
Computer Science at Kent

Yet Another Normalisation Proof for

Martin-Löf's Logical Framework

� Terms with correct arities are

strongly normalising

Yong Luo

Technical Report No. 6 - 05
October 2005

Copyright c© 2005 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Yet Another Normalisation Proof for

Martin-Löf's Logical Framework

� Terms with correct arities are

strongly normalising

Yong Luo

Computing Laboratory, University of Kent, Canterbury, UK
Email: Y.Luo@kent.ac.uk

Abstract In this paper, we prove the strong normalisation for Martin-
Löf's Logical Framework, and suggest that �correct arity�, a condition
weaker than well-typedness, will also guarantee the strong normalisation.

1 Introduction

The normalisation proofs for dependently typed systems are known to be
notoriously di�cult. For example, if we have a task to prove strong nor-
malisation for Martin-Löf's Logical Framework (MLF) (in the Appendix),
and if we use typed operational semantics as in [Gog94], the proof would
be more than one hundred pages long. When a proof is long and compli-
cated, it is likely found to contain mistakes and bugs [Coq85,CG90,Alt94].
This paper presents an elegant and comprehensible proof of strong nor-
malisation for MLF.

We often associate well-typedness with strong normalisation in type
systems. But this paper suggests that well-typedness may have little to do
with strong normalisation in essence, and proves that terms with correct
arities are strongly normalising. The condition of �correct arity� is weaker
than that of well-typedness (i.e. well-typed terms have correct arities).
This paper will also demonstrate the di�erence between types and arities
when we extend MLF with some inductive data types and their compu-
tation rules. New reduction rules will not increase the set of terms with
correct arities, but they will usually increase the set of well-typed terms.
One of the reasons is that there are reductions inside types (i.e. one type
can be reduced to another type) in a dependently typed system but there
is no reduction for arities.

Our goal is to prove the strong normalisation w.r.t. β and η-reduction.
But it is very di�cult to prove it directly. An important technique in the
paper is that, we extend the de�nition of terms and kinds, and introduce

a new reduction rule β2 for kinds. Then, we prove a stronger and more
general property, that is, strong normalisation w.r.t. β, η and β2-reduction.
In this way, the proof becomes easier although the property is stronger.
Without the β2-reduction, the proof of soundness in Section 4 is impossible
to go through.

In Section 2, we give some basic de�nitions that are used throughout
the paper. In Section 3, the inference rules of arities are formally pre-
sented. In Section 4, we give more de�nitions such as saturated sets, and
prove the strong normalisation for the arity system. In Section 5, the com-
putation rules for the type of dependent pairs and �nite types and simple
computation rules for universes are introduced. The strong normalisation
for a dependently typed system is proved by the commutation property
between these rules and β-reduction. The conclusions and future work are
discussed in the last section.

Related work Logical frameworks arise because one wants to create a
single framework, which is a kind of meta-logic or universal logic. The Ed-
inburgh Logical Framework [HHP87,HHP92] presents logics by a judgements-
as-types principle, which can be regarded as the meta-theoretical analogue
of the well-known propositions-as-types principles [CF58,dB80,How80].
Martin-Löf's logical framework [ML84,NPS90] has been developed by
Martin-Löf to present his intensional type theory. In UTT [Luo94], Luo
proposed a typed version of Martin-Löf's logical framework, in which
untyped functional operations of the form (x)k are replaced by typed
[x : K]k.

There are many normalisation proofs for simply typed systems and de-
pendently typed systems in literature [Bar92,Luo90,Alt93] [MW96,Gog94]
[Geu93,Wer92]. The techniques employed in this paper such as the inter-
pretation of arities and saturated sets are inspired by and closely related
to the proof for simply typed calculus in [Bar92]. The concept of arity
is well-known in mathematics and it is often de�ned as the maximum
number of arguments that a function can have. But in this paper, the
de�nition of arity and the concept of �correct arity� are di�erent. The
complexity of the normalisation proof for MLF is dramatically decreased
because of this concept and other techniques such as a new case of kinds
and the corresponding β2-reduction. The commutation property was also
studied in literature such as [Bar84,Cos96]. The properties of Church-
Rosser and strong normalisation for �nite types in simply typed systems
are also studied in [SC04].

3

2 Basic de�nitions

In this section, we give some basic de�nitions that will be used later, and
give the redexes and the corresponding reduction rules.

De�nition 1. (Terms and Kinds)

• Terms

1. a variable is a term,
2. λx : K.M is a term if x is a variable, K is a kind and M is a

term,
3. MN is a term if M and N are terms.

• Kinds

1. Type is a kind,
2. El(M) is a kind if M is a term,
3. (x : K1)K2 is a kind if K1 and K2 are kinds,
4. KN is a kind if K is a kind and N is a term.

Remark 1. Terms and kinds are mutually and recursively de�ned. This
de�nition allows more terms and kinds than that of MLF since the forth
case for the de�nition of kinds is not included in MLF (see Appendix for
details).

Notation: Following the tradition, Λ denotes the set of all terms and
Π the set of all kinds. We sometimes write f(a) for fa, f(a, b) for
(fa)b and so on. [N/x]M stands for the expression obtained from M
by substituting N for the free occurrences of variable x in M . FV (M)
is the set of free variables in M .

Redexes and reduction rules

There are three di�erent forms of redexes: (λx : K.M)N , ((x : K1)K2)N
and λx : K.Mx when x 6∈ FV (M). The reduction rules for these redexes
are the following.

(λx : K.M)N −→β [N/x]M

((x : K1)K2)N −→β2 [N/x]K2

λx : K.Mx −→η M x 6∈ FV (M)

Remark 2. The second rule −→β2 is new and is not included in MLF.
This rule will make the soundness proof go through easily although the
property is stronger and more general.

4

Notation: −→R represents one-step R-reduction, precisely, M −→R N
if a sub-term P of M is a R-redex and N is obtained by replacing P by
the result after applying the reduction rule R. M �R N means there
is 0 or more but �nite steps of R-reduction from M to N . M �+

R N
means there is at least one but �nite steps of R-reduction from M to
N .

De�nition 2. (Arities)

• Zero is an arity,

• (a1, a2) is an arity if a1 and a2 are arities.

Notation: Ω denotes the set of all arities.

Remark 3. The concept of arity in mathematics is often de�ned as the
maximum number of arguments that a function can have. For example,
the arity of the function �addition� is 2, but in this paper, the arity of
�addition� is (Zero, (Zero, Zero)).

3 Inference rules

In this section, we formally present the inference rules of arities.

The judgement form will be the following form,

A ` M : a

where A ≡< x1 : a1, ..., xn : an > is a �nite sequence of xi : ai, xi is a
variable and ai is an arity; M is a term or kind; and a is an arity. We
shall read this judgement like �under the context A, the term or kind M
has arity a�.

Notation For a context A ≡ x1 : a1, ..., xn : an, FV (A) represents the
set {x1, ..., xn}.

All of the inference rules of arities are in Figure 1.

De�nition 3. We say that a term or kind M has a correct arity if
A ` M : a is derivable for some A and a.

Remark 4. We have the following remarks:

5

Contexts:

<> valid

A valid x 6∈ FV (A) a ∈ Ω

A, x : a

Inference rules for kinds:

A valid

A ` Type : Zero

A ` M : Zero

A ` El(M) : Zero

A ` K1 : a1 A, x : a1 ` K2 : a2

A ` (x : K1)K2 : (a1, a2)

A ` K : (a1, a2) A ` N : a1

A ` KN : a2

Inference rules for terms:

A, x : a, A′ valid

A, x : a, A′ ` x : a

A ` K : a1 A, x : a1 ` M : a2

A ` λx : K.M : (a1, a2)

A ` M : (a1, a2) A ` N : a1

A ` MN : a2

Figure 1. Inference rules of arities

• A well-typed term has a correct arity (a proof will be given later),
but a term which has a correct arity is not necessarily well-typed. For
instance, under the context

A : Type, B : Type, C : Type, f : (x : A)C, b : B

the term f(b) is not well-typed, but it has a correct arity Zero under
the following context

A : Zero, B : Zero, C : Zero, f : (Zero, Zero), b : Zero

Another example with dependent type is that, under the context

A : Type, B : (x : A)Type, f : (x : A)(y : B(x))Type,
x1 : A, x2 : A, b : B(x2)

the term f(x1, b) is not well-typed, but it has a correct arity Zero in
the following context

A : Zero, B : (Zero, Zero), f : (Zero, (Zero, Zero)),
x1 : Zero, x2 : Zero, b : Zero

6

• For any judgement A ` M : a, M must be either a kind or a term. A
derivation such as A`Type:Zero

A`El(Type):Zero is not possible, because El(Type) is
neither a term nor a kind.

Lemma 1. If both A ` M : a and A ` M : b are derivable then a and b
are syntactically the same (a ≡ b). And A ` MM : a is not derivable for
any A, M and a.

Proof. By induction on the derivations of A ` M : a and A ` M : b.

Remark 5. One may recall that the non-terminating example ωω where
ω ≡ λx.xx. It is impossible that ω is well-typed in a simply typed calculus
[Bar92]. By Lemma 1, it is also impossible to have a correct arity for ω.

4 Normalisation proof

In this section, we give more de�nitions such as saturated sets to prove
the strong normalisation for the arity system.

De�nition 4. (Interpretation of arities)

• SNΛ =df {M ∈ Λ | M is strongly normalising}.
• SNΠ =df {M ∈ Π | M is strongly normalising}.
• JZeroKΛ =df SNΛ.

• JZeroKΠ =df SNΠ .

• J(a1, a2)KΛ =df {M ∈ Λ | ∀N ∈ Ja1KΛ, MN ∈ Ja2KΛ}.
• J(a1, a2)KΠ =df {K ∈ Π | ∀N ∈ Ja1KΛ, KN ∈ Ja2KΠ}.

Remark 6. JaKΛ is a set of terms, while JaKΠ is a set of kinds for any arity
a.

Notations: We shall write R for R1, R2, ..., Rn for some n ≥ 0, and MR
for (...((MR1)R2)...Rn).

De�nition 5. (Saturated sets)

• A subset X ⊆ SNΛ is called saturated if

1. ∀R ∈ SNΛ, xR ∈ X where x is any term variable,

2. ∀R ∈ SNΛ, ∀Q ∈ SNΛ and ∀K ∈ SNΠ ,

([Q/x]P)R ∈ X =⇒ (λx : K.P)QR ∈ X

7

• A subset Y ⊆ SNΠ is called saturated if ∀R ∈ SNΛ, ∀N ∈ SNΛ and
∀K1 ∈ SNΠ ,

([N/x]K2)R ∈ Y =⇒ ((x : K1)K2)NR ∈ Y

• SATΛ =df {X ⊆ SNΛ | X is saturated}
• SATΠ =df {Y ⊆ SNΠ | Y is saturated}

Lemma 2. (Arities and saturated sets)

• SNΛ ∈ SATΛ and SNΠ ∈ SATΠ .
• a ∈ Ω =⇒ JaKΛ ∈ SATΛ and JaKΠ ∈ SATΠ .

Proof. By the de�nition of saturated sets and by induction on arities.

• Let's prove SNΛ ∈ SATΛ �rst. We have SNΛ ⊆ SNΛ and xR ∈ SNΛ

if R ∈ SNΛ. Now we need to prove for Q,R ∈ SNΛ and K ∈ SNΠ ,

([Q/x]P)R ∈ SNΛ =⇒ (λx : K.P)QR ∈ SNΛ

Since ([Q/x]P)R ∈ SNΛ, we have P ∈ SNΛ and after any �nitely
many steps reducing inside P , Q and R, ([Q′/x]P ′)R′ ∈ SNΛ with
P �βη P ′ , Q �βη Q′ and R �βη R′.
From (λx : K.P)QR, after any �nitely many steps reducing inside P ,
Q, R and K, and we get (λx : K ′.P ′)Q′R′. From here, we may have
two choices.

· (λx : K ′.P ′)Q′R′ −→β ([Q′/x]P ′)R′

· P ′ ≡ Fx and x 6∈ FV (F) and

(λx : K ′.P ′)Q′R′ −→η FQ′R′ ≡ ([Q′/x]P ′)R′

For both cases, because ([Q′/x]P ′)R′ ∈ SNΛ, we have (λx : K.P)QR ∈
SNΛ.

• The proof of SNΠ ∈ SATΠ is similar to that of SNΛ ∈ SATΛ.
• Now, let's prove JaKΛ ∈ SATΛ by induction on a. The base case (i.e.

JZeroKΛ = SNΛ ∈ SATΛ) has been proved. So we only need to prove
J(a1, a2)KΛ ∈ SATΛ. By induction hypothesis, we have Ja1KΛ ∈ SATΛ

and Ja2KΛ ∈ SATΛ.
Then we have x ∈ Ja1KΛ for all variable x. Therefore

F ∈ J(a1, a2)KΛ =⇒ Fx ∈ Ja2KΛ

=⇒ Fx ∈ SNΛ

=⇒ F ∈ SNΛ

8

So, we have J(a1, a2)KΛ ⊆ SNΛ.
Now, we need to prove that for any variable x and ∀R ∈ SNΛ, we
have xR ∈ J(a1, a2)KΛ. This means

∀N ∈ Ja1KΛ xRN ∈ Ja2KΛ

which is true since Ja1KΛ ⊆ SNΛ and Ja2KΛ ∈ SATΛ.
Finally, we need to prove that for ∀R ∈ SNΛ, ∀Q ∈ SNΛ and ∀K ∈
SNΠ ,

([Q/x]P)R ∈ J(a1, a2)KΛ =⇒ (λx : K.P)QR ∈ J(a1, a2)KΛ

Since ([Q/x]P)R ∈ J(a1, a2)KΛ, we have ([Q/x]P)RN ∈ Ja2KΛ for
∀N ∈ Ja1KΛ. And since Ja1KΛ ⊆ SNΛ and Ja2KΛ ∈ SATΛ, we have
(λx : K.P)QRN ∈ Ja2KΛ and hence

(λx : K.P)QR ∈ J(a1, a2)KΛ

• The proof of JaKΠ ∈ SATΠ is similar to that of JaKΛ ∈ SATΛ ut

Notation: We often use SN for SNΛ ∪ SNΠ and JaK for JaKΛ ∪ JaKΠ .

De�nition 6. (Valuation)

• A valuation is a map ρ : V → Λ, where V is the set of all term
variables.

• Let ρ be a valuation. Then

JMKρ =df [ρ(x1)/x1, ..., ρ(xn)/xn]M

where x1, ..., xn are all of the free variable in M .
• Let ρ be a valuation. Then

· ρ satis�es M : a, notation ρ |= M : a, if JMKρ ∈ JaK;
· ρ satis�es A, notation ρ |= A, if ρ |= x : a for all x : a ∈ A;
· A satis�es M : a, notation A |= M : a, if

∀ρ (ρ |= A =⇒ ρ |= M : a)

Remark 7. For any valuation ρ, if M is a term, JMKρ is also a term, and
similarly, if M is a kind, JMKρ is also a kind. If a valuation ρ satis�es that
ρ(x) = x then JMKρ ≡ M .

Lemma 3. (Soundness) A ` M : a =⇒ A |= M : a where M is a term
or kind.

9

Proof. By induction on the derivations of A ` M : a.

1. The last rule is
A valid

A ` Type : Zero

Since JTypeKρ = Type for any ρ and Type ∈ SN = JZeroK, we have
JTypeKρ ∈ JZeroK.

2. The last rule is
A ` M : Zero

A ` El(M) : Zero

Since JEl(M)Kρ = El(JMKρ) for any ρ and JMKρ ∈ JZeroK = SN , we
have JEl(M)Kρ ∈ SN = JZeroK.

3. The last rule is

A ` K1 : a1 A, x : a1 ` K2 : a2

A ` (x : K1)K2 : (a1, a2)

We must show that

∀ρ (ρ |= A =⇒ ρ |= (x : K1)K2 : (a1, a2))

That is, we must show that J(x : K1)K2Kρ ∈ J(a1, a2)KΠ . By the
de�nition of J(a1, a2)KΠ , we must show that, for all N ∈ Ja1KΛ,

J(x : K1)K2KρN ∈ Ja2KΠ

Note that

J(x : K1)K2KρN ≡ ((x : K ′
1)K

′
2)N

→β2 [N/x]K ′
2

≡ JK2Kρ∪(N/x)

where K ′
1 ≡ JK1Kρ ≡ [ρ(yi)/yi...]K1 and K ′

2 ≡ JK2Kρ ≡ [ρ(yi)/yi...]K2

Now, let's consider the induction hypothesis. Since ρ∪ (N/x) |= A, x :
a1, we have JK1Kρ ∈ Ja1KΠ and JK2Kρ∪(N/x) ∈ Ja2KΠ . So, we have

[N/x]K ′
2 ∈ Ja2KΠ , and because Ja2KΠ is saturated, we have ((x :

K ′
1)K

′
2)N ∈ Ja2KΠ , i.e. J(x : K1)K2KρN ∈ Ja2KΠ . Note that, since

Ja1KΛ ⊆ SNΛ and Ja1KΠ ⊆ SNΠ , we know that N ∈ SNΛ and
K ′

1 ∈ SNΠ .

4. The last rule is
A ` K : (a1, a2) A ` N : a1

A ` KN : a2

10

We must show that

∀ρ (ρ |= A =⇒ ρ |= KN : a2)

By induction hypothesis, we have JKKρ ∈ J(a1, a2)KΠ and JNKρ ∈
Ja1KΛ.
By the de�nition of J(a1, a2)KΠ , we have JKKρJNKρ ∈ Ja2KΠ , i.e.
JKNKρ ∈ Ja2KΠ .

5. The last rule is
A, x : a,A′ valid

A, x : a,A′ ` x : a

Easy.
6. The last rule is

A ` K : a1 A, x : a1 ` M : a2

A ` λx : K.M : (a1, a2)

Similar to case 3.
7. The last rule is

A ` M : (a1, a2) A ` N : a1

A ` MN : a2

Similar to case 4. ut

Theorem 1. If A ` M : a, then M is strongly normalising.

Proof. By Lemma 3 and take the evaluation ρ0 that satis�es ρ0(x) = x.
By Lemma 3, we have A |= M : a. So, by de�nition, we have

ρ0 |= A =⇒ ρ0 |= M : a

Suppose A ≡ x1 : a1, ..., xn : an. Since JaiKΛ ∈ SATΛ, we have xi ∈ JaiKΛ.
Hence ρ0 |= A. So, we have ρ0 |= M : a and hence M = JMKρ0 ∈ JaK ⊆
SN . ut

Translation from kinds to arities

Now, we de�ne a map to translate kinds to arities, and prove that well-
typed terms have correct arities.

De�nition 7. A map arity : Π → Ω is inductively de�ned as follows.

• arity(Type) = Zero,
• arity(El(A)) = Zero,
• arity((x : K1)K2) = (arity(K1), arity(K2)).

11

Notation: Suppose a context Γ ≡ x1 : K1, ..., xn : Kn, then arity(Γ) ≡
x1 : arity(K1), ..., xn : arity(Kn).

Theorem 2. (Well-typed terms have correct arities) If Γ ` M : K
is derivable in MLF, then arity(Γ) ` M : arity(K) is derivable.

Proof. By induction on the derivations of Γ ` M : K (see the inference
rules of MLF in Appendix).

Theorem 3. If Γ ` M : K is derivable in MLF, then M is strongly
normalising.

Proof. By Theorem 1 and Theorem 2.

5 Computation rules

In this section, we shall introduce computation rules for the type of de-
pendent pairs and �nite types and simple computation rules for universes.
The strong normalisation is proved in a way that no one has ever take
before in dependently typed systems, to the author's best knowledge. Re-
call that adding new computation (or reduction) rules will not increase
the set of terms with correct arities. The basic strategy we adopt is to
prove strong normalisation one reduction rule after another. That is, if we
have already proved strong normalisation for a set of reduction rules, after
adding one new reduction rule, can we still prove strong normalisation?
This strategy will not work for dependently typed systems if we want to
prove the statement that �well-typed terms are strongly normalising�, be-
cause whenever we add a single computation rule, the set of well-typed
terms may increase.

5.1 The type of dependent pairs

In MLF, the constants and computation rules for the type of dependent
pairs can be speci�ed as follows:

Σ : (A : Type)(B : (A)Type)Type

pair : (A : Type)(B : (A)Type)(a : A)(b : B(a))Σ(A,B)
π1 : (A : Type)(B : (A)Type)(z : Σ(A,B))A
π2 : (A : Type)(B : (A)Type)(z : Σ(A,B))B(π1(A,B, z))

π1(A,B, pair(A,B, a, b)) = a : A

π2(A,B, pair(A,B, a, b)) = b : B(a)

12

In the arity system of the paper, we change the kinds to arities and the
constants and the reduction rules are introduced as the following:

Σ : (Zero, ((Zero, Zero), Zero))
pair : (Zero, ((Zero, Zero), (Zero, (Zero, Zero))))

π1 : (Zero, ((Zero, Zero), (Zero, Zero)))
π2 : (Zero, ((Zero, Zero), (Zero, Zero)))

π1(A,B, pair(A,B, a, b)) −→π1 a : Zero

π2(A,B, pair(A,B, a, b)) −→π2 b : Zero

5.2 Finite types

In type systems, a �nite type T can be represented by following constants

T : Type

c1 : T
. . .

cn : T
ET : (P : (T)Type)

(P (c1))...(P (cn))
(z : T)(P (z))

and the following computation rules

ET (P, p1, ..., pn, c1) = p1 : P (c1)
......

ET (P, p1, ..., pn, cn) = pn : P (cn)

In the arity system of the paper, we change the kinds to arities and
the constants and the computation rules are introduced as follows.

T : Zero

c1 : Zero

. . .

cn : Zero

ET : ((Zero, Zero),
(Zero, (Zero, ...(Zero,

(Zero, Zero)...)

13

and the following reduction rules

ET (P, p1, ..., pn, c1) −→ p1 : Zero

......

ET (P, p1, ..., pn, cn) −→ pn : Zero

Now, let's consider a concrete example, boolean type. Its representation
in type systems and in the arity system are the following.

Bool : Type

true : Bool

false : Bool

EBool : (P : (Bool)Type)
(p1 : P (true))(p2 : P (false))
(z : Bool)P (z)

EBool(P, p1, p2, true) = p1 : P (true)
EBool(P, p1, p2, false) = p2 : P (false)

Bool : Zero

true : Zero

false : Zero

EBool : ((Zero, Zero),
(Zero, (Zero,

(Zero, Zero))))

EBool(P, p1, p2, true) −→b1 p1 : Zero

EBool(P, p1, p2, false) −→b2 p2 : Zero

5.3 Universe operator

We consider some simple case, for example,

U : Type

Bool : Type

bool : U

uo : (U)Type

14

uo(bool) = Bool

U : Zero

Bool : Zero

bool : Zero

uo : (Zero, Zero)

uo(bool) −→u Bool : Zero

5.4 Strong normalisation w.r.t. βηπ1-reduction

We have proved strong normalisation w.r.t. βη-reduction in Section 4.
Now, we add the reduction rule π1 and prove strong normalisation w.r.t.
βηπ1-reduction. As mentioned before, the strategy is to prove strong nor-
malisation one reduction rule after another. So after proving it w.r.t. βηπ1-
reduction, we can add another rule (eg, π2-reduction), and so on. In this
section, we demonstrate the proof techniques through the proof w.r.t.
βηπ1-reduction. For other reduction rules such as π2, b1, b2 and u, the
proof methods are the same.

Theorem 4. If M doesn't have a correct arity under a context A without
the π1-reduction then M still doesn't have a correct arity under the context
A with the π1-reduction.

Proof. The arities of the left hand side and the right hand side of the
reduction rule π1 are the same, and there is no reduction for arities. So,
π1-reduction becomes irrelevant whether M has a correct arity.

Remark 8. As mentioned before, in dependently typed systems, a term
that is not well-typed can become a well-typed term after adding new
reduction rules. For instance, under a context f : (x : B(a))C and
y : B(π1(pair(a, b))), the term f(y) is not well-typed (some details are
omitted here). However, if we add the π1-reduction rule, then it becomes
a well-typed term. This example shows that, after adding new reduction
rules, well-typed terms may increase. This is one of the di�culties to prove
the statement that �well-typed terms are strongly normalising�.

Now, in order to prove strong normalisation, we prove some lemmas �rst.

Lemma 4. (Substitution for η) If M1 −→η M2 then [N/x]M1 −→η

[N/x]M2. And if N1 −→η N2 then [N1/x]M �η [N2/x]M .

15

Proof. For the �rst part, we proceed the proof by induction on M1, and
for the second part, by induction on M . In the case that M is a variable,
we consider two sub-cases: M ≡ x and M 6≡ x.

Lemma 5. If M1 −→β M2 and x 6∈ FV (M1) then x 6∈ FV (M2).

Proof. By induction on M1.

Lemma 6. If M1 −→η λx : K2.M2 then there are three and only three
possibilities as the following:

• M1 ≡ λy : K1.(λx : K2.M2)y for some y and K1, and y 6∈ FV (λx :
K2.M2).

• M1 ≡ λx : K2.N for some N and N −→η M2.

• M1 ≡ λx : K1.M2 for some K1 and K1 −→η K2.

Proof. By the understanding of one-step reduction.

Lemma 7. (Commutation for ηβ) If M1 −→η M2 and M2 −→β M3

then there exists a M ′
2 such that M1 �+

β M ′
2 and M ′

2 �η M3.

Proof. By induction on M1 and Lemma 4, 5 and 6.

Lemma 8. (Substitution for π1) If M1 −→π1 M2 then [N/x]M1 −→π1

[N/x]M2. And if N1 −→π1 N2 then [N1/x]M �π1 [N2/x]M .

Proof. Similar to the proof of Lemma 4.

Lemma 9. If M1 −→π1 λx : K2.M2 then there are two and only two
possibilities as the following:

• M1 ≡ λx : K2.N for some N and N −→π1 M2.

• M1 ≡ λx : K1.M2 for some K1 and K1 −→π1 K2.

Proof. By the understanding of one-step reduction and the arity of M1 is
not Zero.

Lemma 10. (Commutation for π1β) If M1 −→π1 M2 and M2 −→β

M3 then there exists a M ′
2 such that M1 −→β M ′

2 and M ′
2 �π1 M3.

Proof. By induction on M1 and Lemma 8 and 9.

Theorem 5. If A ` M : a, then M is strongly normalising w.r.t. βηπ1-
reduction.

16

Proof. We proceed the proof by contradiction, and by Theorem 1 and
Lemma 7 and 10.

Suppose there is an in�nite reduction sequence for M and it is called
S. By Theorem 1, M is strongly normalising w.r.t. βη-reduction. So, S
must contain in�nite times of π1-reduction. Every time when η-reduction
or π1-reduction rule is applied, terms become smaller. So, M is strongly
normalising w.r.t. ηπ1-reduction. And hence S must also contain in�nite
times of β-reduction. In fact, S must be like the following,

M �+
ηπ1

M1 �+
β M2 �+

ηπ1
M3 �+

β M4 �+
ηπ1

...

or
M �+

β M1 �+
ηπ1

M2 �+
β M3 �+

ηπ1
M4 �+

β ...

where �+
β means one or more but �nite reduction steps of β, and similarly,

�+
ηπ1

means one or more but �nite reduction steps of η or π1.
Now, by Lemma 7 and Lemma 10, for the in�nite sequence S, we can

always move the β-reduction steps forward and build an in�nite sequence
of β-reduction. This is a contradiction to that M is strongly normalising
w.r.t. β-reduction. ut

6 Conclusions and future work

Strong normalisation for MLF has been proved in the paper, but we
did not follow the traditional understanding, that is, well-typed terms
are strongly normalising. Instead, a weaker condition has been proposed,
which says terms with correct arities are strongly normalising. The au-
thor hopes this new understanding will inspire us to think the question
�why is a term strongly normalising?� again, and to simplify the proofs
for dependently typed systems.

Another important technique employed in the paper is that, in order to
prove what we want, we prove a more general and stronger property. In the
paper, the de�nition of terms and kinds is extended and a new reduction
rule β2 is introduced. And we proved strong normalisation w.r.t. βηβ2-
reduction instead of w.r.t. βη-reduction only. This generalisation is quite
di�erent from the traditional idea of generalising induction hypothesis.

We only studied the computation rules for some inductive data types
and these rules have commutation property. However, some computation
rules do not have such property, for instance, the computation rule for the
type of function space. How to prove strong normalisation for such rules
needs further study. The question of how to develop weaker conditions

17

to simplify the normalisation proofs for other type systems is also worth
being taken into our consideration.

Acknowledgements Thanks to Zhaohui Luo, Sergei Soloviev, James
McKinna and Healfdene Goguen for discussions on the issue of strong
normalisation, and for reading the earlier version of the paper, and for
their helpful comments and suggestions.

References

[Alt93] Th. Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, Edinburgh University, 1993.

[Alt94] Thorsten Altenkirch. Proving strong normalization of CC by modifying re-
alizability semantics. In Henk Barendregt and Tobias Nipkow, editors, Types
for Proofs and Programs, LNCS 806, pages 3 � 18, 1994.

[Bar84] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-
Holland, revised edition, 1984.

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2.
Clarendon Press, 1992.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland
Publishing Company, 1958.

[CG90] Th. Coquand and J.H. Gallier. A proof of strong normalization for the theory
of constructions using a Kripke-like interpretation. In Preliminary Proc. of

the Workshop on Logical Frameworks, Antibes, 1990.
[Coq85] Th. Coquand. Une Theorie des Constructions. PhD thesis, University of

Paris VII, 1985.
[Cos96] R. Di Cosmo. On the power of simple diagrams. In H. Ganzinger, editor,

Proceedings of the 7th International Conference on Rewriting Techniques and

Applications, volume 1103, pages 200�214. Lecture Notes in Computer Sci-
ence, 1996.

[dB80] N. G. de Bruijn. A survey of the project AUTOMATH. In J. Hindley and
J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism. Academic Press, 1980.
[Geu93] Herman Geuvers. Logics and Type Systems. PhD thesis, Katholieke Univer-

siteit Nijmegen, 1993.
[Gog94] H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,

University of Edinburgh, 1994.
[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Proc.

2nd Ann. Symp. on Logic in Computer Science. IEEE, 1987.
[HHP92] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics.

Journal of ACM, 40(1):143�184, 1992.
[How80] W. A. Howard. The formulae-as-types notion of construction. In J. Hind-

ley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic.
Academic Press, 1980.

[Luo90] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990. Also as Report CST-65-90/ECS-LFCS-90-118, Department
of Computer Science, University of Edinburgh.

18

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[MW96] P. Mellies and B. Werner. A generic normalisation proof for pure type systems,

1996.
[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf's

Type Theory: An Introduction. Oxford University Press, 1990.
[SC04] S. Soloviev and D. Chemouil. Some algebraic structures in lambda-calculus

with inductive types. In Types for Proofs and Programs, volume 3085. Lecture
Notes in Computer Science, 2004.

[Wer92] B. Werner. A normalization proof for an impredicative type system with large
eliminations over integers. In Workshop on Logical Frameworks, 1992.

Appendix

Terms and Kinds in MLF

• Terms

1. a variable is a term,
2. λx : K.M is a term if x is a variable, K is a kind and M is a term,
3. MN is a term if M and N are terms.

• Kinds

1. Type is a kind,
2. El(M) is a kind if M is a term,
3. (x : K1)K2 is a kind if K1 and K2 are kinds.

Reduction rules in MLF

(λx : K.M)N −→β [N/x]M

λx : K.Mx −→η M x 6∈ FV (M)

Inference rules for MLF
Contexts and assumptions

<> valid

Γ ` K kind x /∈ FV (Γ)
Γ, x : K valid

Γ, x : K, Γ ′ valid

Γ, x : K, Γ ′ ` x : K

Equality rules

Γ ` K kind

Γ ` K = K

Γ ` K = K ′

Γ ` K ′ = K

Γ ` K = K ′ Γ ` K ′ = K ′′

Γ ` K = K ′′

Γ ` k : K

Γ ` k = k : K

Γ ` k = k′ : K

Γ ` k′ = k : K

Γ ` k = k′ : K Γ ` k′ = k′′ : K

Γ ` k = k′′ : K

19

Γ ` k : K Γ ` K = K ′

Γ ` k : K ′
Γ ` k = k′ : K Γ ` K = K ′

Γ ` k = k′ : K ′

Substitution rules

Γ, x : K, Γ ′ valid Γ ` k : K

Γ, [k/x]Γ ′ valid

Γ, x : K, Γ ′ ` K ′ kind Γ ` k : K

Γ, [k/x]Γ ′ ` [k/x]K ′ kind

Γ, x : K, Γ ` K ′ kind Γ ` k = k′ : K

Γ, [k/x]Γ ′ ` [k/x]K ′ = [k′/x]K ′

Γ, x : K, Γ ′ ` k′ : K ′ Γ ` k : K

Γ, [k/x]Γ ′ ` [k/x]k′ : [k/x]K ′
Γ, x : K, Γ ′ ` k′ : K ′ Γ ` k1 = k2 : K

Γ, [k1/x]Γ ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K ′

Γ, x : K, Γ ′ ` K ′ = K ′′ Γ ` k : K

Γ, [k/x]Γ ′ ` [k/x]K ′ = [k/x]K ′′
Γ, x : K, Γ ′ ` k′ = k′′ : K ′ Γ ` k : K

Γ, [k/x]Γ ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K ′

The kind type

Γ valid

Γ ` Type kind

Γ ` A : Type

Γ ` El(A) kind

Γ ` A = B : Type

Γ ` El(A) = El(B)

Dependent product kinds

Γ ` K kind Γ, x : K ` K ′ kind

Γ ` (x : K)K ′ kind

Γ ` K1 = K2 Γ, x : K1 ` K ′
1 = K ′

2

Γ ` (x : K1)K ′
1 = (x : K2)K ′

2

Γ, x : K ` k : K ′

Γ ` λx : K.k : (x : K)K ′ (ξ)
Γ ` K1 = K2 Γ, x : K1 ` k1 = k2 : K

Γ ` λx : K1.k1 = λx : K2.k2 : (x : K1)K

Γ ` f : (x : K)K ′ Γ ` k : K

Γ ` f(k) : [k/x]K ′
Γ ` f = f ′ : (x : K)K ′ Γ ` k1 = k2 : K

Γ ` f(k1) = f ′(k2) : [k1/x]K ′

(β)
Γ, x : K ` k′ : K ′ Γ ` k : K

Γ ` (λx : K.k′)(k) = [k/x]k′ : [k/x]K ′ (η)
Γ ` f : (x : K)K ′ x /∈ FV (f)

Γ ` λx : K.f(x) = f : (x : K)K ′

20

