
Going Interactive:
Combining Ad-Hoc and Regression Testing

Michael Kölling1, Andrew Patterson2

1 Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Denmark
mik@mip.sdu.dk

2 Deakin University, Australia
patto@deakin.edu.au

Abstract. Different kinds of unit testing activities are used in practice. Or-
ganised unit testing (regression testing or test-first activities) are very
popular in commercial practice, while ad-hoc (interactive) testing is popular
in small scale and experimental development environments and teaching
situations. These testing styles are usually kept separate. This paper intro-
duces a design and implementation of a system that combines these testing
styles to create a tool for new testing activities that both communities –
professional and educational – may benefit from.

Keywords: unit testing, ad-hoc testing, JUnit, development environments

1 Introduction

Testing always has been, and in all likelihood always will be, an important part of
software development. Unit testing – the test of individual parts of a system on their
own – is one important form of testing systems during and after development.

Recently, support for unit testing in object-oriented systems has increased in popu-
larity. This support exist in various forms: support for test development as an aid in
specification (“test first” strategies), support for organised regression testing of pro-
gram units and support for ad-hoc testing.

Currently one of the most popular tools for supporting unit testing in both the ex-
treme programming (XP) community and the Java community is JUnit [2].

JUnit is a small and elegant unit testing framework that supports organised regres-
sion testing for application units. It can be used both as a pure regression testing tool,
as well as a test-first tool following the extreme programming methodology.

Ad-hoc testing is the interactive testing process where developers invoke applica-
tion units explicitly, and individually compare execution results to expected results.
Ad-hoc testing requires support via a dedicated development environment. In the Java
domain, ad-hoc testing is provided by some environments or environment plug-ins
such as BlueJ [4] and BeanShell [6].

BlueJ is an integrated development environment developed specifically for teaching
of object orientation to novices of the object-oriented paradigm, which provides sup-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

port for interactive execution of individual methods (ad-hoc testing) via a graphical
user interface.

BeanShell is a Java execution engine that allows interactive evaluation of individ-
ual textual Java expressions, including method calls. BeanShell is often used via a
plug-in inside larger development environments. Popular BeanShell plug-ins exist, for
example, for the Eclipse environment [1] and for the Sun One Studio [7].

The work described in this paper consists of the design and development of a single
system that combines a unit testing framework with ad-hoc testing functionality. This
system is based on BlueJ and JUnit.

We demonstrate that the result is not only a side-by-side coexistence of ad-hoc test-
ing and regression testing, but that new functionality emerges through the combina-
tion of the two, which was not previously available in either of the separate systems.

Central in the resulting functionality is the ability to record interactive (ad-hoc)
testing sessions and use these test recordings to automatically create JUnit test cases.

2 Testing with JUnit

The JUnit testing framework has become a de facto standard for implementing unit
tests in Java. It provides a set of classes and methods that aid in writing unit tests for
organised regression testing.

Programmers implement test classes by extending a JUnit class called TestCase. In
this class, they implement test methods, which can later be executed through the
framework. Several assertion methods are available for use in test methods.

JUnit also provides support for fixtures – a set of objects in a specific state as a ba-
sis for tests – via standard setUp and tearDown methods. Different interfaces exist to
run tests and display results; the most popular is a GUI named SwingRunner.

JUnit has been extensively described in the literature, so we will, in this paper,
leave it at this short summary. For the remainder of this paper, we assume that the
reader is familiar with JUnit.

3 Ad-Hoc Testing in BlueJ

Ad-hoc testing – the immediate and interactive testing of code fragments – has been
available for a long time in functional languages and in Smalltalk.

Most statically typed object-oriented languages were not originally integrated with
interactive environments. For Java, ad-hoc testing is provided by various systems such
as BlueJ, BeanShell, or DynamicJava [3].

Since we have chosen BlueJ as the basis for our ad-hoc/JUnit integration, we will
give a brief summary of BlueJ’s interaction mechanism prior to this work.

The main display of BlueJ (Fig. 1) is a simplified UML diagram of the classes in
the system. Each class is displayed as an icon with UML stereotypes to indicate differ-
ent class types such as «abstract», «interface» or «applet».

Fig. 1. The main interface of BlueJ. The window includes a class diagram, and interac-
tively created objects on the object bench at the bottom. Both classes and objects have
context menus for interaction.

Each of the classes displayed has an associated popup menu that displays all public
constructors for the class, as well as all its public static methods. When a constructor
is selected, the user is prompted to enter necessary parameters, and then a representa-
tion of the constructed object will be created on the object bench. Once an object is
available on the object bench, any public method can be interactively invoked via a
context menu. Parameters may be entered and results are displayed.

Using the object interaction mechanism in BlueJ, a user can create the initial setup
of a test phase by instantiating objects and placing them on the object bench. Methods
can then be tested, by making a sequence of interactive method calls. Parameter values
can be chosen and method results can be examined.

No test harnesses or test drivers are required to execute the methods that have just
been constructed. However, this testing is ephemeral. Objects are automatically re-
moved if any change is made to their class or if the project is closed. In particular, the
potentially time consuming set up phase, where objects are constructed, must be
manually repeated after each compilation. Tests cannot be easily repeated to confirm
the behaviour later on in the program development. Thus, while BlueJ’s interaction
mechanism provides good tools for ad-hoc testing, it offers little support for a more
organised approach.

4 Integrating BlueJ and JUnit

To merge the functionality of BlueJ and JUnit, we have integrated the JUnit frame-
work into the BlueJ environment.

In its most simple form, this could mean to just provide the JUnit classes with the
general libraries of the system. This would then make the JUnit functionality avail-

able as it is in any Java environment. The effect would be a side-by-side co-existence
of both testing systems without interoperation between the two.

Closer analysis, however, reveals a number of possible interoperations between
JUnit and BlueJ that can be provided to enhance the user-level functionality. These are
discussed below.

4.1 Recognising JUnit Classes

The most fundamental specific JUnit support can be provided by recognising JUnit
test classes (classes that extend TestCase) as a special kind of class type in the BlueJ
environment. BlueJ already supports different class types with individually adapted
user functionality. Applet classes, for example, are recognised and have an associated
‘Run Applet’ command that executes the applet in a web browser.

Equally, unit test classes can be recognised and be treated differently. These differ-
ences may include:
• using a distinct visual representation for test classes to separate them from imple-

mentation classes;
• providing specific default source code skeletons;
• providing functionality for selective display, which hides test classes temporarily;
• association of specific test commands with the test class (see below).
Each of these enhancements can make working with test classes more convenient.

4.2 Executing Single Test Methods

BlueJ’s interactive test support allows the interactive invocation of single methods by
selecting them from a pop-up menu.

Since JUnit test cases are individual methods, integration in BlueJ results in these
methods being interactively executable. Thus, in BlueJ, test cases can easily be exe-
cuted individually. These test method calls could be recognised as such by the envi-
ronment, and success or failure be reported in an appropriate manner. (Using a standard
interface like the SwingRunner GUI may not be appropriate to display the result of a
single test method.)

4.3 Executing All Test Methods of a Test Class

One of the specific commands associated with a test class (provided in its context
menu) can be a “Test All” command, which would execute all test methods defined
within that class. This function is similar to a standard JUnit test run. An interface
similar to the standard JUnit SwingRunner may be used to display results.

4.4 Executing Tests from All Classes

If JUnit test classes are recognised by the environment, a “Test All” function may be
provided (e.g., as a toolbar button) which runs all test from all test classes in a pack-
age or a project. Again, a SwingRunner-style interface may be used to present results.

Fig. 2. A reference class and attached test class. The test class is marked with a stereotype
and different colour. A context menu shows the test class operations.

4.5 Attached Test Classes

BlueJ presents class diagrams of projects, and interaction is heavily designed around
using contextual menus on classes and objects.

This can be used for a further enhancement: Instead of creating test classes inde-
pendent of other classes, they may be created in direct association with an exiting im-
plementation class. For example, as class’s context menu may have a ‘Create Test
Class’ command, which creates a test class associated with this specific class. This as-
sociation is semantic: It signifies that the purpose of the test cases in this test class is
to test the associated class (which we term the reference class). The association can
also be functional: The test class may have a ‘Create Test Stubs’ command, which
automatically creates stubs for all public methods in its reference classes. Lastly, the
association may be visual: We can visually attach the test class to the reference class
in the class diagram to signify this association to the user (Fig. 2). Dragging the ref-
erence class on screen would automatically move the test class with it.

Attached test classes could be supported in addition to free test classes (those not at-
tached to a specific class). Free test classes contain tests for multiple reference classes.

4.6 Recording Interaction

Among of the biggest advantages of ad-hoc testing is that it does not require manual
writing of test drivers and its action sequences can be decided dynamically: seeing the
result of one test can determine the next course of action.

One of the biggest advantages of written test drivers is that tests can be replayed
multiple times in the future.

Each does not have the characteristic of the other: BlueJ’s ad-hoc tests cannot be re-
played, and writing JUnit test drivers is static: the programmer usually does not see
the result of one method call before writing the next.

Merging BlueJ with JUnit allows us to combine both advantages. We can execute
dynamic interactive tests, while recording the test sequence and automatically writing
JUnit tests cases from that recording. This could be done by providing a “Create Test
Method” command in a test class’s context menu, which starts a recording process un-
til it is explicitly ended by the user. At that time the recording is transformed into
Java source text and written into the test class as a test method.

Tests can now be done interactively and this interaction can later be replayed.
Since test classes are an extension of standard classes in BlueJ (and thus also have

the standard functionality), recording test cases interactively is just an added functional-
ity to the standard (manual) creation of methods. The class can, of course, also be
manually edited, and test methods may be written by hand. In fact, both techniques
could be combined: tests can be recorded first, and later modified by manual edit. There
is nothing special about recorded tests: they are transformed to standard Java source
code and can be treated and processed like other test methods.

Fig. 3. A method result dialog allows attachment of assertions to method calls.

4.7 Asserting Test Results

If we want to support interactive test recordings, we need to add a mechanism to spec-
ify assertions on results during the interactive test activity.

BlueJ already has a method result display dialog. When an interactive method call
returns a value, this value is shown on screen.

We propose to extend this result dialog with an assertion panel, which may be
shown only while we are in “test recording” mode. This assertion panel would
• provide the option to attach an assertion to the result;
• provide a choice of available assertions; and
• allow us to enter values for the assertion parameter.
Since in many cases the actual return value may be correct, the dialog could enter the
actual return value as the default for the assertion parameter, thus making the creation
of the assertion convenient in many cases (Fig. 3).

4.8 Creating Text Fixtures From Interaction Objects

JUnit text fixtures correspond to a set of objects interactively created on the object
bench in manual tests.

This relationship can be exploited to aid the creation of fixtures for test classes: we
can create test fixtures by manually creating and preparing a set of objects, and then
invoking an “Object Bench to Test Fixture” command from the test class’s context
menu. This command would create Java source code in the test class’s setup method
that creates objects identical to those currently on the object bench. This function thus
corresponds to interactive test fixture creation.

Care must be taken in the implementation of this function. Several implementa-
tion approaches exist, and these can have subtle differences and associated problems.

One approach is to serialize the objects, and to read them in as part of the fixture
setup. This approach is problematic, since it depends on external files and removes the
contextual independence of the source code.

The algorithm we have chosen is based on recording all interaction with the object
bench since it was last cleared. This could be done in various ways: The interaction
can be stored in an action tree that encodes the objects, their methods and their interac-
tions. In such a tree, however, it is difficult to maintain the sequential ordering of the
calls, which is important for the actual object state.

Another recording approach is to textually record all object bench interaction, and
to replay the creation later from the actual Java source text. This is the approach we
have chosen for our implementation. Objects can be re-created later in the exact same
sequence. In short: while the algorithm must be designed carefully, recording is pos-
sible, and fixtures can be interactively created.

4.9 Using Text Fixtures for Interactive Testing

The test fixture/object bench relationship can be exploited the other way around as
well: Existing fixtures (whether created via recordings or manual writing) can be cop-
ied onto the object bench. There, they are available for interactive testing. This func-
tion could be made available to users via a “Test Fixture To Object Bench” command
in the test classes context menu.

There are at least two scenarios where this may be useful: Firstly, it can be used to
extend existing fixtures. We could, for example, allow the repeated recording of test
fixtures from the object bench, where the last recording replaces the previous one.
Since the old one gets replaced, it would be beneficial to have functionality to extend,
rather than replace, an existing fixture. This can now be easily achieved by first copy-
ing the existing fixture to the object bench, then interactively adding an object, and
copying the bench back to the fixture.

The second case where such a function is useful is for pure interactive testing. Even
if all tests are intended to be done interactively, the concept of a fixture that can be rec-
reated for further testing later is very useful. Thus, it can be beneficial to use test
classes purely for the purpose of storing fixtures for interactive testing, without the
intention of ever creating test methods. This can now easily be done using a combina-
tion of “Object Bench To Test Fixture” and “Test Fixture To Object Bench” com-
mands.

5 Discussion

5.1 Functionality: Cooperation and Coexistence

The discussion in the previous sections demonstrate that combining JUnit and BlueJ’s
ad-hoc testing mechanism can result in something more than mere co-existence of two
test paradigms. Elements from both test-worlds can be mixed and combined, resulting
in a new quality of system interaction that can be useful for both original tasks: creat-
ing regression tests, and ad-hoc testing.

Creation of regression tests benefits, since these tests can be created via dynamic
interaction that allows the tester to see and inspect actual test results during the crea-
tion of a test sequence. Equally, fixtures can be created interactively.

Ad-hoc testing benefits since some unit testing functionality provided by JUnit,
such as fixture creation, becomes available for ad-hoc testing.

This mix-and-match functionality from elements from both test paradigms creates
new possibilities for test interaction.

Existing interaction styles are not negatively affected by this. Test-first methodolo-
gies, for example, initially seem to contradict the recording approach – since there is
nothing to do the recording with if the test is created before the method. The automatic
recording functionality, however, does not replace, but extend the hand-written test
functionality. We have taken great care in our design to ensure that the recorded test
cases result in pure Java source code in accessible standard classes. Thus, the recording
functionality can co-exist with manual test-first functionality, and code produced by
each can indeed co-exist in a single source file.

Test-first methodology can, in fact, also make use of the interaction recording, if
method stubs are created first. Then interactive calls to those stubs can be used to cre-
ate test cases before method implementation, and assertions can be written.

The choice, manual writing or interactive recording, is up to the user.

5.2 Implementation

All of the functionality described in this paper has been implemented and tested. The
latest, recently published, version of BlueJ (version 1.3.5) implements the described
scheme, using the standard JUnit framework as a core extension to the BlueJ system.
The JUnit core classes are used unchanged, while the interface is a modified re-
implementation of the standard SwingRunner, in addition to the interface elements de-
scribed in the paper. The SwingRunner had to be adapted for BlueJ, among other
things because BlueJ uses two separate virtual machines: one for execution of the en-
vironment itself, and one for the execution of user code. This necessitated a restructur-
ing of JUnit to be spread between these two machines.

All figures in this paper are actual screenshots from the released version of BlueJ.

5.3 Significance

In this work, the proposed merging of JUnit with ad-hoc testing functionality was
done in the context of an educational environment. As such, the actual resulting prod-
uct may not be of major interest to professional developers outside the education and
training area.

We have tried to show, however, through the discussion in this paper, that the idea
is not specific to educational environments. Very similar implementations may be
created for professional environments, such as Eclipse or Sun ONE Studio.

In the context of BlueJ, the integration of JUnit functionality seems to have led to
an increase in coverage of organised regression testing in introductory programming
courses. Even though availability of this functionality is recent, we have already had
repeated positive feedback, including reports of teachers including this functionality
into their curricula. A short tutorial on this functionality [5] has become a popular
download from the BlueJ web site.

In the context of professional programmers, functionality like this may aid in train-
ing programmers in the use of JUnit, regression testing and test-first strategies. It may
also become helpful in actual daily testing work for professionals. This can be evalu-
ated further, when the functionality is available in a professional environment.

6 Summary

In this paper, we have compared two testing approaches: organised regression testing
using JUnit and ad-hoc testing using BlueJ. We have shown that these testing ap-
proaches can be combined in a single environment. Doing so results in a fertile inter-
action of both approaches, where elements of each can be mixed and made to interop-
erate, so that new styles of test interaction evolve. A detailed description of possible
interactions has been given, and an implementation of these has been provided.

The implementation is currently in public use, with very positive feedback.

References

1 . Eclipse: website at http://www.eclipse.org, accessed January 2004
2 . Gamma, E, Beck, K.: JUnit, website at http://www.junit.org, accessed January 2004
3 . Hillion, S.: DynamicJava, website at http://koala.ilog.fr/djava, accessed Jan 2004
4 . Kölling, M., Quig, B., Patterson, A., Rosenberg, J., The BlueJ system and its peda-

gogy, Journal of Computer Science Education, Special issue on Learning and Teaching
Object Technology, Vol 13, No 4, (2003) 249–268

5 . Kölling, M., Unit Testing in BlueJ, Technical Report 2004-01, The Mærsk Mc-Kinney
Møller Institute for Production Technology, University of Southern Denmark, Technical
Report 2004, No 1, ISSN No. 1601-4219.

6 . Niemeyer, P.: BeanShell, website at http://www.beanshell.org, accessed January 2004
7 . Sun Microsystems: Sun ONE Studio, website at http://wwws.sun.com/software/sundev/,

accessed January 2004

