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‘Somatic marker’ theory proposes that body states act as a valence associated with 
potential choices based on prior outcomes; and thus aid decision-making. The main 
supporting evidence for this theory arose from clinical interviews of subjects with 
ventromedial prefrontal cortex (VMF) lesions and their performance on the Iowa 
‘Gambling Task’ (IGT). VMF patient behaviour has been described as ‘myopia’ about 
future consequences. The aim of this paper is to investigate the implications of this 
description using an abstract simulation of the neural mechanisms that could underlie 
decision-making in this type of reinforcement learning task.  

1. Introduction 

Over the past decade there has been an increasing interest in the role of emotions 
in everyday decision-making. A theory particularly well represented in the 
literature is A. Damasio’s ‘somatic marker’ theory (Damasio, 1994), which 
proposes that body states act as a valence which can be associated with potential 
choices based on prior outcomes; and thus aid decision-making. The main 
supporting evidence for this theory arose from clinical interviews of subjects 
with ventromedial prefrontal cortex (VMF) lesions and their performance on the 
Iowa ‘Gambling Task’ (IGT) (Bechara, 1999), compared to normal controls and 
those with lesions in other brain areas. The IGT consists of four decks that 
subjects can pick from; two decks, A and B, which yield high wins but higher 
losses (Disadvantageous) and the other two, C and D, that yield low wins with 
lower losses (Advantageous). Normal subjects start by picking from the 
disadvantageous decks but learn to pick from the advantageous decks, unlike the 
VMF patients who, as in their real social and personal lives, continue to pick 
disadvantageously.  

A description that accounts for this behaviour in VMF patients’ is  
‘myopia’ for future consequences, in that they are driven by immediate reward 
and are less interested in uncertain future loss or gain (Bechara et al, 2000a). 
The main aim of this paper is to investigate the implications of this ‘myopia’ 
with an abstract neural network simulation that could characterize decision-
making in this type of task. The current literature lacks a model that accurately 
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reproduces these experimental results, and is abstracted from specific anatomical 
details, which underlie other models e.g. Wagar and Thagard (2004). 

This model focuses on a time averaging parameter τ, which dictates the 
relative influence of current and past information in decision-making. A 
‘myopia’ for future consequences could be caused by a similar ‘myopia’ for past 
events, where the experience from those events is not well integrated into 
current decision-making.  Exploration of the state space for τ, from constant 
values to linear or logarithmic growth over the 100 trials in each example of the 
task, found that certain values of τ provided a good fit to the experimental data 
for normal controls and VMF subjects. This investigation informs us about how 
these different groups may utilise past information in present decision-making, 
especially in relation to situational novelty. 

2. Design 

In the design of the neural network, attempts were made to make the least 
number of assumptions and still produce an abstract network that can replicate 
the human data. The model makes the following basic assumptions: 

 
1. That pleasure and pain are equally valued by Normal controls and VMF 

patients of the IGT. 
2. An activation-based memory is sufficient to hold the required 

information about the task. 
 

Based on the above assumptions, the network shown in Figure 1 was designed 
and implemented as a possible solution. 

For each choice, there are two memory units which represent a measure 
of expected value, with one unit recording positive information (the positive 
unit) resulting from a choice and the other unit negative information (the 
negative unit). The results of a particular choice are passed on to the relevant 
Memory Layer units by having the unit associated with the current choice active 
in the Result Layer, while all other units in that layer are inactive. By passing 
the activation from the Result layer multiplicatively with activation in the Value 
Input Layer through the gating neurons, only the Memory Layer units connected 
with the current choice are reinforced on any particular trial, all other units only 
decay. Activation in the Value Input Layer (See Figure 1) is calculated using the 
current win and/or current loss divided by the starting balance of $2,000 or the 
maximum card seen so far. This gives a value between 0 and 1,  which, once 
gated (as discussed above), becomes the input into the Memory Layer, yα (See 
Equation 1) which is passed through a time-averaging equation. The time-
averaging equation (Equation 1) represents how information decays over time in 
the memory layer and how present information is valued against past 
knowledge. 
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where yα(t)  is the input activation from the Value Input Layer gated to the 
relevant Memory Layer unit at time t; and act(t) is the units activation at time t. 

Finally, on each trial, the activation from the negative memory units is 
subtracted from the activation in the corresponding positive memory units and 
then passed through a sigmoidal function onto the connected Response Layer 
units. Once all Response Layer units have received their inputs from the 
memory layer, and additional random noise has been added, a winner-takes-all 
system ensures that the unit with the highest activation becomes the choice for 
the next trial. The addition of random noise allows for increased exploration, 
preventing action choice being completely greedy. Note also that, after each trial 
units in the Value Input Layer and the Response layer are set to zero. Whereas 
the Memory Layer units (which hold a measure of past experience related to a 
particular choice) and those units in the Result Layer, holding the Response 
Layer result from the current trial, to be used as the choice in the next trial, 
retain activation. 
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Figure 1. Diagram of Neural Network used for the Iowa Gambling Task. It shows the repetition of 
the basic architecture for each choice in the problem space. In the IGT there are four choices/decks. 
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3. Results 

In the exploration of the parameter space for τ (See equation 1), it was found 
that the normal control deck choice profiles could only be reproduced with a 
rising value of τ over the course of the IGT. However, the closest to the deck 
choice profiles for the VMF patients was best replicated using a constant 
τ = 0.52. (This gave an average variance in data points between the simulation 
and the real data of 2%). The important factor in reproducing the normal 
controls data was not a particular growth function of τ across trials, but that it 
began at τ = 0.52 or below and rose to 0.9 by the 80th trial and then stayed 
constant at 0.9 for the remaining 20 trials. The 80th trial was chosen as the 
limiting point as this is when many subjects, both patients and controls, gained 
conceptual knowledge of the advantageous and disadvantageous decks and 
therefore a conscious strategy (Bechara et al, 2000b). The essential quality was 
an increasing τ over time/trials: with logarithmic growth from 0-0.9 in 80 trials; 
sigmoidal growth from 0.3-0.9 in 80 trials and linear growth from 0.52-0.9 in 80 
trials, each giving an average variance of  approximately 6% between the real 
data and that from the simulation. Interestingly, the starting point for linear 
growth of  τ for normal subjects is the same as the constant value most accurate 
in reproducing the VMF patient data.  
 

4. Conclusions 

The required growth in τ suggests that normal controls build up a knowledge of 
the task in hand by valuing new information more early in the task than later. 
This has the consequence that previous learning, as activation, is built up and 
not lost as rapidly as with a constant τ where new information can never have 
more than the initial 1-τ influence. Therefore, if τ is initially low and then 
increases over trials, new information has a greater impact early in the task. 
These simulation results are largely consistent with the myopia for future 
consequences theory of VMF patient behaviour. Although the model fleshes out 
the theory somewhat, by suggesting that what is missing in VMF patients is the 
capacity to adjust the trade-off between responding to new reward/punishment 
information and allowing past experience to affect the current choice. That is, in 
post-initial phases of the Iowa Gambling Task VMF patients are unable to 
switch to a strategy in which past experience is emphasized and preserved. By 
its nature such a strategy would focus more on future consequences, since 
learning that pays heed to past experience is more likely to enable decision-
making that  is more tuned to longer-term future consequences.  This leads to 
the suggestion that the ventromedial prefrontal cortex is important in sustaining 
activation for goal directed behaviour by integrating relevant past experience. 
Perhaps VMF patients are unable to hold onto or access this information. It has 



  

been proposed that this retention of goal relevant information is a key role of the 
prefrontal cortex. “How does the PFC (Prefrontal Cortex) ‘latch’ onto goal-
relevant information and maintain it without disruption? Several ideas have been 
suggested. These typically employ a form of gating signal that instructs the PFC 
network when to maintain a given activity state. This gating signal may come 
from dopaminergic (DA) neurons in the midbrain and basal ganglia.” (p1370, 
Squire, 2003). This could be related to the growth in τ over trials.   

Damasio (1994) has suggested that VMF patients’ decision-making 
processes are no longer properly supported by ‘somatic markers’. The authors of 
this paper only argue that VMF patients have a limited capacity in integrating 
relevant past information into their decision processes, without going as far as 
stating what form this information takes, e.g. affect or ‘cold’ cognitive. It is 
known that information is passed onto and analyzed in some way within 
consciousness as some VMF patients (50% by 80 cards) report ‘conceptual’ 
knowledge of the best decks, 70% of controls reach this state by 80 cards 
(Bechara et al, 2000b). But unlike controls VMF patients do not reflect this 
knowledge in their subsequent behaviour and still pick more or less randomly. It 
seems that conceptual conclusions for these patients are insufficient for 
behavioural control. This could be similar to when some addicts ‘know of what 
not to do’, but lack the behavioural control to prevent repeated use. Do theories 
of dual systems, provide a potential solution, where the non-conscious System 1 
(Evans, 2003) in VMF patients is making decisions containing affect, with little 
or no influence from conscious conclusions (System 2)? The current simulation 
is considered to be at a level of abstraction above that describing a dual systems 
theory, but it could be modified to become the basis of a representation of 
‘somatic-makers’ in the System 1 part of a dual-process model, with the relative 
influence of System 2 over System 1 controlling the growth of τ across trials. 
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