
Formal Program Development with
Approximations

Eerke A. Boiten1 and John Derrick2

1 Computing Laboratory, University of Kent at Canterbury
2 Department of Computer Science, University of Sheffield

E.A.Boiten@kent.ac.uk,J.Derrick@dcs.shef.ac.uk

Abstract. We describe a method for combining formal program devel-
opment with a disciplined and documented way of introducing realis-
tic compromises, for example necessitated by resource bounds. Idealistic
specifications are identified with the limits of sequences of more “re-
alistic” specifications, and such sequences can then be refined in their
entirety. Compromises amount to focusing the attention on a particular
element of the sequence instead of the sequence as a whole.
This method addresses the problem that initial formal specifications can
be abstract or complete but rarely both. Various potential application
areas are sketched, some illustrated with examples. Key research issues
are found in identifying metric spaces and properties that make them
usable for refinement using approximations.

Keywords: Refinement, approximations, metric spaces.

1 Introduction

In formal program development, one starts with a complete formal statement of
the problem to be solved, and then develops a program by gradually adding detail
to the solution. In practical program development, one starts with an incomplete
informal problem statement, and then develops a program by adding detail to the
solution (and implicitly also to the specification). The difference between the two
approaches thus appears immediately in two aspects: formality and completeness
of the initial specification. Just using a formal initial specification is a definite1

improvement on the practical development process; however, insisting that the
initial specification be complete requires a radical change in the process.

Indeed, it is sometimes argued that this assumption of completeness makes
formal development inadequate in practice. Initial specifications often cannot
be complete and abstract at the same time. Consider, for example, a garbage
collector for a programming language. An idealistic specification would say that
it collects all memory cells that have become inaccessible whenever they become

1 Disregarding issues of communication – assume a specification language is used which
transliterates to English or the diagrammatic notation du jour .

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 375–393, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

376 E.A. Boiten and J. Derrick

so. As this is unrealistic and probably not desirable, one might specify it as:
“periodically collects some memory cells which have become inaccessible”. Un-
fortunately, without quantifying “some” and “periodically”, such a specification
is likely to be inadequate, also satisfied by a program which collects no cells on a
yearly cycle. Replacing “some” and “periodically” by explicit values makes the
specification less abstract; worse, it may only be evident much later in the de-
velopment process which values are realistic or optimal. An informal incomplete
specification which can avoid using either “all” or “some” appears to be at an
advantage here.

This paper presents an approach which addresses this issue through using
chains of specifications, which are considered equivalent to their limits. Differ-
ent examples may be based on different limits for the chain, based on measures
of distance between specifications (i.e., metrics), or orderings such as degree of
fairness or randomness, machine integer size, floating point precision, memory
space, etc. The limits represent idealised behaviour, such as unbounded integers,
infinite floating point precision, etc. Elements in the chain represent approxima-
tions to the limits, which for sensible orderings behave “correctly” within bound-
aries which can be characterised precisely. Metrics measure the distance between
specifications, and thus provide a notion of convergence to idealised behaviour
from approximations which might be realisable as implementations.

The corresponding development process starts with an initial “optimistic”
specification. At some stage, this is replaced by a chain of specifications whose
limit it represents. Further development then refines2 the chains uniformly in
their entirety for as long as possible. This implies that “the position in the
chain” – often a resource constraint – is treated as a parameter of the specifi-
cation. The, a specific member of the chain is selected for further development
– this step represents a compromise with respect to the limit specification, and
will generally not preserve correctness. However, by postponing this step for as
long as possible, any further development which relies on the specific choice of
compromise is isolated from the more “generic” development up to that point,
which could later be reused for a different choice. In this way, the development
trail clearly documents where resource constraints were first taken into consid-
eration, and most importantly: at which point the resource constraint’s impact
on the specification forced a compromise. One might call this process “approx-
imate refinement”, but it is actually refinement interspersed with isolated and
highlighted approximation steps.

This process addresses the “incompleteness vs. abstraction” issue by allow-
ing initial specifications to be optimistic, assuming for example unbounded re-
sources. For as long as any mention of resource bounds can be avoided, it is;
then, we introduce the resource bound but continue to develop independently of
its value for as long as possible. This may go all the way to a code level constant,

2 This paper will use the term “refinement” to describe any formal development pro-
cess, without implying the post-hoc verification bias sometimes associated with “re-
finement”.

Formal Program Development with Approximations 377

that is later instantiated on the basis of empirical information such as testing or
profiling.

Apart from the issue of limited resources, a number of other areas which
traditional refinement does not cover in a satisfactory way are addressed by this
approach. One of these is probabilistic algorithms which can come arbitrarily
close to the exact solution but are not guaranteed to ever reach it. Floating point
precision was already mentioned above; in general, any system which should
be dealing with real numbers (e.g. hybrid systems) at some stage should be
dealing with the approximation by floating point numbers. Also, the notion
of urgency in real-time formalisms, i.e., actions that happen instantaneously
once they are enabled, is often an unsatisfactory way of describing “as soon as
possible”; approximation is useful in this context as well.

No particular specification notation or refinement relation has been assumed
so far – indeed, apart from the specific notions of metrics and limits, the approach
described here applies independently of such choices. However, examples in this
paper will mostly use relational refinement [5, 6] using Z [14] as a concrete syntax.
This is briefly described in Section 2.

Section 3 presents sequences of specifications, identified with their limits, and
describes a formal development method using sequences. The rich mathematics
of chains and convergence leads to a number of foundational questions. Some of
these are discussed in Section 4 which considers limits defined by metrics over the
space of specifications. We discuss possible approaches to defining metrics for use
with refinement, and sketch a number of these. Section 4.3 discusses open issues
concerning metrics, limits and their induced topology. Section 5 considers the
relationship between refinement of limits and element-wise refinement of chains.

Various ways of addressing limitations of refinement have been published
previously; these are discussed in Section 6, and we conclude in Section 7.

2 Refinement

Although the approach described in this paper is independent of the choice
of specification notation, we fix a notation and notion of refinement for use in
examples. Our basic formalism is that of alphabetised relations [9], characterised
by predicates, using Z as a concrete syntax.

Where we consider a single operation on a fixed state, we may give its frame
directly, e.g., ∆ [x : N], rather than define an explicit state schema.

Refinement for Z is described in the monograph [6]; we omit many of the
more general definitions and technical details here. For the examples in this
paper, algorithmic or operation refinement mostly suffices. We first recap on the
basic definition of refinement.

A Z specification defines a data type consisting of partial relations, D =
(State, Init, {Opi}i∈I , Fin), where I is the alphabet of the data type (its set of
operations). Each such data type induces a number of potential programs, each
program being a relation over some global state G (the final element Fin is the
finalisation which details what is observable, its technicalities need not concern

378 E.A. Boiten and J. Derrick

us here). In the context in which we are working, a program will be characterised
by a sequence of operation indices (i.e., elements of I), and each such sequence
defines a program. E.g., if p = 〈p1, ..., pn〉 then pD = Init o

9 Opp1
o
9 ... o

9 Oppn
o
9 Fin.

We use the standard definition of refinement [5], defined in terms of these
potential programs. The relational inclusion ensures that the observations pro-
duced by data type C must be consistent with those produced by data type A
for the same sequence of inputs.

Definition 1 (Data Refinement). For data types A and C, C refines A, writ-
ten A �data C, iff for each program p over I , pC ⊆ pA. Further, we write =data
to denote data refinement in both directions. �

In general two methods are used to verify such refinements: downward and
upward simulations. In this paper they coincide because we will use retrieve
relations which are the identity. Thus we use the following.

Definition 2 (Operation Refinement). Operation COp is an operation re-
finement of the operation AOp on the same state, using the same inputs and
outputs, iff

preAOp ⇒ preCOp
preAOp ∧ COp ⇒ AOp

hold for all states, inputs and outputs. preOp denotes the “domain” of Op: those
before-states and inputs for which related after-states and outputs are defined by
Op.

This definition is extended operation-wise to abstract data types of the form
(State, Init , {Opi}i∈I) (both using the same state) with sets of operations and
initialisation (as an operation with an irrelevant before-state). The same condi-
tions hold for operation refinement when the abstract state is a subset of the
concrete one.

However, in a real development it could be argued that this ideal is not always
obtained. Consider the following two examples.

2.1 Example - Bounded Buffer

Part of an abstract specification might specify an abstract buffer:

Buffer
cont : seq Item

EmptyBuf
Buffer ′

cont ′ = 〈 〉

Remove
∆Buffer
out ! : Item

cont = 〈out !〉 � cont ′

Formal Program Development with Approximations 379

Insert∞
∆Buffer
in? : Item

cont ′ = cont � 〈in?〉

However, this might be implemented by a bounded buffer of a particular size,
e.g., n = 256. In this implementation, Insert∞ is replaced by Insertn , where this
is defined as:

Insertn
∆Buffer
in? : Item

(#cont < n ∧ cont ′ = cont � 〈in?〉) ∨ (#cont ≥ n ∧ cont ′ = cont)

This bounded buffer is only an approximate refinement (in some sense) of
the abstract infinite buffer – it certainly does not meet the requirements of the
definition of operation refinement.

2.2 Example - Add

We could also imagine a development involving several steps that include an ap-
proximation at the end. One that starts with Add∞, replaces it by Addn , refines
that to ModAddn and finally instantiates n to maxint. Here the specifications
are:

Add∞
∆ [x : N]; add? : N

x ′ = x + add?

Addn

∆ [x : N]; add? : N

x ′ = x + add? ∧ x ′ < n

ModAddn

∆ [x : Z | −n ≤ x < n]
add? : N

x ′ mod (2 ∗ n) = (x + add?) mod (2 ∗ n)

The final result is not a correct implementation of the original specification, but
it can be formally traced back to it, recording the approximations needed in its
development.

3 Refinement and Approximation with Chains

To model these types of approximate refinements we consider chains of specifi-
cations (Sn), where we will identify a chain with its limit:

380 E.A. Boiten and J. Derrick

Definition 3. A sequence of specifications (Sn)n∈N is considered equivalent to
its limit.

Sequences which do not have a limit are not considered meaningful. Different ap-
proximations give different notions of a limit, and we consider examples of these
in section 4. In this section, we describe an envisaged formal development pro-
cess using chains of specifications. (For simplicity, we do not mention sequences
with multiple indices, although they are definitely not excluded.)

The development process contains four kinds of steps:

Element-wise Refine. A refinement step is a normal development step of the
notation at hand, applied to the current specification. When we are dealing with
a sequence (Sn), we apply such a step uniformly to each of its elements.

Introduce Sequence. At any time, we may replace a specification S with a
sequence of specifications (Sn) such that S is the limit of (Sn).

Replace Sequence. A sequence (Sn) may be replaced by a sequence (Tn) whose
limit is identical to, or a refinement of, the limit of (Sn).

Compromise. We replace a sequence (Sn) with one of its elements Sn .

Sequence introduction and replacement are correct steps, this follows directly
from our interpretation of sequences. Conditions for the correctness of refinement
steps applied element-wise are discussed below, where we also explain what we
mean by the “uniform” application of such steps. A compromise step generally
does not preserve correctness, and for that reason forms a central part of the
development documentation.

Example 2.2 uses sequence introduction when we replace Add∞ by the se-
quence (Addn) and element-wise refinement in the refinement to (ModAddn),
and the final step is a compromise, i.e., when we instantiate n to maxint.

A variation on the bounded buffer example given previously might start de-
velopment from the unbounded buffer, replace it by (Bufn) (sequence introduc-
tion), then by (Buf2∗n)n∈N (sequence replacement, the limit of even-sized buffers
is still the infinite buffer), implement that by serial composition of two copies of
Bufn (element-wise refinement), and finally instantiate n to 256 (compromise).

The definition of refinement between sequences is inherited from their iden-
tification with limits. Thus, we have:

Theorem 1. The sequence (Sn) with limit S∞ is refined by the sequence (Tn)
with limit T∞ iff S∞ is refined by T∞.

Clearly our main objective in refining chains should be to use element-wise
refinement as much as possible. Sequence replacement is complete by definition
for sequence refinement (assuming a complete rule for refinement of their lim-
its), but defeats the purpose of moving to sequences. Its use is probably best
limited to replacing sequences which converge “at different speeds”, such as in
the even-sized buffer example above. However, element-wise refinement does not
necessarily lead to refinement between sequences; this is discussed further in
Section 5 below.

Formal Program Development with Approximations 381

4 Metrics and Limits

The above discussion on orders and limits is the precursor to a discussion on
alternative approaches to limits in terms of metrics (and hence topologies). We
first recap on the standard definitions. Limits are defined in terms of convergence,
which is relative to a particular distance function: a metric.

Definition 4 (Metric). A metric on a space A is a function d : A × A → R

such that ∀ x , y , z ∈ A:

d(x , y) ≥ 0
d(x , y) = d(y , x)
d(x , y) = 0 iff x = y
d(x , y) ≤ d(x , z) + d(z , y) �

The limit of a sequence is defined as the point of convergence with respect to a
metric.

Definition 5 (Limit of a Sequence). A sequence sn converges to s, denoted
sn → s, whenever:

∀ ε > 0 • ∃N • ∀n > N • d(sn , s) ≤ ε �

There are several approaches to defining metrics and topologies for specifi-
cations, to understand what is relevant in terms of refinement we return to its
definition. This was defined as consisting of program observation, expressed as
pC ⊆ pA, where pC is a finite sequential composition of operations from C. From
this there are two immediate parameters which can be used to define metrics: the
consistency of observations as represented by ⊆, and the programs themselves.
We discuss each of these in turn.

4.1 Program Length

Data refinement asks for consistency of observations for all programs. We can
define a metric by assigning a distance to specifications which agree on obser-
vations up to a certain length. This is easiest if phrased in terms of equivalence
(i.e., data refinement in both directions). Thus we define

Definition 6 (Program Length Metric). We define the metric dl on speci-
fications as follows:

dl(A,C) =
{

0 if A =data C
2−n if n = min{m : N | ∃ p • pC �= pA ∧ #p = m}

where the length of a program is the number of operations plus one (for the
initialisation). �

382 E.A. Boiten and J. Derrick

It should be clear that this defines a metric on the set of equivalence classes
(with respect to =data) of specifications. The basis of this metric, see [4], is the
idea that two specifications are close if it takes a long time to tell them apart,
where a ‘long time’ is the length of the program before the difference is observed.

Limits with respect to this metric are characterised as follows. The sequence
Sn converges to S whenever, dl(Sn ,S) → 0, i.e., 2−n → 0 where n is the mini-
mum length of program needed to distinguish Sn from S .

Buffer Example. This metric works well on the buffer example. The shortest
program that can observe that Bufn , a buffer of size n, does not have infinite
capacity has size 2n + 2: first n + 1 elements are inserted (the last of which is
the first one to be ignored), then n Remove operations are successful, and the
next Remove operation fails3.

Thus dl(Bufn ,Buf) = 2−(2n+3) and so Bufn → Buf .
This metric has thus here correctly formalised our intuition that Bufn gets

closer to its idealised behaviour as n gets larger. The metric quantifies this
closeness numerically.

Notice that the definition of the metric is, as one would hope, not sensitive to
small changes. For example, if we consider finite and infinite stacks (i.e., inserting
and removing from the same end) we can observe the difference more quickly
than in the buffer example (since we do not have to remove all the elements
first). However, the distance is 2−(n+1), and thus we still get convergence to the
infinite stack as one would expect.

Although its definition seems to assume observations being characterised by
outputs, it also works for specification styles that use other notions of observabil-
ity [7]. This is because there will always be a minimum length program where any
difference can be observed – whether that be due to an output of an operation,
or an explicit finalisation after the last operation.

Add Example. Applying this metric to the second example results in the fol-
lowing. First, note that as it stands the specifications are data refinement equiv-
alent (for any n) since no difference can be observed. So let us add an observer
to both:

Obs
Ξ [x : N]; out ! : N

out ! = x

Denoting the two specifications by An and A∞, we find that dl(An ,A∞) =
2−3 since the sequence Init ; Add ; Obs will observe a difference for any input

3 The standard semantics of applying Remove outside its precondition allows for any
result including the “correct” one and a completely undefined one; however, we are
looking for equality of semantics of programs rather than inclusion.

Formal Program Development with Approximations 383

bigger than n. Thus, with respect to this metric, we do not get convergence.
This is despite the sequence (Addn) being ordered by refinement:

preAddn = x + add? < n ⇒ preAddn+1 = x + add? < n + 1

and

preAddn ∧ Addn+1

≡
x + add? < n ∧ x ′ = x + add? ∧ x ′ < n + 1
≡
x + add? < n ∧ x ′ = x + add? ∧ x ′ < n
≡
Addn

The use of this metric on this example could be criticised because, although
dl(An ,A∞) = 1/23, the behaviour is correct for some inputs. That is, this defi-
nition stresses quantification over programs at the expense of quantification over
inputs and outputs. Consider, for example,

OpN

∆ [x : N]
x? : N

y ! : B

x? �= N ⇔ y !

Op
∆ [x : N]
x? : N

y ! : B

y !

then (assuming each specification is completed in an obvious way) dl(OpN ,Op) =
1/4 despite the fact that Op and OpN have identical behaviour for all but one
input. The metric in Section 4.2 tackles this issue.

Metrics via Probability Distributions. It should be noted that the program
length metric is a worst case analysis. The shortest program that one can observe
the difference on is used to determine the difference, irrespective of whether that
program is likely to appear in practice. Such a worst case analysis is useful in, for
example, safety analysis. However, it might well be that other analyses are useful
on occasion, and this would involve the use of a different metric. To determine
the correct measure, a probability distribution would have to be assigned to
the possible programs occurring, and this probability would be reflected in the
distance calculated.

For example, let π : P → [0, 1] be a probability distribution on the space of
all finite programs P (which is countable). Thus π(p) represents the probability
that p will occur. At this moment we abstract away from any discussion of time
intervals over which programs may be invoked, but assume they occur in some
unspecified interval, kept finite (along with the program length) to avoid any
issues of fairness.

384 E.A. Boiten and J. Derrick

Definition 7. We say a probability distribution π is observationally consistent
over a set of specifications S if, for all A,C ∈ S we have A �=data C ⇒ ∃ p.π(p) >
0 ∧ pA �= pC. �

This is needed to ensure that we can observe the non-equivalent specifications.
It is a natural requirement to seek, since A �=data C means we can observe a
difference in behaviour, and this will only be the case if there is a non-zero
probability of a program being invoked which exhibits that difference. We can
now define a metric with respect to such a probability distribution as follows.

Definition 8. Let π be an observationally consistent probability distribution
over a set of specifications S. Define dπ by

dπ(A,C) =
{

0 if A =data C
p if p = Σ{π(p) | p : P ∧ pC �= pA}

�

Thus dπ measures the distance in terms of a probability that the non data-
equivalence will be observed by one of the programs.

Theorem 2. dπ is a metric on the set of equivalence classes (with respect to
=data) of specifications.

Proof:
1. Non-negativity and symmetry are obvious.

2. dπ(A,C) = 0 iff A =data C follows from π being observationally consistent.

3. For the triangle equality, given non-equivalent specifications A,B ,C . Let p
be a program with pC �= pA and π(p) = p; then either pB �= pA or pC �= pB (or
indeed both), thus p will be in the sum of probabilities in the measure dπ(A,B)
or dπ(B ,C). This holds for all elements in the sum Σ{π(p) | p : P ∧ pC �= pA},
and thus

Σ{π(p) | p : P ∧ pC �= pA} ≤
Σ{π(p) | p : P ∧ pB �= pA} + Σ{π(p) | p : P ∧ pC �= pB}

as required. �

Other variants of such a metric are clearly feasible and this approach needs
to be assessed against practical as well as theoretical relevance.

4.2 Input/Output Metrics

An alternative to a metric based around program length is one that ‘counts’ the
inputs/outputs for which the concrete specification correctly refines the abstract
one. Due to the issue of counting over an infinite domain such as N, we first
consider bounded data types before generalising to unbounded ones.

Formal Program Development with Approximations 385

Bounded Data Types. Consider a simplification of the Add example given as
follows.

Setn
∆ [x : 0..m]
set? : 0..m

x ′ = set? ∧ x ′ < n

Set∞
∆ [x : 0..m]
set? : 0..m

x ′ = set?

Obs
Ξ [x : 0..m]; y ! : N

y ! = x

We want to define a metric which counts the values for which (Init ,Setn ,Obs)
differs from (Init ,Set∞,Obs). This time we will base our metric on the simulation
rules (i.e., operation refinement as in Definition 2), in contrast to the metric in
Section 4.1, which used the basic definition of data refinement.

First note that the temptation to just count the outputs (i.e., observations)
is not sufficient: Obs in the concrete is clearly a correct refinement of Obs in the
abstract. Thus if we are to base a metric on the simulation rules we will clearly
need to consider both inputs and outputs. This means we will consider refinement
of both preconditions and postconditions. Again we will define a metric d that
is zero on data refinement equivalent specifications, this will be defined in terms
of the maximum distance between the constituent operations:

d(A,C) = maxi∈I d(AOpi ,COpi)

and the distance between two operations in terms of an asymmetrical distance
based on applicability and correctness:

d(AOp,COp) = max{ρ(AOp,COp), ρ(COp,AOp)}
ρ(AOp,COp) = ρa(AOp,COp) + ρc(AOp,COp)

Here ρa will measure distance in preconditions, and ρc distance in correctness.
Both will count values where failure occurs, and return the ratio of this to the
size of the input/output domain as the distance. Thus we define (with suitable
generalisation):

Definition 9 (Input/Output Metric). ρa(AOp,COp) = (#Y −#T)
#Y where Y

is the type of the input x? and T is the largest set T ⊆ Y such that

∀ x? : T • ∀State • preAOp ⇒ preCOp

ρc(AOp,COp) = (#Z−#T)
#Z where Z is the type of the output y ! and T is the

largest set T ⊆ Z such that

∀ y ! : T • ∀State; State ′; x? : Y • preAOp ∧ COp ⇒ AOp �

386 E.A. Boiten and J. Derrick

Limits, and convergent sequences, with respect to this metric are charac-
terised as follows. The sequence Sn converges to S whenever the number of
inputs and outputs for which Sn and S are not equivalent tends to zero.

We can calculate the distance between An = (Init ,Addn ,Obs) and A∞ =
(Init ,Add∞,Obs):

d(An ,A∞) = d(Addn ,Add∞) since Obs is identical in An and A∞
= ρ(Add∞,Addn) since Addn � Addn+1

= ρa(Add∞,Addn) since there are no outputs
= (m + 1 − #T)/(m + 1)

where T is the largest T ⊆ 0..m for which add? : T • add? < n, hence

d(An ,A) =
{

(m + 1 − (n − 1))/(m + 1) if n < m
0 otherwise

Hence An → A∞ with respect to this metric. In a similar way with the Add
example from Section 2.2 we also get An → A∞. The following proposition
follows directly.

Proposition 1. d is a metric on the set of equivalence classes (with respect to
refinement) of specifications.

Proposition 2. If Si � Si+1 and S is the least upper bound in the refine-
ment ordering (i.e., Si � S and no other Si � T � S with T �=data S), then
d(Si ,S) → 0.

Proof
It suffices to consider one operation Opi . Since Si � Si+1 we have

preSi ⇒ preSi+1
preSi ∧ Si+1 ⇒ Si

and the distance will depend upon convergence of the following

preSi+1 ⇒ preSi
preSi+1 ∧ Si ⇒ Si+1

Now since the sequence (Si) is bounded above and the types are bounded, the
preconditions must eventually converge, i.e., ∃N • ∀n > N • preSn = preS .

Similarly, correctness will allow reduction of non-determinism in output and
after-state. With the bounded output type, once the preconditions have con-
verged, the correctness must do so also, i.e., ∃M > N • ∀m > M • Sm =data S .
�

Notice that this proposition is also true for the metric in Section 4.1.
In order to calculate a ratio #Y −#T

#Y the input and output types must obvi-
ously be bounded, however, the state does not have to be bounded. However, a

Formal Program Development with Approximations 387

non-finite state can lead to differences in the distance calculated as the following
example shows.

State1
x : 0..m

State2
x : N

Addn [S]
∆S
add? : 0..m

x ′ = x + add? ∧ x ′ < n

Add∞[S]
∆S
add? : 0..m

x ′ = x + add?

We can calculate d(Addn [State1],Add∞[State1]) = 1 − #T/(m + 1), where,
similarly to before, we find that

T =

⎧⎨
⎩

∅ if n ≤ m
0..m if n > 2m
0..(n − m) if m < n ≤ 2m

so again d(Addn [State1],Add∞[State1]) → 0, indeed the distance is zero after
n = 2m.

However, if we calculate d(Addn [State2],Add∞[State2]), this also comes to
1 − #T/(m + 1), but T = ∅ since for no input values can we guarantee that
x ′ < n for all state. And this sequence does not converge, correctly reflecting
our intuition that we can never force Addn to behave like Add∞ no matter what
input values are chosen.

A similar situation occurs when we apply this metric to the buffer example.
In Insert , the value of the input chosen is immaterial thus d(Bufn ,Buf) = 1
since it is the size of the state that forces convergence or otherwise.

Arbitrary Input/Output Types. How do we generalise the above metric to
arbitrary input/output types such as add? : N? The approach we take is to avoid
the problem and recognise the nature of approximation of implementation. The
observation is that in any real implementation approximations will be made to
data types such as N, Z, R etc. For example, N will usually be implemented as
0..maxint and so forth, R as a certain precision of float.

As an example, consider our original addition example:

Addn

∆ [x : N]
add? : N

x ′ = add? + 1 ∧ x ′ < n

Add∞
∆ [x : N]
add? : N

x ′ = add? + 1

Addn is a correct refinement of Add∞ whenever x ′ < n. Now, the maximum
range of a realistic implementation for N is 0..maxint , so when n exceeds maxint ,
Addn should correctly refine the implementation of Add∞.

388 E.A. Boiten and J. Derrick

We thus use the same definition for d and ρ, and adapt the definition of ρa
and ρc to take into account the implementation range. Then to adapt Definition
9 we take Yimp (and resp. Zimp) to be the actual implementation of Y (and
resp. Z), and then find (#Yimp−#T)

#Yimp
where T is the largest set T ⊆ Yimp such

that

∀ x? : T • ∀State • preAOp ⇒ preCOp

and similarly for ρc . (Notice we do not change the calculation of the precondi-
tion.)

With this metric should be a description of how each infinite type has been
implemented, e.g., N as 0..maxint .

Applying this to the example above gives us:

preAdd∞ = true
preAddn = (add? + 1 < n)

= add? : 0..n − 2

So we find the largest T with ∀ add? : T • ∀State • add? : 0..n − 2, we then
calculate (#Yimp−#T)

#Yimp
which is

{ (maxint+1−(n−1)
maxint+1 if n < maxint + 2

0 otherwise

which tends to zero as n → ∞.

Discussion. Although this metric has the pleasing characteristic that it is de-
fined via the simulation rules, and this is tractable, it is open to criticism in
a number of respects. Firstly, it is somewhat ad hoc, and one must wonder
whether a better characterisation can be obtained by beginning with the defini-
tion of downward simulation instead of the definition of data refinement. Second,
the fudge to deal with unbounded data types is indeed a fudge. Whilst it deals
satisfactorily with an infinite data type such as N, it is less clear how effective it
would be with R where the subset of values actually represented in a program-
ming language varies more wildly depending on implementation strategy.

There are a number of ways these issues could be tackled. For example, one
could embed the input/output in the state (in the standard fashion [6]) in order
to derive the simulation rules from the data refinement definition. The metric
could also take account of the complexity of constructing a particular input
as its characterisation of how often this would occur (as opposed to a ratio as
above). Such a complexity measure is akin to using a probability distribution,
and this perhaps is the most promising avenue to explore. Instead of returning
a ratio of failures to all possible values, we should construct a distance in terms
of the probability of a particular input/output occurring that is a witness to the
non-equivalence of A and C . This could then be combined with the approach
to probability distribution discussed in Section 4.1. How a simulation based
characterisation could be derived from this definition would be a challenging
problem.

Formal Program Development with Approximations 389

4.3 Open Questions

The purpose of this paper was to provide an initial articulation of the problem
of approximate refinement, and sketch an approach based on metrics, chains and
their limits. The use of metrics as a semantic basis in computer science is not new
[4, 1, 11], however, the emphasis here has been on using the measure of distance
and characterisation of limits rather than interest in the induced topological
structure. In addition to the questions raised in the discussions above, there are
a number of open questions which need addressing, including:

What is the Relationship of the Metrics Outlined in this Paper to
Work on Metric Space Approaches to Semantics? Metric spaces used
for denotational semantics have principally been used where concurrency is an
issue, however, the metric defined in Section 4.1 is based upon that in [4], and
this could be the starting point for such an exploration. It is less obvious what
the relation is between the metric in Section 4.2 and those used as the basis for
the semantics of concurrency.

What are the Topological Characteristics of the Metrics? Some will be
inherited from their derivation, e.g., the metric used in [4]. For others, such as
that in Section 4.2, an understanding of completeness, compactness and when
they induce known topologies would be interesting.

What is their Basis in Terms of Data Refinement? The metric defined in
Section 4.1 is based upon the definition of data refinement, how does this interact
with the normal definition of simulation rules? On the one hand, the metric from
Section 4.2 adapts the definition of operation refinement, rather than going back
to the basic definition (Definition 1). This is rather unsatisfactory, and a better
characterisation would derive the definition from that of data refinement. How
should this be done, and how do these metrics relate to the finalisations (which
determine what is visible). How do the results generalise to non-identity retrieve
relations, and what topological properties do the retrieve relations induce?

What Alternative Metrics are there? Do the ones defined here capture all
the intuitive properties of approximation? Which, if any, is the most attractive
from a theoretical or practical viewpoint? How do notions of approximate re-
finement relate to work on implementing programming language data types such
as [10]?

5 Metrics and Chains

The previous section has discussed possible metrics at some length. We now
briefly discuss how they fit into the use of chains as an approach to development.
Four kinds of development steps were proposed. The metric chosen will have a
direct relevance to the limits in introduce sequence and replace sequence. It is also

390 E.A. Boiten and J. Derrick

worth noting that our discussion above has revealed there is no single canonical
notion, thus the choice of metric is down to practical considerations: it depends
on what aspects one considers important for a particular application. Similarly
the choice of compromise depends on practical considerations, that is, how close
an approximation is needed in particular circumstances.

In element-wise refinement, metrics and refinement are closely intertwined.
What is needed is a way of refining each element in such a way that the refined
sequence converges (hopefully to a refinement of the original limit).

A simple example shows that arbitrary refinement does not always have this
property. Consider the following specifications together with the program length
metric of Section 4.1.

Consider the sequence of ADTs consisting of an observer operation together
with Incn , where each Incn is defined by

Incn
∆ [x : N]

x ≤ x ′ ≤ x + 2

This sequence is constant (its elements are independent of n), so it converges.
However, the individual operation Incn is refined by the operation EvenIncn ,
defined as

EvenIncn
∆ [x : N]

if even(n) then x ′ = x + 2 else x ′ = x

but the sequence (EvenIncn) does not converge.
This proves the following (counter-)theorem:

Theorem 3. Element-wise refinement does not guarantee sequence refinement,
i.e., a refinement relation � and sequences (Sn) and (Tn) exist such that

∀n : N • Sn � Tn

and (Sn) converges, but (Tn) does not.

This example shows that non-determinism cannot, in general, be resolved
without losing uniformity. To preserve it one would have to ensure that the
non-determinism was resolved in the same way in each element of the sequence.
Further, with this metric, preconditions cannot be weakened, even if the weak-
ening is the same in each element in the sequence.

Consider the following diagram, which shows the effect of one operation after
another. There is no discernible difference, however, this does not hold if we
weaken the precondition of the first operation (this is represented by the dotted
line), and the distance has increased with this element-wise refinement.

Formal Program Development with Approximations 391

�

�

�

�

�

�

�

�������

Op1 Op2 Op1 Op2

In order to achieve element-wise refinement we clearly need the refinement
to be uniformly convergent in the following (usual) sense. Letting f (x) denote a
refinement of x , we need

∀ ε > 0 • ∃ δ > 0 • d(x , y) < δ ⇒ d(f (x), f (y)) < ε

which might be achieved, for example, in the following ways.
One possibility is to use the refinement calculus to refine each element in the

sequence uniformly. This would involve not weakening the preconditions and
resolving the non-determinism in a uniform way.

Another similar idea is to use calculational approaches. In particular, one can
calculate the weakest downward or upward simulation of a specification (with
respect to a retrieve relation which might change the state), and the result is
equivalent to the original. Thus calculation could be applied element wise to
a sequence, and convergence would be preserved (as required by element-wise
refinement).

An alternative is to perform the refinement independently of n in such a way
that element-wise refinement is obtained. Details of this are left for the future.

6 Related Work

The observation that idealised specifications correspond to “realistic” specifica-
tions with resource bounds tending to infinity is not new. In particular, in his
PhD thesis [12], Neilson defined ∞-refinement �∞ in terms of ordinary refine-
ment � as follows:

A �∞ B
⇔
∃ c1, c2, . . . , cn : ResourceLimit • limc1,c2,...,cn→∞,∞,...,∞(A � B)

where the resource constraints ci appear free in B and not at all in A. Such a
refinement step establishes resource limits as constants in the specification; Neil-
son implicitly indicates that subsequent refinement may fix the values of these
constants. Thus, these constants act as existential rather than universal param-
eters of the specification [3]: they may be arbitrarily constrained as long as the
specification remains satisfiable. In our view, the use of underspecified constants
obscures the distinction between the introduction of resource constraints, re-
finement, and the actual approximation that occurs by specialising their values.
Another difference to our approach is that after the ∞-refinement step, there is
no further mention (let alone development) of chains.

392 E.A. Boiten and J. Derrick

Banach and Poppleton have defined and investigated a generalisation of re-
finement called “retrenchment” [2]. They add “within” and “concedes” relations
to every refinement step, indicating where preconditions are strengthened and
postconditions weakened. These allow for developments which are not quite cor-
rectness preserving to be documented. However, this documentation refers to
the internals of a specification at any given point in the development trace, and
is thus hard to relate to external behaviour. Clearly, by taking a strong enough
“within” relation, retrenchment holds between any pair of specifications – its
value is in the documentation of where and how refinement has been relaxed.
Taking that interpretation, our main objection to retrenchment as a development
relation is that it encourages inexact development steps throughout, rather than
localising them as we do here. Similar ideas are explored by Smith [13] for real-
time specification – importantly, this work concentrates on the properties that
are preserved by development steps which are not quite refinement steps but
so-called “realisations”.

Approximate refinement has been listed in a number of contexts as being
desirable. In the UK Grand Challenge for Non-Classical Computation [15], it is
mentioned as necessary for non-classical models such as quantum computation.
Researchers at Berkeley [8] suggested its use for hybrid systems, although offered
no means to do so.

7 Concluding Comments

This paper has set out an approach which we believe might be useful for com-
bining formal program development in a disciplined way with the inevitable
compromises required by the bounded resources of implemented programs. The
underlying mathematics is very rich, and we have hardly begun to explore it,
even in the context of relational specification languages – but we hope that the
examples presented give a flavour of what might be possible, and some indication
that a further exploration of these ideas would be worthwhile.

Acknowledgements. Thanks are due to members of the EPSRC RefineNet
network (www.refinenet.org.uk), whose feedback on an earlier presentation sub-
stantially improved some of the above ideas, to Dan Grundy who commented on
the draft, and to the reviewers for their useful suggestions.

References

1. P. America and J. Rutten. Solving reflexive domain equations in a category of
complete metric spaces. In J. W. de Bakker and J. J. M. Rutten, editors, Ten
Years of Concurrency Semantics: Selected Papers of the Amsterdam Concurrency
Group, pages 131–163. World Scientific, Singapore, 1992.

2. R. Banach and M. Poppleton. Retrenchment, refinement and simulation. In J.P.
Bowen, S. King, S. Dunne, and A. Galloway, editors, ZB 2000, volume 1878 of
Lecture Notes in Computer Science, pages 304–323. Springer-Verlag, 2000.

Formal Program Development with Approximations 393

3. E.A. Boiten. Loose specification and refinement in Z. In D. Bert, J.P. Bowen,
M.C. Henson, and K. Robinson, editors, ZB 2002, volume 2272 of Lecture Notes
in Computer Science, pages 226–241. Springer-Verlag, 2002.

4. J. W. de Bakker and J.-J. C. Meyer. Metric semantics for concurrency. In J. W.
de Bakker and J. J. M. Rutten, editors, Ten Years of Concurrency Semantics:
Selected Papers of the Amsterdam Concurrency Group, pages 104–130. World Sci-
entific, Singapore, 1992.

5. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. CUP, 1998.

6. J. Derrick and E.A. Boiten. Refinement in Z and Object-Z: Foundations and Ad-
vanced Applications. FACIT. Springer Verlag, May 2001.

7. J. Derrick and E.A. Boiten. Relational concurrent refinement. Formal Aspects of
Computing, 15(2):182–214, 2003.

8. A. Ghosal, M. Jurdzinski, R. Majumdar, and V. Prabhu. Approximate re-
finement for hybrid systems. Berkeley EECS Research Summary for 2003,
http://buffy.eecs.berkeley.edu/ResearchSummary/03abstracts/vinayak.1.html.

9. C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

10. B. Jacobs. Java’s integral types in PVS. In Elie Najm, Uwe Nestmann, and Perdita
Stevens, editors, FMOODS’03, pages 1–15, Paris, November 2003. Springer.

11. Marta Kwiatkowska and Gethin Norman. A fully abstract metric-space denota-
tional semantics for reactive probabilistic processes. In Abbas Edalat, Achim Jung,
Klaus Keimel, and Marta Kwiatkowska, editors, Electronic Notes in Theoretical
Computer Science, volume 13. Elsevier, 2000.

12. D.S. Neilson. From Z to C: Illustration of a Rigorous Development Method. PhD
thesis, Oxford University Computing Laboratory, 1990.

13. G. Smith. From ideal to realisable real-time specifications. In N. Leslie, editor,
Fifth New Zealand Formal Program Development Colloquium, number 99-1 in IIMS
Technical Report. Institute of Information and Mathematical Sciences, Massey
University at Albany, 1999.

14. J. M. Spivey. The Z Notation: A Reference Manual. International Series in Com-
puter Science. Prentice Hall, 2nd edition, 1992.

15. Susan Stepney, John A. Clark, Colin G. Johnson, Derek Partridge, and Robert E.
Smith. Artificial immune systems and the grand challenge for non-classical compu-
tation. In Jon Timmis, Peter Bentley, and Emma Hart, editors, Proceedings of the
2003 International Conference on Artificial Immune Systems, LNCS 2787, pages
204–216. Springer, September 2003.

	Introduction
	Refinement
	Example - Bounded Buffer
	Example - Add

	Refinement and Approximation with Chains
	Metrics and Limits
	Program Length
	Input/Output Metrics
	Open Questions

	Metrics and Chains
	Related Work
	Concluding Comments

