation routines allow for row removal,(2) the rotation is no longer saved in the standard transformation routines. Detailsof how this may be
al
ulated
an be found in [Lawson et al. 1979b℄.(3) negative values for INCX and INCY are no longer
atered for,(4) the new routines require and return the re
ipro
al squares, d�1i , i = 1; 2,(5) error returns from the standard transformation routines are signalled by setting
 = s = 0,(6) s
aling only o

urs in the new modi�ed transformation routines when the re-
ipro
al squares are extremely large, ACM Journal Name, Vol. V, No. N, Month 20YY.

8 � R. J. Hanson and Tim HopkinsTest routines, providing 100% statement
overage, were
onstru
ted for all thenew user
allable routines. These exe
uted all but two of the basi
 blo
ks of
ode;these missed blo
ks test for an error
ondition that we have been unable to generateusing IEEE arithmeti
 but may o

ur with other, less stringent, arithmeti
s.5. BENCHMARKING AN IMPLEMENTATIONSingle pre
ision
odes s rotm and s rot were written for the above MG algorithmand SG implementing hyperboli
 transformations. Therefore either
ode
an beused for adding and then dropping data from least squares problems. Note thatthe Level-1 BLAS
odes srotmg/srotm allowed this add/drop step, but the pairsrotg/srot
an only add data. In
luding this extra
apability levels the
hoi
e fora developer, who often wants to use Givens transformations for row operations ona dense matrix for a least squares problem. A natural
hoi
e is to store the matrixelements aij in Fortran assumed-size array lo
ations A(I,J). As our ben
hmarksshow, this is not the optimal organization in terms of eÆ
ien
y. The matrix ele-ments are best organized in transposed form, with unit strides when applying thetransformations. Other
hoi
es, in
luding the
hoi
e of MG vs. SG, are se
ondaryin importan
e. At �rst blush it appears obvious, therefore, to use MG instead ofSG. The argument goes like this: Eventually MG has fewer operations when ap-plying the transformation. So when the problem is large enough, this
hoi
e will bemore eÆ
ient that SG.Our ben
hmark program triangularizes 2n � n random matri
es using Givenstransformations. However, extensive experimentation with this ben
hmark
odefailed to
on�rm our
onje
ture above regarding the superiority of the MG imple-mentation. While di�erent
ombinations of
ompiler options may greatly a�e
t therun-time of the resultant exe
utable
ode, it is not possible, due to the large num-ber of options available, to
ondu
t exhaustive trials. Combined with the advan
esin the provision of various levels of
a
he memory and the way
ompilers utilizesu
h memory, it is impossible to provide a de�nitive answer as to whi
h routinewill be the most eÆ
ient for any parti
ular hardware/
ompiler/
ompiler options
ombination without running a ben
hmarking program.What our experiments did show was that, using unit strides, the original BlasLevel 1 MG pair never produ
ed the best performan
e. Ea
h of the other routines,the proposed MG/SG and the original Blas Level 1 SG pair, performed best forat least one experiment. On large problems (n > 100) the bene�t obtained fromusing the most eÆ
ient over the least eÆ
ient of the other three routines
ould beas high as 40%.When it is
riti
al to obtain maximum performan
e from an appli
ation whi
hmakes intensive use of Givens transformations, we thus propose that our ben
hmarkprogram be run for typi
al size problems to determine the optimal routine for thehardware/
ompiler
ombination being used.6. ACKNOWLEDGEMENTSRi
hard Hanson was helped during the
ourse of several dis
ussions with Fred T.Krogh. We would also like to thank an anonymous referee for making us aware ofChambers' paper.ACM Journal Name, Vol. V, No. N, Month 20YY.

Another Visit with Standard and Modi�ed Givens Transformations � 9REFERENCESAnda, A. A. and Park, H. 1994. Fast plane rotations with dynami
 s
aling. SIAM J. MatrixAnal. Appl. 15, 1 (Jan.), 162{174.Bj�or
k, A. 1996. Numeri
al Methods for Least-Squares Problems. SIAM Publi
ations, Philadel-phia.Chambers, J. M. 1971. Regression updating. J. Amer. Statist. Asso
. 66, 744{748.Gentleman, W. M. 1973. Least squares
omputations by Givens transformations without squareroots. J. Inst. Maths Appli
s 12, 329{336.Golub, G. and Van Loan, C. 1996. Matrix Computations, 3rd ed. Johns Hopkins UniversityPress, Baltimore.Hammarling, S. 1974. A note on modi�
ations to the Givens plane rotation. J. Inst. MathsAppli
s 13, 215{218.Hopkins, T. 1997. Restru
turing the BLAS Level-1 routine for
omputing the modi�ed Givenstransformation. ACM SIGNUM 32, 4 (O
t.), 2{14.ISO/IEC. 1997. Information Te
hnology { Programming Languages { Fortran - Part 1: BaseLanguage (ISO/IEC 1539-1:1997). ISO/IEC Copyright OÆ
e, Geneva.Lawson, C. and Hanson, R. 1995. Solving Least Squares Problems, Classi
s ed. SIAM, Philadel-phia.Lawson, C. L., Hanson, R. J., Kin
aid, D. R., and Krogh, F. T. 1979a. Algorithm 539: Basi
linear algebra subprograms for Fortran usage. ACM Trans. Math. Softw. 5, 3 (Sept.), 324{325.Lawson, C. L., Hanson, R. J., Kin
aid, D. R., and Krogh, F. T. 1979b. Basi
 linear algebrasubprograms for Fortran usage. ACM Trans. Math. Softw. 5, 3 (Sept.), 308{323.Stewart, M. and Stewart, G. W. 1998. On hyperboli
 triangularization: stability and pivoting.SIAM J. Matrix Anal. Appl. 19, 4, 847{860.Re
eived ??? ???; revised ??? ???; a

epted O
tober 2003

ACM Journal Name, Vol. V, No. N, Month 20YY.

