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Abstract. For W a Coxeter group, let

W ¼ fw A W jw ¼ xy where x; y A W and x2 ¼ 1 ¼ y2g:

It is well known that if W is finite then W ¼ W. Suppose that w A W. Then the minimum
value of lðxÞ þ lðyÞ � lðwÞ, where x; y A W with w ¼ xy and x2 ¼ 1 ¼ y2, is called the excess

of w (l is the length function of W ). The main result established here is that w is always W -
conjugate to an element with excess equal to zero.

1 Introduction

The study of a Coxeter group W frequently weaves together features of its root
system F and properties of its length function l. The delicate interplay between
lðw1w2Þ and lðw1Þ þ lðw2Þ for various w1;w2 A W is often to be seen in investiga-
tions into the structure of W . Instances of the additivity of the length function, that
is lðw1w2Þ ¼ lðw1Þ þ lðw2Þ, are of particular interest. For example, if WJ is a stan-
dard parabolic subgroup of W , then there is a set XJ of so-called distinguished right
coset representatives for WJ in W with the property that lðwxÞ ¼ lðwÞ þ lðxÞ for
all w A WJ , x A XJ ([6, Proposition 1.10]). There is a parallel statement to this for
double cosets of two standard parabolic subgroups of W ([5, Proposition 2.1.7]).
Also, when W is finite it possesses an element w0, the longest element of W , for which
lðw0Þ ¼ lðwÞ þ lðww0Þ for all w A W ([5, Lemma 1.5.3]).

Of the involutions (elements of order 2) in W , the reflections, and particularly the
fundamental reflections, more often than not play a major role in investigating W .
This is due to there being a correspondence between the reflections in W and the
roots in F. In general, involutions occupy a special position in a group and it is some-
times possible to say more about them than it is about other elements of the group.
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This is true in the case of Coxeter groups. For example, Richardson [7] gives an
e¤ective algorithm for parameterizing the involution conjugacy classes of a Coxeter
group. In something of the same vein we have the fact that an involution can be ex-
pressed as a canonical product of reflections (see Deodhar [4] and Springer [8]).

Suppose that W is a Coxeter group (not necessarily finite or even of finite rank),
and put

W ¼ fw A W jw ¼ xy where x; y A W and x2 ¼ 1 ¼ y2g:

That is, W is the set of strongly real elements of W . For w A W we define the
excess of w, eðwÞ, by

eðwÞ ¼ minflðxÞ þ lðyÞ � lðwÞ jw ¼ xy; x2 ¼ y2 ¼ 1g:

Thus eðwÞ ¼ 0 is equivalent to there existing x; y A W with x2 ¼ 1 ¼ y2, w ¼ xy

and lðwÞ ¼ lðxÞ þ lðyÞ. We shall call ðx; yÞ, where x, y are involutions, a spartan

pair for w if w ¼ xy with lðxÞ þ lðyÞ � lðwÞ ¼ eðwÞ. As a small example take
w ¼ ð1234Þ in Symð4ÞGWðA3Þ (the Coxeter group of type A3). Then lðwÞ ¼ 3 and
w can be written in four ways as a product of involutions (see Table 1).

Thus eðwÞ ¼ 2 with ðð24Þ; ð12Þð34ÞÞ and ðð12Þð34Þ; ð13ÞÞ being spartan pairs for w.
To give some idea of the distribution of excesses we briefly mention two other exam-
ples. The number of elements with excess 0, 2, 4, 6, 8 in Symð6ÞGWðA5Þ is, respec-
tively, 489, 173, 46, 10, 2, the maximum excess being 8. For Symð7ÞGWðA6Þ, the
number of elements with excess 0, 2, 4, 6, 8, 10, 12 is, respectively, 2659, 1519, 574,
228, 50, 8, 2 and here the maximum excess is 12.

In the case when W is finite we have W ¼ W, and so excess is defined for every
element of W . (Since W is a direct product of irreducible Coxeter groups, it su‰ces
to check this for W an irreducible Coxeter group. If W is a Weyl group see Carter
[3]. The case when W is a dihedral group is straightforward to verify while types
H3 or H4 may be checked using [2].) However if W is infinite we can have W 0W.
This can be seen when W is of type fA2A2. Then W ¼ HN, the semidirect product
of N ¼ fðl1; l2; l3Þ j li A Z; l1 þ l2 þ l3 ¼ 0gGZ� Z and HGWðA2ÞG Symð3Þ
with H acting on N by permuting the co-ordinates of ðl1; l2; l3Þ. Let g ¼ ð12Þ A H

Table 1. w ¼ ð1234Þ ¼ xy

x y lðxÞ þ lðyÞ

(13) (14)(23) 3 þ 6 ¼ 9
(14)(23) (24) 6 þ 3 ¼ 9

(24) (12)(34) 3 þ 2 ¼ 5
(12)(34) (13) 2 þ 3 ¼ 5
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and 00 l A Z, and set w ¼ gðl; l;�2lÞ. Clearly g and ðl; l;�2lÞ commute and
ðl; l;�2lÞ has infinite order. Therefore w has infinite order. If w can be written as a
product of two involutions, then there exist hm; kn A W with h; k A H, m; n A N and
ðhmÞðknÞ ¼ w. Therefore h, k are self-inverse elements of H with hk ¼ ð12Þ. So one of
h or k is ð12Þ and the other is the identity. But N has no elements of order 2, so either
hm or kn is the identity, contradicting the fact that w is not an involution. So we con-
clude that w cannot be expressed as a product of two involutions and hence W 0W.

As we have observed, a Coxeter group may have many elements with non-zero ex-
cess. Nevertheless our main theorem shows the zero excess elements are ubiquitous
from a conjugacy class viewpoint.

Theorem 1.1. Suppose that W is a Coxeter group, and let w A W. Let X denote the W-

conjugacy class of w. Then there exists w� A X such that eðw�Þ ¼ 0.

We prove Theorem 1.1 in Section 3, after gathering together a number of prepara-
tory results about Coxeter groups in Section 2. Also some easy properties of excess
are noted and, in Proposition 2.7, we demonstrate that there are Coxeter groups in
which elements can have arbitrarily large excess.

2 Background results and notation

Assume, for this section, that W is a finite rank Coxeter group. So, by its very defini-
tion, W has a presentation of the form

W ¼ hR j ðrsÞmrs ¼ 1; r; s A Ri

where R is finite, mrr ¼ 1, mrs ¼ msr A Zþ U fyg and mrs d 2 for r; s A R with r0 s.
The elements of R are called the fundamental reflections of W and the rank of W is
the cardinality of R. The length of an element w of W , denoted by lðwÞ, is defined to
be

lðwÞ ¼ minfl jw ¼ r1r2 . . . rl : ri A Rg if w0 1;

0 if w ¼ 1:

�

Now let V be a real vector space with basis P ¼ far j r A Rg. Define a symmetric
bilinear form h ; i on V by

har; asi ¼ �cos
p

mrs

� �
;

where r; s A R and the mrs are as in the above presentation of W . Letting r; s A R we
define

r � as ¼ as � 2har; asiar:
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This then extends to an action of W on V which is both faithful and respects the
bilinear form h ; i (see [6, (5.6)]) and the elements of R act as reflections upon V .
The module V is called a reflection module for W and the subset

F ¼ fw � ar j r A R;w A Wg

of V is the all important root system of W . Setting

Fþ ¼
�X

r AR

lrar A F j lr d 0 for all r

�
and F� ¼ �Fþ

we have the basic fact that F is the disjoint union Fþ _UUF� (see [6, (5.4)–(5.6)]).
Elements of Fþ and F� are referred to, respectively, as positive and negative roots
of F.

For w A W we define

NðwÞ ¼ fa A Fþ jw � a A F�g:

The connection between lðwÞ and the root system of W is contained in our next
lemma.

Lemma 2.1. Let w A W and r A R.

(i) If lðwrÞ > lðwÞ then w � ar A Fþ and if lðwrÞ < lðwÞ then w � ar A F�. In particu-

lar, lðwrÞ < lðwÞ if and only if ar A NðwÞ.

(ii) lðwÞ ¼ jNðwÞj.

Proof. See [6, §§5.4, 5.6]. r

Lemma 2.2. Let g; h A W. Then

NðghÞ ¼ NðhÞnð�h�1NðgÞÞU h�1ðNðgÞnNðh�1ÞÞ:

Hence lðghÞ ¼ lðgÞ þ lðhÞ � 2jNðgÞVNðh�1Þj.

Proof. Let a A Fþ. Suppose that a A NðhÞ. Then gh � a ¼ g � ðh � aÞ is negative if and
only if �h � a B NðgÞ. That is, a B �h�1NðgÞ. Thus

NðghÞVNðhÞ ¼ NðhÞn�h�1NðgÞ:

If on the other hand a B NðhÞ, then gh � a A F� if and only if h � a A NðgÞ. That is,
a A Fþ V h�1NðgÞ. Thus

NðghÞnNðhÞ ¼ h�1½ðNðgÞnNðh�1ÞÞ:

254 S. B. Hart and P. J. Rowley
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Combining the two equations gives the expression for NðghÞ stated in Lemma 2.2.
Since NðghÞVNðhÞ and NðghÞnNðhÞ are clearly disjoint, using Lemma 2.1 (ii) we
deduce that

lðghÞ ¼ lðgÞ þ lðhÞ � 2jNðgÞVNðh�1Þj;

which completes the proof of the lemma. r

Proposition 2.3. Let w A W and r A R. If lðrwÞ < lðwÞ and lðwrÞ < lðwÞ, then either

rwr ¼ w or lðrwrÞ ¼ lðwÞ � 2.

Proof. See [6, §5.8, Exercise 3]. r

For JJR define WJ to be the subgroup of W generated by J. Such a subgroup of
W is referred to as a standard parabolic subgroup. Standard parabolic subgroups are
Coxeter groups in their own right with root system

FJ ¼ fw � ar j r A J;w A WJg

(see [6, §5.5] for more on this). A conjugate of a standard parabolic subgroup is called
a parabolic subgroup of W . Finally, a cuspidal element of W is an element which is
not contained in any proper parabolic subgroup of W . Equivalently, an element is
cuspidal if its W -conjugacy class has empty intersection with all the proper standard
parabolic subgroups of W .

Theorem 2.4. Let 00 v A V. Then the stabilizer of v in W is a parabolic subgroup of

W. Furthermore, if v A F, then the stabilizer of v in W is a proper parabolic subgroup

of W .

Proof. The fact that the stabilizer of v is a parabolic subgroup is proved in [1, Chapter
V, §3.3]. If v A F, then v ¼ w � ar for some r A R, w A W and hence ðwrw�1Þ � v ¼ �v.
Thus the stabilizer of v cannot be the whole of W , so is a proper parabolic subgroup
of W . r

Theorem 2.5. Suppose that w is an involution in W. Then there exists JJR such that

w is W-conjugate to wJ , an element of WJ which acts as �1 upon FJ .

Proof. See Richardson [7]. r

Next we give some easy properties of excess.

Lemma 2.6. Let w A W. Then the following hold.

(i) If w is an involution or the identity element, then eðwÞ ¼ 0.

(ii) eðwÞ is non-negative and even.
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(iii) If w ¼ xy where x and y are involutions and 2jNðxÞVNðyÞj ¼ eðwÞ, then ðx; yÞ is
a spartan pair for w.

Proof. If w is an involution or w ¼ 1, then w ¼ w1 with w2 ¼ 1 ¼ 12, whence
eðwÞ ¼ 0. For (ii), suppose that x2 ¼ y2 ¼ 1 and xy ¼ w. Then, using Lemma 2.2,
we have lðwÞ ¼ lðxÞ þ lðyÞ � 2jNðxÞVNðyÞj and hence lðxÞ þ lðyÞ � lðwÞ is even
and (ii) follows. Part (iii) is also immediate from Lemma 2.2. r

We now have the tools needed for the proof of Theorem 1.1, but before continuing
with this we calculate the excess of the element ð12 . . . nÞ of SymðnÞ. The aim of this is
to show that there are Coxeter groups in which elements may have arbitrarily large
excess. Before stating our next result we require some notation. For q a rational num-
ber, bqc denotes the floor of q (that is, the largest integer less than or equal to q), and
dqe denotes the ceiling of q (that is, the smallest integer greater than or equal to q).

Let nd 2. Then SymðnÞ is isomorphic to the Coxeter group WðAn�1Þ of type A. If
W ¼ WðAn�1ÞG SymðnÞ, then we set R ¼ fð12Þ; ð23Þ; . . . ; ððn� 1Þ nÞg and the set of
positive roots is Fþ ¼ fei � ej j 1c i < jc ng. An alternative description of lðwÞ for
w A W in this case is

lðwÞ ¼ jfði; jÞ j 1c i < jc n;wðiÞ > wð jÞgj:

For 0c kc n� 1, let sk be the longest element of Symðf1; 2; . . . ; kgÞ and let tk be the
longest element of Symðfk þ 1; k þ 2; . . . ; ngÞ. A straightforward calculation shows
that

sk ¼ ð1 kÞð2 k � 1Þ . . . k

2

� �
k

2

� �
þ 1

� �
;

and

tk ¼ ðk þ 1 nÞðk þ 2 n� 1Þ . . . n� k

2

� �
þ k

n� k

2

� �
þ k þ 1

� �
:

Note that s0 ¼ s1 ¼ tn�1 ¼ 1. Finally, for 0c kc n� 1, set yk ¼ sktk.

Proposition 2.7. Let w ¼ ð12 . . . nÞ A W ¼ WðAn�1ÞG SymðnÞ. Put

Iw ¼ fx A W j x2 ¼ 1;wx ¼ w�1g:

Then

(i) Iw ¼ fyk j 0c kc n� 1g.

(ii) If n is odd, then ðwyðn�1Þ=2; yðn�1Þ=2Þ is a spartan pair for w.

(iii) If n is even, then ðwyn=2; yn=2Þ and ðwyn=2�1; yn=2�1Þ are both spartan pairs for w.

(iv) eðwÞ ¼ bðn� 2Þ2=2c.

256 S. B. Hart and P. J. Rowley
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Proof. It is easy to check that yk A Iw whenever 0c kc n� 1. Since
jIwjc jCW ðwÞj ¼ n, part (i) follows immediately.

Suppose that y A Iw. Write

eyðwÞ ¼ lðwyÞ þ lðyÞ � lðwÞ; so that eðwÞ ¼ minfeyðwÞ j y A Iwg:

We have

eyðwÞ ¼ lðwyÞ þ lðyÞ � lðwÞ

¼ lðwÞ þ lðyÞ � 2jNðyÞVNðwÞj þ lðyÞ � lðwÞ

¼ 2ðlðyÞ � jNðyÞVNðwÞjÞ:

Now NðwÞ ¼ fei � en j 1c i < ng. Therefore

jNðyÞVNðwÞj ¼ jfi j yðiÞ > yðnÞgj ¼ n� yðnÞ:

Let y ¼ yk for some 0c kc n� 1. We have

lðykÞ ¼ lðskÞ þ lðtkÞ ¼
kðk � 1Þ

2
þ ðn� kÞðn� k � 1Þ

2
:

Moreover jNðykÞVNðwÞj ¼ n� ykðnÞ ¼ n� ðk þ 1Þ. Therefore

eyk ðwÞ ¼ 2ðlðykÞ � jNðykÞVNðwÞjÞ

¼ kðk � 1Þ þ ðn� kÞðn� k � 1Þ � 2ðn� k � 1Þ

¼ 2k2 � 2kðn� 1Þ þ n2 � 3nþ 2

¼ 2 k � 1

2
ðn� 1Þ

� �2

þ 1

2
ðn2 � 4nþ 3Þ

¼ 2 k � 1

2
ðn� 1Þ

� �2

þ 1

2
ðn� 2Þ2 � 1

2
:

If n is odd, then this quantity is minimal when k ¼ 1
2 ðn� 1Þ. Hence part (ii) holds. In

this case,

eðwÞ ¼ eyðn�1Þ=2
ðwÞ ¼ 1

2
ðn� 2Þ2 � 1

2
¼ 1

2
ðn� 2Þ2

� �
:

If n is even, then eyk is minimal when k ¼ n=2 or k ¼ n=2 � 1. Hence we obtain part
(iii), and in either case, eðwÞ ¼ 1

2 ðn� 2Þ2. Combining the odd and even cases we see
that eðwÞ ¼ bðn� 2Þ2=2c. r
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3 Zero excess in conjugacy classes

Proof of Theorem 1.1. Suppose that W is a Coxeter group, w A W and X is the W -
conjugacy class of w. Now w ¼ r1 . . . rl for certain ri A R and some finite l ¼ lðwÞ. So
w A hr1; . . . ; rli. Thus it su‰ces to establish the theorem for W of finite rank. Ac-
cordingly we argue by induction on jRj. Suppose that KYR. If X VWK 0q, then
by induction there exists w 0 A X VWK with eWK

ðw 0Þ ¼ 0, whence eðw 0Þ ¼ 0 and we
are done. So we may suppose that X VWK ¼ q for all K YR. That is, X is a cuspi-
dal class of W .

Choose w A X . If w ¼ 1 or w is an involution, then eðwÞ ¼ 0 by Lemma 2.6 (i).
Thus we may suppose that w ¼ xy where x and y are involutions. By Theorem 2.5
we may conjugate w so that y A WJ for some JJR, with y acting as �1 on FJ .
Thus y A ZðWJÞ. Now choose z to have minimal length in fg�1xg j g A WJg. So we
have z ¼ g�1xg for some g A WJ .

Suppose for a contradiction that there exists r A J with lðzrÞ < lðzÞ. Since z and r

are involutions,

lðrzÞ ¼ lððrzÞ�1Þ ¼ lðzrÞ < lðzÞ:

Applying Proposition 2.3 yields that either rzr ¼ z or lðrzrÞ ¼ lðzÞ � 2 < lðzÞ. Since
r A WJ , the latter possibility would contradict the minimal choice of z. Hence rzr ¼ z.
So r � ðz � arÞ ¼ z � ðr � arÞ ¼ �z � ar. It is well known that the only roots b for
which r � b ¼ �b are ar and �ar. Thus z � ar ¼Gar. By assumption lðzrÞ < lðzÞ and
therefore z � ar A F� by Lemma 2.1 (i), whence z � ar ¼ �ar. Combining this with
y � ar ¼ �ar we then deduce that zy � ar ¼ ar. Then Theorem 2.4 gives that zy is
in a proper parabolic subgroup of W . Noting that zy ¼ g�1xgy ¼ g�1xyg ¼ g�1wg,
as g A WJ , we infer that X is not a cuspidal class, a contradiction. We conclude
therefore that lðzrÞ > lðzÞ for all r A J. Consequently NðzÞVFþ

J ¼ q. Since
NðyÞ ¼ Fþ

J we deduce that NðzÞVNðyÞ ¼ q and hence, using Lemma 2.2, that
lðzyÞ ¼ lðzÞ þ lðyÞ. Setting w� ¼ zy ¼ g�1wg we have w� A X and eðw�Þ ¼ 0, so
completing the proof of Theorem 1.1. r
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