

Drawing Graphs in Euler Diagrams

Paul Mutton1, Peter Rodgers1, and Jean Flower2

1 Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK
{pjm2, P.J.Rodgers}@kent.ac.uk

http://www.cs.kent.ac.uk/people/rpg/pjm2/
2 School of Computing, Mathematical and Information Sciences,

Watts Building, University of Brighton,
Lewes Road, Brighton, BN2 4GJ, UK

J.A.Flower@bton.ac.uk
http://www.cmis.brighton.ac.uk/research/vmg/

Abstract. We describe a method for drawing graph-enhanced Euler diagrams
using a three stage method. The first stage is to lay out the underlying Euler
diagram using a multicriteria optimizing system. The second stage is to find
suitable locations for nodes in the zones of the Euler diagram using a force
based method. The third stage is to minimize edge crossings and total edge
length by swapping the location of nodes that are in the same zone with a mul-
ticriteria hill climbing method. We show a working version of the software that
draws spider diagrams. Spider diagrams represent logical expressions by super-
imposing graphs upon an Euler diagram. This application requires an extra step
in the drawing process because the embedded graphs only convey information
about the connectedness of nodes and so a spanning tree must be chosen for
each maximally connected component. Similar notations to Euler diagrams en-
hanced with graphs are common in many applications and our method is gener-
alizable to drawing Hypergraphs represented in the subset standard, or to draw-
ing Higraphs where edges are restricted to connecting with only atomic nodes.

1 Introduction

The system described here links graph drawing and Euler diagram drawing into a
system for drawing graph-enhanced Euler diagrams. In a graph-enhanced Euler dia-
gram, we have a graph, an underlying Euler diagram, and a mapping from the graph
nodes to the zones of the Euler diagram. In any drawing, the nodes are required to be
included in the corresponding zone. We are, in effect, embedding graphs in Euler
diagrams. Our approach is to draw the Euler diagram first, and later add the graph in a
way that minimizes the number of edge crossings and total edge length in the graph.

There are various application areas which can be visualized by such structures and
so benefit from the work described here such as databases [3] and file system organi-
zation [2]. However, we show our system being used with a form of constraint dia-
gram, the spider diagram [9]. This application area is in particular need of automatic
layout for the diagrams because automatic reasoning algorithms produce abstract
diagrams that have no physical layout.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Euler diagram is a collection of contours (drawn as simple closed curves), ar-
ranged with specific overlaps. The parts of the plane distinguished by being contained
within some contours and excluded from other contours are called zones. The essential
structure of an Euler diagram is encapsulated by an abstract Euler diagram. An ab-
stract Euler diagram is made up of information about contours and zones. Contours at
the abstract level are not drawn, but have distinguishing contour labels. Zones are not
parts of the plane, but a partition of the contour set into containing contours and ex-
cluding contours. To clarify these concepts, Figure 1 shows, first, an abstract Euler
diagram, and, second, a drawn representation of the same Euler diagram. The shaded
zone in the drawn diagram corresponds to the abstract zone {a}.

Contours : { a, b }
Zones: {{}, {a}, {b}}

Fig. 1. The distinction between an abstract Euler diagram and a corresponding drawn Euler
diagram.

Most graph drawing systems do not take account of regional constraints, where
nodes must be contained within complex shapes. Simulated annealing can be an effec-
tive method of drawing graphs using a set of simple criteria [21]. These criteria are
used to judge the aesthetic quality of the resulting layout. Each criterion can be
weighted to change its importance. Such systems are applicable to embedding graphs
in Euler diagrams when used with suitable aesthetic criteria.

Fig. 2. Two equivalent hypergraph drawings which are different when interpreted as Euler
diagrams.

 a
b

In graph-enhanced Euler diagrams, the absence of a zone from the second diagram
in Figure 2 would convey extra information, whereas, considered as hypergraphs,
these two Figures convey the same information

Inspired by the widespread use of diagrammatic notations for modeling and speci-
fying software systems, there has been much work recently about giving diagrammatic
notations formal semantics. The analysis of a diagrammatic specification can be done
using diagrammatic reasoning rules - rules to transform one diagrammatic assertion
into a new diagram that represents equivalent or a weaker semantic statement.

One such notation, and reasoning system, is that of constraint diagrams [16,5,19].
A simple subset of constraint diagrams, with a restricted notation and restricted rule
system, is that of spider diagrams. Unitary spider diagrams are Euler diagrams with
extra notation comprising shading in zones and a graph superimposed on the diagram.
The components of the superimposed graph are trees (called spiders). Contours repre-
sent sets and zones represent subsets of those sets, built from intersection and exclu-
sion. The absence of a zone from the diagram indicates that the set corresponding to
that zone is empty. Thus the absence of a zone from the diagram conveys information,
and the two diagrams in Figure 2 have different semantics.

Each spider drawn on the diagram has a habitat: the collection of zones that contain
nodes of the graph. The spiders assert semantically the existence of an element in the
set corresponding to its habitat. Spiders place lower bounds on the cardinality of sets.
Shading in a zone (or collection of zones) indicates that the set corresponding to that
zone (or zones) contains only elements for the spiders that are in it, and no more.
Shading places an upper limit on the cardinality of sets. See Figure 3 for an example
of a spider diagram.

Contours : { a, b }
Zones: {{},{a},{b}}
Shading:{{a}}
Spiders : {{{},{b}},{{a}}}

Semantics:
|A| = 1 and {}=∩ BA and |U-A| ≥ 1

Fig. 3. An abstract spider diagram and a corresponding drawn spider diagram.

The semantics of spider diagrams provide a foundation upon which we build rea-
soning rules. In the case of spider diagrams, there are seven rules which transform a
spider diagram into another. For example, one rule transforms a diagram with an ab-
sent zone into the equivalent diagram which contains the zone, shaded. This reasoning
rule changes the structure of the underlying Euler diagram and necessitates reconstruc-
tion of a drawn diagram. A sequence of reasoning rules, applied to a premise diagram,
gives a proof which ends with a conclusion diagram. An example of such a proof is
shown, drawn by hand, in Figure 4. The same proof is shown again later in Figures
14-16.

b
a

The seven reasoning rules each make a small change to a diagram, and they have
been proven to be sound [20,23]. If a rule transforms diagram d1 into diagram d2 then
d2 represents a semantic consequence of d1. Other rules could be devised which are
sound, and in any logic system, the choice of rules is to some extent arbitrary. But
these rules form a logically complete set.

premise

conclusion

Fig. 4. An example of a proof in the spider diagram reasoning system

The full spider diagram reasoning system allows for the manipulation and interpre-
tation of compound spider diagrams: that is, expressions built up from spider diagrams
using the propositional logic connectives “and” and “or”. This extension leads to
many more reasoning rules, giving a sound and complete reasoning system, equivalent
in its expressiveness to monadic first order predicate logic with equality. More details
on the system, its rules and its expressiveness can be found in [10,18].

We have developed a tool [9,10] to assist users with the application of reasoning
rules to transform diagrams. At the heart of this must be an algorithm to generate
diagrams for presentation to the user as the outcome of a rule application.

2 Related Work

The task of drawing an Euler diagram - taking an abstract diagram and producing a
corresponding drawn Euler diagram is analogous to the task of graph drawing. Previ-
ous research has addressed some initial issues concerning the drawing of Euler dia-
grams. The paper [7] outlined well-formedness conditions on drawn diagrams and
presented an algorithm to identify whether an abstract diagram was drawable subject
to those conditions. If a diagram was diagnosed as drawable, then a drawing was pro-
duced. Later work, [8], sought to enhance the layout of a drawn Euler diagram using a
hill-climbing approach in combination with a range of layout metrics to assess the
quality of a drawing. There exists an Euler diagram drawing system [22] that embeds
some small diagrams, which can be drawn with a limited subset of shapes.

There has been some previous work in drawing extended graph systems. Clustered
graph visualization systems are common (e.g. [4,14]), but in such structures the re-
gions only nest and cannot intersect, hence they are not as expressive as Euler dia-
grams. There are a limited number of drawing methods for more complex graph-like
structures such as hypergraphs and higraphs. Hypergraphs are similar to standard
graphs, but with hyperedges rather than edges. Hyperedges connect to several nodes,

a b

c

a b

c

a b

c

a b

c

in contrast with standard edges which connect at most two nodes. Hypergraphs are
commonly represented in two ways: by the edge standard and the subset standard [17].
The edge standard draws hyperedges as lines, effectively adding a dummy node for
each hyperedge, where the lines connecting to each node meet. The subset standard is
a representation closer to enhanced Euler diagrams, where the hyperedges are indi-
cated by closed curves surrounding the grouped nodes. However, there are still sig-
nificant differences as hypergraph closed curves that intersect have no extra meaning,
and current hypergraph drawing methods [1] emphasize node groupings, putting little
emphasis on the layout of the curves. Hypergraphs with binary edges are represented
with the edge standard and with non binary edges represented with the subset standard
are similar to commonly applied subsets of higraphs [13,15].

3 Drawing Euler Diagrams Enhanced With Graphs

In this section we describe our three stage generic method for laying out graphs in
Euler diagrams. The software system has been implemented in Java.

3.1 Stage 1: Euler Diagram Smoothing

The basic process of drawing Euler diagrams in stage 1 has been detailed previously
[8]. In outline, firstly we produce an initial diagram based on the zone specification as
described in [7]. This results in a structurally correct, but not very well laid out dia-
gram. We then apply a multicriteria optimizer, which attempts to improve a weighted
sum of various diagram layout criteria using a hill climbing method. This adjusts the
contours by both moving them and moving the individual points of the polygons that
are used to represent them. It assesses the layout formed on each single move for the
presence of the correct zones and to see if the change has improved the weighted sum.
We use several criteria for measuring diagram features, such as contour smoothness,
contour size, zone area and contour closeness. The criteria and the hill climber are
described in [8].

This system has since been extended to deal with nested diagrams [11]. Nested
Euler diagrams have subdiagrams entirely enclosed in a zone of a containing diagram.
To draw a nested diagram, assuming we have a mechanism for drawing each atomic
(non-nested) part independently, the first step is to identify, in the abstract diagram,
which are the atomic components and which zones of containing diagrams each nested
part belongs to. Each atomic component can be drawn and this tree-structure of drawn
atomic components is combined into a single diagram as follows. For each zone which
contains sub-diagrams, we find its bounding box, split it into a j×j grid and consider
sequences of sub-boxes, width i, within the bounding box. The sub-boxes occupy a
fraction i / j of the bounding box, and are placed sequentially at (j - i)2 positions scan-
ning the whole bounding box (starting centrally). As j gets larger, the subboxes shrink
and eventually one will be found which fits inside the zone. This sub-box is parti-
tioned into disjoint boxes, within which the nested diagrams are inserted. This process
is illustrated in Figure 5.

Fig. 5. Nesting Euler diagrams.

 Once the nested diagram has been built in this way, the next step is to improve its
appearance by smoothing. As the nesting can be arbitrarily deep, the amount of move-
ment of polygons and polygon corners could be too large for very small nested
contours. Hence, the amount of movement has been scaled to be proportional to the
size of the contour (in fact, the bounding box of the contour) against the size of the
whole diagram.

The result of Stage 1 is normally a well laid out Euler diagram. The graph can then
be superimposed as described in the following sections.

3.2 Stage 2: Finding Locations for Nodes

A node belonging to a particular zone must be placed such that the node is con-
tained within the region defined by the drawn zone. Each concrete zone is defined by
a sequence of line segments. We do not concern ourselves with disconnected zone
areas, as these are not present in a well-formed [7] Euler diagram, however, for nested
diagrams, at least one zone fails to be simply-connected (i.e. it’s ring-shaped, or
worse; see Figure 6). Zones which are simply connected (i.e. disc-like) have one poly-
gon as their boundary, but non-simply connected zones have multiple polygons
bounding them. In topology, a set is defined to be simply-connected if any path which
starts and finishes at the same point can be continuously deformed until the path is
constant at a point. A zone is simply connected if it is isotopic to a disc.

d e

a b

c

a

c d e

a

c

Fig. 6. Two examples of non-simply-connected zones (shaded), drawn by our implementation.

A variety of possible strategies exist for the initial placement of a node inside its
containing zone. We use a fast and simple method that is primarily concerned with
ensuring that the node is contained inside the zone, regardless of how bad that place-
ment is. Subsequent application of a force model refines the placement so that the
node is not too close to any of the boundaries of the zone. The force model also en-
sures that all nodes sharing the same zone are reasonably spaced.

The initial placement of a node requires a line to be drawn through the containing
zone. For simplicity of implementation, this line is horizontal and passes through the
bounding box of the concrete zone. The y-coordinate of the horizontal line is chosen
randomly between the range of the bounding box in order to give a scattering effect
when there is more than one node present in a zone. By intersecting the bounding box
horizontally, we can be certain that there is at least one subinterval of the line that is
contained by the area of the concrete zone.

Fig. 7. Candidate locations for a new node in zone a excluding b,c. The horizontal line is
placed such that it intersects the bounding box of zone a at a random height. This diagram
shows two subintervals where it is valid to place the new node.

An ordered set is built up from the intersection points of the horizontal line and the
line segments which make up the boundary of the zone. This set must contain at least

two points, and any location between the 2n-1th and 2nth intersection point must be-
long to the zone (see Figure 7).

The Stage 1 method for placing nested diagrams described in Section 2.1 could
have been used for the initial placement of nodes. However this node placement
method is faster as we are placing a point rather than a shape with a bounding area and
we are unconcerned about a central placing of the point, anticipating the refinement
which is described next.

After initial placement, refinement of node locations is achieved by applying a
force model to the set M of nodes in the zone. We introduce a repulsive force acting
between each pair of nodes in the zone, causing them to become evenly distributed.
This repulsive force is inversely proportional to the separation d, and proportional to
the number of nodes, |M|, in the zone. A constant c is used to affect the desired separa-
tion between pairs of nodes. This repulsive force is based on the force model by
Fruchterman and Reingold [12] and is commonly used in force directed graph layout.

Repulsive force between two nodes =
d
cM × .

To prevent nodes escaping from a zone or getting undesirably close to the bound-

ary of a zone, we make each line segment in the boundary of the zone exert a repulsive
force on each contained node. It is desirable to let the set of nodes spread about a
reasonably large area of the zone, however it is still essential to keep each node away
from the line segments that define the zone. For this reason, we depart from the previ-
ously used force model and make the repulsive force acting on a node proportional to
the inverse square of the distance from the line segment. This encourages nodes to
spread over a reasonable area with very little chance of getting too close to a boundary
due to the prohibitively high resultant forces.

Fig. 8. Initial placement of spider feet (left) and refinement under the force model (right).

The repulsive force is proportional to |M|2, as this helps to contain larger sets of
nodes where there will be more node-node repulsions. As the zone may consist of an
arbitrary number of line segments of arbitrary lengths, the repulsive force is also pro-
portional to each length.

Repulsive force between a line segment and a node = 2
2

d
lcM × .

We have observed that better results can be obtained when there are more line

segments bounding a zone. We use a method that breaks a zone boundary into more
line segments without affecting the region contained; typically so there become more
than a hundred new line segments. We use the simple method of dividing each exist-
ing line segment into two new line segments of equal length. The process is repeated
until it yields enough new line segments. This reduces the chance of a node escaping
from a corner of the zone when the force model is applied.

The simulation of the force model is an iterative process. For each iteration, the re-
sultant force acting on each node is the sum of all repulsive forces from the line seg-
ments of the containing zone and the repulsive forces from all other nodes in the same
zone. After calculating all of the resultant forces, the location of each node is updated
by moving it a small distance in the direction of the force. The distance of the move-
ment is proportional to the magnitude of the force. After a number of iterations, the
system nears an equilibrium and the nodes occupy their new locations.

3.3 Stage 3: Laying Out the Edges

The previous stage calculates locations for nodes. We can think of these locations as
being candidate locations for the set of nodes in the zone, and we are free to swap the
location of pairs of nodes, within a zone, without changing the meaning of the diagram
(see Figure 9). Swapping pairs of nodes changes the location of edges emanating from
those nodes. We use a simple hill climbing approach on this with two metrics to im-
prove the quality of the diagram.

One desirable feature of a diagram is to have a minimal number of edge crossings.
Our first metric returns the number of edge crossings in the current diagram, so values
closer to zero will represent a better quality of layout in terms of edge crossings. To
further enhance the understandability of the diagram, we introduce a second metric,
which is based on the length of edges in the diagram. Shorter edges make graphs eas-
ier to navigate and identify, so the value returned by this metric will represent an im-
provement in the layout if the value is closer to zero. The value returned is the sum of
each edge length squared.

In our current system, we are only concerned with simple straight-line edges, al-
though it is worth noting that our software can deal with non-simple edges. For exam-
ple, some notations use curves or shapes to represent special edges and our system is
able to detect intersections with these nonlinear edges.

Fig. 9. A diagram with 4 edge crossings (left) and the same diagram produced using the hill
climber, with no edge crossings (right). Notice the common locations for all nodes. The right
hand diagram has had 3 pairs of nodes swapped, in zones b, ab and abc.

Fig. 10. A diagram demonstrating the different types of edges that are supported by our system.
Intersections with the more complicated types of edges can still be computed.

As the value returned by the edge length metric is based on the sum of edge lengths
squared in the diagram, we make this value dimensionless by dividing it by the area of
the diagram. This makes the metric return the same value for a particular diagram,
regardless of the scaling.

The two metrics are combined as a weighted sum to work out the current quality of
a diagram. As we have determined minimization of edge crossings to be the most
important factor, we apply a much higher weighting to this metric. That is, we are
unlikely to reduce the total edge length in a diagram at the expense of introducing a
new edge crossing.

In our implementation of the system, we use a weighting of 1 for the edge crossing
metric. The weighting of the edge length metric is relative to this and is chosen such
that when the returned value is multiplied by the weighting, the value is typically less
than 1. Larger values may allow total edge length to be reduced at the expense of
introducing new edge crossings. Our implementation uses a weighting of 1×10-3 for
the edge length metric weighting. Some examples of “quality” values are illustrated in
Figure 11.

Crossings: 0.0000

Length: 0.0000
Total: 0.0000

Crossings: 1.0000
Length: 0.1143

Total: 1.1143

Crossings: 0.0000
Length: 0.0940

Total: 0.0940

Crossings: 0.0000
Length: 0.1515

Total: 0.1515

Fig. 11. Total quality metrics for some graph-enhanced diagrams.

The hill climber is also an iterative process and runs for either a fixed number of it-
erations, or a user may interact with the process and apply more iterations if it is
deemed necessary. Each iteration begins with selecting a random zone that contains
more than one node. A random pair of nodes is selected from this zone and their loca-
tions are swapped. This does not alter the meaning of the diagram, as they both lie
within the same zone. If the new quality of the diagram is worse than before, the nodes
are swapped back to their original locations; otherwise, the change is kept. After a
number of iterations, the quality of the diagram according to the metrics improves.
The effect of the hill climber can be seen in the last image in Figure 12. Smoothed
versions of these diagrams are shown in Figure 13.

Initial Euler diagram Initial node placement After force directed

placement and hill climbing

Fig. 12. The effect of using the force directed node placement and hill climber on graphs being
embedded into an Euler diagram that has been drawn automatically.

Initial Euler diagram Initial node placement After force directed

placement and hill climbing

Fig. 13. Embedding the previous graphs into the same Euler diagram laid out with the smooth-
ing system. It is easier to distinguish between the curved contours and the straight edges.

4 Drawing Spider Diagrams

In this section we describe how we apply our method to spider diagrams. The
method is essentially that described in Section 3, where we describe a method to draw
graphs on Euler diagrams, except that spider diagrams do not have arbitrary graphs
connecting nodes. Instead, nodes are connected in spanning trees, and the manner in
which the nodes are connected in the tree is not significant. The abstract syntax of
spider diagrams expresses spiders purely in terms of their habitat: a collection of
zones. A spider whose habitat comprises three zones, z1, z2, z3 can be drawn with a
graph edge (the spider’s leg) drawn between graph nodes (the spider’s feet) in z1 and
z2 and a second leg between graph nodes (the spider’s feet) in z2 and z3. An alternative
drawing might draw legs between z1 and z2 and between z1 and z3. Only once a spider
is drawn do we know which of its feet have a leg between them. As we only have the
information about which sets of nodes are connected, our drawing method needs an
additional process that develops a tree between the nodes.

Once the feet for each spider have been placed, it is possible to use Prim’s or
Kruskal’s algorithm to form a minimal spanning tree. This completes the concrete
representation of the spider with the smallest total edge length, but does not take into
account edge crossings. As our hill climbing method gives preference to changes that
reduce edge crossings, we do not create a minimal spanning tree, but trivially form a
chain of spider legs that connect each spider foot.

In [18,10], spider diagrams are given semantics, and diagrammatic reasoning rules.
A reasoning rule transforms one diagram into another, whose semantics are a logical
consequence of the premise diagram semantics. A proof in the spider diagram reason-
ing system is simply a sequence of these diagrammatic transformations, which could
be elicited from a user, with a software tool assisting in the valid application of rea-
soning rules. Alternatively, proofs can be automatically generated between given
premise and conclusion diagrams [9,10]. An example of an automatically generated
proof is shown in Figures 14, 15 and 16, where the rules “Add Shaded Zone” and

“Add Spider Foot” have been applied. The first rule changes the underlying Euler
diagram, and the second rule changes the superimposed graph. Without any results on
drawing spider diagrams, the proof can only be presented in its abstract form (Figure
14). The preliminary work on drawing can present the proof with correct but unap-
pealing diagrams (Figure 15). After combining the algorithm described in this paper
with the previous work on smoothing [8], the proof is presented in a most readable
fashion (Figure 16).

Fig. 14. An abstract proof.

Fig. 15. A drawn proof with unappealing diagrams.

Fig. 16. A drawn proof with smoothed diagrams.

The final position of spider feet in an automatic layout often depends on their initial
placement before the force model is invoked. We sometimes observe nodes getting
stuck in locally minimal energy states, where they are unable to move elsewhere in a
zone. To escape from the local minima, simulated annealing could be employed to
make nodes periodically jump a larger distance to see if it is beneficial to the energy
level in the force model. Figure 17 illustrates one example of a bad layout caused by
local minima.

Manual layout (good) Automatic layout (good) Automatic layout (bad)

Fig. 17. Different layouts for the same graphs in an Euler diagram. The bad automatic layout
occurs when both nodes in zone a are initially placed close to each other and reach a local
minima while the force model is being simulated. In this case, it is not possible to reduce edge
crossings without moving nodes.

5 Conclusions and Further Work

We have presented a method for automatically embedding graphs in Euler dia-
grams. The Euler diagrams are laid out using a multicriteria optimizing system. Nodes
are placed at initial locations before being refined with a force model that involves
interactions between zone boundaries and other nodes in the same zones. Finally, edge
crossings and total edge length in the graphs are reduced without changing the mean-
ing of the diagram, using a hill climbing approach. We have also specialized our
method to apply to the syntax of spider diagrams and we demonstrate a software tool
that draws automatically generated proofs in a spider diagram reasoning system.

The current implementation of the force model for placing nodes does not guaran-
tee in all cases that nodes will remain inside the correct Euler zones. Allowing nodes
to move out of their zones is very undesirable, as this would change the structure and
meaning of the diagram. We are confident that in all but special cases (those where the
nodes are initially placed very close to zone borders and with other nodes nearby) the
force model maintains the node locations, but it would be relatively simple to add a
structure check to the diagram after each iteration of the force model. This would
check that the nodes remain in the correct part of the diagram. If a node movement
had changed the structure by moving outside of the correct zone then the node could
either be placed back where it originated or placed randomly in the correct zone.

At the moment, the optimization of the graph layout relies on swapping nodes that
are in the same zone. A further addition to this for spider diagrams is to change the
spanning tree of a spider as a move in the hill climber, in an attempt to improve edge
crossings and edge length of the final graph. We feel that this can improve the layout
of spiders.

The example of a proof shown in Figures 14, 15 and 16 was chosen well, to ensure
that all the intermediate diagrams are drawable (a property of Euler diagrams, as de-
scribed in [7]). More work needs to be done to resolve, and draw, Euler diagrams that
are currently diagnosed as “undrawable”. Resolution will require the drawing of dia-
grams which use multiple crossing points between contours, and may even allow dif-

ferent contours to share a concurrent path. There are usability drawbacks to these
kinds of diagram syntax, but perhaps even more serious usability drawbacks if we can
create no drawing at all for a proof step. The smoothing approach would need to be
adapted in the case that multiple contours were allowed to pass through the same
point, for example. Without adapting the algorithm, the concurrent contours would
inevitably “pull apart”, creating extra zones which change the underlying diagram
structure. This is an issue with the applicability of drawing Euler diagrams and not
directly relevant to this paper.

Another important question raised by the proof-presentation application is that of
continuity of proofs. When a diagram transformation is made (a new zone is added or
a new spider foot is joined), the transition is best understood if the concluding diagram
closely resembles the preceding diagram, highlighting only a local change. We seek to
maintain the mental map between the dynamic visualizations at each proof step. There
are several possible ways to achieve this. One method is to include a mental map crite-
ria across all diagrams when performing hill climbing at both the Euler Diagram and
node location stages. Another method is to draw the first diagram nicely, and then
attempt to draw subsequent diagrams incrementally to remain as close to previous
ones as possible. It is also worth noting that phases 2 and 3 of the current system could
be combined to form a meta-heuristic, which may simplify mental map preservation.

This task of drawing one diagram given another diagram which is structurally simi-
lar, generalizes to drawing given a context which is a library of drawn examples.
Creating drawings in such a context could allow a tool to learn about user preferences
in diagram layout.

Acknowledgements

This work has been partially supported by EPSRC grants GR/R63509/01 and
GR/R63516/01. We would also like to thank John Taylor and Richard Bosworth at the
University of Brighton for helpful comments on early versions of this paper.

References

1. François Bertault, Peter Eades. Drawing Hypergraphs in the Subset Standard. GD 2000.
LNCS 1984. pp. 164-169.

2. R. De Chiara, U Erra and V. Scarano. VENNFS: A Venn-Diagram File Manager. IEEE
Proceedings of Information Visualization (IV03). pp. 120-126. 2003.

3. M.P. Consens and A.O. Mendelzon. Hy+: A Hygraph-based Query and Visualization
System. Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 511-516,
1993.

4. Peter Eades, Qingwen Feng. Multilevel Visualization of Clustered Graphs. GD 1996.
LNCS 1190. pp. 101-112.

5. A. Fish, J. Flower, and J. Howse. A Reading Algorithm for Constraint Diagrams. Proc.
IEEE 2003 symposium on Human-Centric Computing languages and environments (HCC
`03), pp. 161-168.

6. A. Fish, and J. Howse Computing Reading Trees for Constraint Diagrams. To appear in
Proceedings of AGTIVE `03.

7. J. Flower and J. Howse. Generating Euler Diagrams, Proc. Diagrams 2002, Springer Ver-
lag, pp. 61-75. 2002.

8. J. Flower, P. Rodgers and P. Mutton. Layout Metrics for Euler Diagrams. Proc. IEEE
Information Visualization (IV03). pp. 272-280. 2003.

9. J. Flower and G. Stapleton. Automated Theorem Proving with Spider Diagrams. To ap-
pear in proc. Computing Australasian Theory Symposium (CATS04).

10. J. Flower, J. Masthoff and G. Stapleton. Generating Readable Proofs : A Heuristic Ap-
proach to Theorem Proving With Spider Diagrams, Diagrams ’04.

11. J. Flower, J. Howse and J. Taylor. Nesting in Euler Diagrams, Syntax, Semantics and
Construction. In Journal of Software and Systems Modelling (SoSyM), Springer Verlag,
Issue 1, article 5.

12. T.M.J. Fruchterman, E.M. Reingold. Graph Drawing by Force-directed Placement. Soft-
ware – Practice and Experience Vol 21(11). pp. 1129-1164. 1991.

13. D. Harel. On Visual Formalisms. Communications of the ACM. 31(5). pp. 514-530. 1988.
14. David Harel, Gregory Yashchin. An Algorithm for Blob Hierarchy Layout. Working

Conference on Advanced Visual Interfaces. pp. 29-40, May 2000.
15. Higraph web page: http://db.uwaterloo.ca /~gweddell/higraph/higraph.html.
16. J. Howse, F. Molina, J. Taylor, S. Kent. Reasoning with Spider Diagrams, Proc. IEEE

Symposium on Visual Languages 1999 (VL99), IEEE Press, 138-147.
17. Erkki Mäkinen, How to draw a hypergraph. International Journal of Computer Mathemat-

ics 34 (1990), 177-185
18. G. Stapleton, J. Howse, J. Taylor and S. Thompson. What Can Spider Diagrams Say?

Diagrams 2004.
19. G. Stapleton, J. Howse and J. Taylor. A Constraint Diagram Reasoning System. Proc

Visual Languages and Computing '03, pp. 263-270.
20. Visual Modelling Group: technical report on spider diagram reasoning systems at

www.cmis.brighton.ac.uk/research/vmg/SDRules.html
21. R. Davidson, D. Harel. Drawing Graphs Nicely Using Simulated Annealing. ACM Trans-

actions of Graphics, Vol. 15, No. 4, pp. 301-331. 1996.
22. S. Chow and F. Ruskey. Drawing Area-Proportional Venn and Euler Diagrams. To appear

in Proceedings of GD2003. LNCS. Springer Verlag.
23. Howse J, Molina F, Taylor J, On the completeness and expressiveness of spider diagram

systems. Proceeding of Diagrams 2000, Edinburgh 2000, LNAI 1889, Springer-Verlag,
26-41.

