
Refactoring Erlang Programs ∗

Huiqing Li, Simon Thompson
University of Kent, UK

László Lövei, Zoltán Horváth, Tamás Kozsik, Anikó Vı́g, Tamás Nagy
Eötvös Loránd University, Hungary

Abstract
We describe refactoring for Erlang programs, and work
in progress to build two tools to give machine support
for refactoring systems written in Erlang. We comment
on some of the peculiarities of refactoring Erlang pro-
grams, and describe in some detail a number of refac-
torings characteristic of Erlang.

1. Introduction
Refactoring [6] is the process of improving the de-
sign of a program without changing its external be-
haviour. Behaviour preservation guarantees that refac-
toring does not introduce (or remove) any bugs. Sep-
arating general software updates into functionality
changes and refactorings has well-known benefits.
While it is possible to refactor a program by hand, tool
support is invaluable as it is more reliable and allows
refactorings to be done (and undone) easily. Refactor-
ing tools can ensure the validity of refactoring steps by
automating both the checking of the conditions for the
refactoring and the refactoring transformation itself,
making the process less painful and error-prone.

Refactoring has been applied to a number of lan-
guages and paradigms, but most of the work in build-
ing tools has concentrated on object-oriented program-
ming. In this paper we report on work in progress at our
universities to build tools to support the refactoring of
Erlang programs.

The paper begins with a brief introduction to refac-
toring, which is followed by a discussion of the partic-
ular question of refactoring Erlang systems. We then

∗Supported by EPSRC in the UK, GVOP-3.2.2-2004-07-0005/3.0
ELTE IKKK, Ericsson Hungary, Bolyai Research Fellowship and
ELTE CNL in Hungary

describe the approaches taken by our two teams: in a
nutshell, the Kent team work over a enriched abstract
syntax tree (AST), whereas the research at Eötvös
Loránd University builds the representation in a re-
lational database.

After describing the systems we speculate on what
refactorings are the most appropriate to Erlang and are
most useful to the working Erlang programmer, before
concluding and surveying future work for both teams.

2. Refactoring
Refactorings transform the structure of a program with
out changing its functionality. They are characterised
by being diffuse and bureaucratic. They ate diffuse in
the sense that a typical refactoring will affect the whole
of a module or set of modules, rather than a single def-
inition in a program, which is often the case for a pro-
gram optimising transformation. They are bureaucratic
in that they require attention to detail; for instance, tak-
ing into account the binding structure of a program.

Refactorings are not simply syntactic. In order to
preserve the functionality of a program, refactorings re-
quire awareness of various aspects of the semantics of
the program including types and module structure and
most importantly the static semantics of the program:
that is the scope of definitions, the binding structure
of the program (the association between the use of an
identifier and its definition), the uniqueness of defini-
tions and so forth.

Each refactoring comes with a set of side conditions,
which embody when a refactoring can be applied to
a program without changing its meaning. Our experi-
ence of building refactoring tools so far shows that for
most refactorings, the side-condition analysis is more
complex than the program transformation part. Taking

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a concrete example, the general side conditions for re-
naming an identifier could be as follows.

The existing binding structure should not be af-
fected. No binding for the new name may intervene be-
tween the binding of the old name and any of its uses,
since the renamed identifier would be captured by the
renaming. Conversely, the binding to be renamed must
not intervene between bindings and uses of the new
name.

These side-conditions apply to most programming
languages. However, each programming language may
also impose its own particular constraints on this refac-
toring. For example, in an Erlang program using the
OTP library, a user should not rename certain functions
exported by a call-back module. For some languages,
refactoring conditions can be checked at compile time;
the more dynamic nature of Erlang means that some
necessary conditions can only decided at run-time; we
return to this point below.

2.1 Tool Support for Refactorings
Although it is possible to refactor a program manu-
ally, it would be both tedious and error-prone to refac-
tor large programs this way. Interactive tool support for
refactoring is therefore necessary, as it allows refactor-
ings to be performed easily and reliably and to be un-
done equally easily.

A refactoring tool needs to get access to both the
syntactic and static semantic information of the pro-
gram under refactoring. While detailed implementation
techniques might be different, most refactoring tools go
through the following process: first transform the pro-
gram source to some internal representation, such as
an abstract syntax tree (AST) or database table; then
analyse the program to extract the necessary static se-
mantic information, such as the binding structure of the
program, type information and so forth.

After that, program analysis is carried out based on
the internal representation of the program and the static
semantics information to validate the side-conditions of
the refactoring. If the side-conditions are not satisfied,
the refactoring process stops and the original program
is unchanged, otherwise the internal representation of
the program is transformed according to the refactor-
ing. Finally, the transformed representation of the pro-
gram need to be presented to the programmer in pro-
gram source form, with comments and the original pro-
gram appearance preserved as much as possible.

-module (sample).
-export([printList/1]).

printList([H|T]) ->
io:format("~p\n", [H]),
printList(T);

printList([]) -> true.

Figure 1. The initial program

-module (sample).
-export([printList/1, broadcast/1]).

printList([H|T]) ->
io:format("~p\n", [H]),
printList(T);

printList([]) -> true.

broadcast([H|T]) ->
H ! "The message",
broadcast(T);

broadcast([]) -> true.

Figure 2. Adding a new function naı̈vely

The Kent group are responsible for the project
‘Refactoring Functional Programs’ [7], which has de-
veloped the Haskell Refactorer, HaRe [9], providing
support for refactoring Haskell programs. HaRe is a
mature tool covering the full Haskell 98 standard, in-
cluding “notoriously nasty” features such as monads,
and is integrated with the two most popular develop-
ment environments for Haskell programs: Vim and
(X)Emacs. HaRe refactorings apply equally well to
single- and multiple-module projects. HaRe is itself
implemented in Haskell.

Haskell layout style tends to be idiomatic and per-
sonal, especially when a standard layout is not enforced
by the program editor, and so needs to be preserved
as much as possible by refactorings. HaRe does this,
and also retains comments, so that users can recognise
their source code after a refactoring. The current release
of HaRe supports 24 refactorings, and also exposes an
API [10] for defining Haskell refactorings and program
transformations.

3. Refactoring Erlang Programs
Figures 1 - 5 illustrate how refactoring techniques can
be used in the Erlang program development process.

-module (sample).
-export([printList/1]).

printList(L) ->
printList(fun(H) ->

io:format("~p\n", [H]) end, L).

printList(F,[H|T]) ->
F(H),
printList(F, T);

printList(F,[]) -> true.

Figure 3. The program after generalisation

-module (sample).
-export([printList/1]).

printList(L) ->
forEach(fun(H) ->

io:format("~p\n", [H]) end, L).

forEach(F,[H|T]) ->
F(H),
forEach(F, T);

forEach(F,[]) -> true.

Figure 4. The program after renaming

The example presented here is small-scale, but it is
chosen to illustrate aspects of refactoring which can
scale to larger programs and multi-module systems.

In Figure 1, the function printList/1 has been
defined to print all elements of a list to the standard
output. Next, suppose the user would like to define
another function, broadcast/1, which broadcasts a
message to a list of processes. broadcast/1 has a
very similar structure to printList/1, as they both
iterate over a list doing something to each element in
the list. Naı̈vely, the new function could be added by
copy, paste, and modification as shown in Figure 2.
However, a refactor then modify strategy, as shown in
Figures 3 - 5, would make the resulting code easier to
maintain and reuse.

Figure 3 shows the result of generalising the func-
tion printList on the sub-expression

io:format("~p/n",~[H])

The expression contains the variable H, which is only
in scope within the body of printList. Instead of
generalising over the expression itself, the transforma-

-module (sample).
-export([printList/1, broadcast/1]).

printList(L) ->
forEach(fun(H) ->

io:format("~p\n", [H]) end, L).

broadcast(Pids)->
forEach(fun(H) ->

H ! "The message" end, Pids).

forEach(F,[H|T]) ->
F(H),
forEach(F, T);

forEach(F,[]) -> true.

Figure 5. The program after adding a function

tion is achieved by first abstracting over the free vari-
able H, and by making the generalised parameter a
function F. In the body of printList the expression
io:format("~p/n", H]) has been replaced with F
applied to the local variable H.

The arity of the printList has thus changed; in or-
der to preserve the interface of the module, we create a
new function, printList/1, as an application instance
of printList/2 with the first parameter supplied with
the function expression:
fun(H) -> io:format("~p/n", [H]) end.
Note that this transformation gives printList a func-
tional argument, thus making it a characteristically
‘functional’ refactoring.

Figure 4 shows the result of renaming printList/2
to forEach/2. The new function name reflects the
functionality of the function more precisely. In Figure
5, function braodcast/1 is added as another applica-
tion instance of forEach/2.

Refactorings to generalise a function definition and
to rename an identifier are typical structural refactor-
ings, implemented in our work on both Haskell and Er-
lang.

3.1 Language Issues
In working with Erlang we have been able to com-
pare our experience with what we have done in writ-
ing refactorings for Haskell. Erlang is a smaller lan-
guage than Haskell, and in its pure functional part, very
straightforward to use. It does however have a number

of irregularities in its static semantics, such as the fact
that it is possible

• to have multiple defining occurrences of identifiers,
and

• to nest scopes, despite the perception that there is no
shadowing of identifiers in Erlang.

Erlang is also substantially complicated by its possi-
bilities of reflection: function names, which are atoms,
can be computed dynamically, and then called using
the apply operator; similar remarks apply to modules.
Thus, in principle it is impossible to give a complete
analysis of the call structure of an Erlang system stat-
ically, and so the framing of side-conditions on refac-
torings which are both necessary and sufficient is im-
possible.

Two solutions to this present themselves. It is pos-
sible to frame sufficient conditions which prevent dy-
namic function invocation, hot code swap and so forth.
Whilst these conditions can guarantee that behaviour
is preserved, they will in practice be too stringent for
the practical programmer. The other option is to artic-
ulate the conditions to the programmer, and to pass the
responsibility of complying with them to him or her.
This has the advantage of making explicit the condi-
tions without over restricting the programmer through
statically-checked conditions. It is, of course, possible
to insert assertions into the transformed code to signal
condition transgressions.

Compared to Haskell users, Erlang users are more
willing to stick to the standard layout, on which the
Erlang Emacs mode is based. Therefore a pretty-printer
which produces code according to the standard layout
is more acceptable to Erlang users.

3.2 Infrastructure Issues
A number of tools support our work with Erlang.
Notable among these is the syntax-tools package
which provides a representation of the Erlang AST
within Erlang. The extensible nature of the package
allows syntax trees to be equipped with additional in-
formation as necessary. For example, Erlang Syntax
Tools provides functionalities for reading comment
lines from Erlang source code, and for inserting com-
ments as attachments on the AST at the correct places;
and also the functionality for pretty printing of abstract
Erlang syntax trees decorated with comments.

The Distel infrastructure helps us to integrate refac-
torings with Emacs, and thus make them available
within the most popular Erlang IDE.

4. Our Approaches
Both University of Kent and Eötvös Loránd Univer-
sity are now in the process of building a refactoring
tool for Erlang programs, however different techniques
have been used to represent and manipulate the pro-
gram under refactoring. The Kent approach uses the
annotated abstract syntax tree (AAST) as the internal
representation of Erlang programs, and program analy-
sis and transformation manipulate the AASTs directly;
whereas the Eötvös Loránd approach uses relational
database, MySQL, to store both syntactic and semantic
information of the Erlang program under refactoring,
therefore program analysis and transformation are car-
ried out by manipulating the information stored in the
database.

One thing that is common between the two refac-
toring tools is the interface. Both refactoring tools are
embedded in the Emacs editing environment, and both
make use of the functionalities provided by Distel [8],
an Emacs-based user interface toolkit for Erlang, to
manage the communication between the refactoring
tool and Emacs.

In this section, we first illustrate the interface of the
refactoring tools, explain how a refactoring can be in-
voked, then give an overview of the two implementa-
tion approaches. A preliminary comparison of the two
approaches follows.

4.1 The Interface
While the catalogue of supported refactorings is slightly
different at this stage, the interfaces of the two refac-
toring tools share the same look and feel. In this paper,
we take the refactoring tool from University of Kent as
an example to illustrate how the tool can be used.

A snapshot of the Erlang refactorer, which is called
Wrangler, is shown in Figure 6. To perform a refactor-
ing, the source of interest has to be selected in the ed-
itor first. For instance, an identifier is selected by plac-
ing the cursor at any of its occurrences; an expression
is selected by highlighting it with the cursor. Next, the
user chooses the refactoring command from the Refac-
tor menu, which is a submenu of the Erlang menu, and
input the parameter(s) in the mini-buffer if prompted.

Figure 6. A snapshot of Wrangler

After that, the refactorer will check the selected
source is suitable for the refactoring, and the param-
eters are valid, and the refactoring’s side-conditions are
satisfied. If all checks are successful, the refactoring
will perform the refactoring and update the program
with the new result, otherwise it will give an error mes-
sage and abort the refactoring with the program un-
changed.

Figure 7. A snapshot of Wrangler showing the result
of generalising a definition

Figure 6 shows a particular refactoring scenario. The
user has selected the expression io:format("Hello")
in the definition of repeat/1, has chosen the Gener-
alise Function Definition command from the Refactor
menu, and is just entering a new parameter name A in
the mini-buffer. After this, the user would press the En-
ter key to perform the refactoring. The result of this

refactoring is shown in Figure 7: the new parameter A
has been added to the definition of repeat/1, which
now becomes repeat/2, and the selected expression,
wrapped in a fun-expression because of the side-effect
problem, is now supplied to the call-site of the gener-
alised function as an actual parameter.

All the implemented refactorings are module-aware.
In the case that a refactoring affects more than one
module in the program, a message telling which un-
opened files, if there is any, have been modified by the
refactorer will be given after the refactoring has been
successfully done. The customize command from the
Refactor menu allows the user to specify the boundary
of the program, i.e. the directories that will be searched
and analysed by the refactorer.

Undo is supported by the refactorer. Applying undo
once will revert the program back to the status right
before the last refactoring performed.

4.2 The Kent Approach
In this approach, the refactoring engine is built on top
of the infrastructure provided by SyntaxTools [1]. It
uses the annotated abstract syntax tree (AAST) as
the internal representation of Erlang programs; both
program analysis and transformation manipulate the
AASTs directly.

4.2.1 The SyntaxTools Package
After having investigated the few available Erlang fron-
tends, we decided to build our refactoring tool on top
of the infrastructure provided by SyntaxTools. Syn-
taxTools is a library from the Erlang/OTP release.
This library contains modules for handling Erlang ab-
stract syntax trees (ASTs), in a way that is compatible
with the “parse trees” of the standard library module
erl parse, together with utilities for reading source
files in unusual ways, e.g. bypassing the Erlang pre-
processor, and pretty-printing syntax trees. The data
types of the abstract syntax is nicely defined so that the
nodes in an AST have an uniform structure, and their
types are context-independent. We chose to build our
refactoring tool on top of SyntaxTools for the following
reasons:

• The uniform representation of AST nodes and the
type information (more precisely, the syntax cate-
gory of the syntax phrase represented by the node)
stored in each AST node allow us to write generic
functions that traverse into subtrees of an AST while

treating most nodes in an uniform way, but those
nodes with a specific type in a specific way. This
is a great help as both program analysis and trans-
formation involve frequent AST traversals.

• The representation of AST nodes allows users to
add their own annotations associated with each AST
node. The annotation may be any terms. This facility
can be used by the refactorer to attach static seman-
tic information, or any necessary information, to the
AST nodes.

• SyntaxTools also contains functionalities for attach-
ing comments to the ASTs representing a program,
and a pretty-printer for printing Erlang ASTs at-
tached with comments. This liberates us from the
comment-preservation problem, which is also crit-
ical for a refactoring tool to be usable in practice.
While a pretty-printer could produce a program that
has a slightly different appearance with the origi-
nal one, this does not seem to be a big problem in
a community where people tend to accept and use
the standard program layout rules.

4.2.2 Adding Static Semantics, Locations, and
Type Information

SyntaxTools provides the basic infrastructure for source-
to-source Erlang program transformation, even some
utility functions for free/bound variable analysis, AST
traversals, etc, to ease the analysis of source code struc-
ture. However, in order to make program analysis,
transformation, as well as the mapping from textual
presentation of a syntax phrase to its AST presentation
easier, we have annotated the ASTs produced by Syn-
taxTools with even more information, therefore comes
the Annotated Abstract Syntax Tree (AAST). What fol-
lows summaries the main information we have added,
or are trying to add, to the Erlang AST.

• Binding information. The binding information of
variables and function names is annotated in the
AST in terms of defining and use locations. For ex-
ample, each occurrence of a variable node in the
AST is annotated with its occurrence location in the
source, as well as the location where it is defined.
Locations are presented by the combination of file-
name, line number, and column number (the stan-
dard Erlang lexer and parser had to be modified in
order to get the column number). With the binding
information, we can easily check whether two vari-

able/function names refer to the same thing just by
looking at their defining locations.

• Range information. Each AST node is annotated
with its start and end location in the source code.
This makes it easier to map a syntax phrase selected
from the textual representation in the editor to its
AST representation.

• Category information. The original abstract Erlang
syntax does distinguish different kinds of syntax cat-
egories, such as functions, attributes, if-expressions,
etc. The category information introduced here is
mainly to distinguish expressions from patterns.

• Type information. Type information is necessary for
some refactorings, and some refactorings require
even more refined information than the basic data
types defined in Erlang. For example, suppose the
same atom, foo say, is used as both a module name
and a function name in the program. In this case,
renaming the module name foo may need to know
whether an occurrence of the atom foo refers the
module name being renamed or the function name;
therefore, simply knowing the type of foo is atom
is not enough. Adding type information to the AST
is currently work-in-progress; we are investigating
whether the functionalities provided by TypEr [11],
a type annotator for Erlang code, can be used to
retrieve the necessary type information.

4.2.3 The Implementation Architecture
Figure 8 summaries the implementation architecture of
Wrangler.

source
Program Standard

parser
tree
Parse

SyntaxTools
AST

AST annotator AAST Refactorer AAST Pretty−printer

Figure 8. The Implementation Architecture

4.3 The Eötvös Loránd Approach
Instead of annotating the ASTs with information that
is necessary for program analysis and transformation,
in this approach, we use a relational database, MySQL,
to store both abstract Erlang syntax trees and the as-
sociated static semantic information, and use SQL to
manipulate the stored information. This approach is
mainly influenced by the experience from refactoring
Clean programs [17, 4].

In the relational database representation, there are
two kinds of tables: tables that store the AST, and tables

gcd30(N15, M16) when N17 >=18 M19 →
gcd23(N24 −15 M26, M28);

Figure 9. Source code of the example function clause.

information in the AST
database equivalent

table name
record
in that
table

1st parameter of clause 30
is node 15

clause 30, 0, 1, 15

the name of variable 15 is N name 15, “N”

2nd parameter of clause 30
is node 16

clause 30, 0, 2, 16

clause 30 has a guard, node 22 clause 30, 1, 1, 22

the left and right operands
and the operator of the infix
expression 20 are nodes 17,
19 and 18, respectively

infix expr 20, 17, 18, 19

the body of clause 30 is
node 29

clause 30, 2, 1, 29

application 29 applies node 23 application 29, 0, 23
the content of atom 23 is gcd name 23, “gcd”
1st param. of application
29 is node 27

application 29, 1, 27

Table 1. The representation of the code in Figure 9 in
the database.

that store semantic information. The syntax-related ta-
bles correspond to the “node types” of the abstract syn-
tax of Erlang as introduced in the Erlang parser. Seman-
tic information, such as scope and visibility of func-
tions and variables, is stored separately in an extensible
group of tables. Adding a new feature to the refactor-
ing tool requires the implementation of an additional
semantic analysis and the construction of some tables
storing the collected semantic information. It is possi-
ble to store semantic information of different levels of
abstraction in the same database and to support both
low-level and high-level transformations.

As an example, consider the code in Figure 9. This
is one of the clauses of a function that computes the
greatest common divisor of two numbers. Each node of
the AST is given a unique id. Every module also has its
own id. These ids are written as subscripts in the code.

The database representation of the AST is illustrated
in Table 1. The table names clause, name, infix expr
and application refer to the corresponding syntactic

categories. Without addressing any further technical
details, one can observe that each table relates par-
ent nodes of the corresponding type with their child
nodes.1

In order to make information retrieval faster, an aux-
iliary table, node type was introduced. This table binds
the id of each parent node to the table corresponding
to its type. Semantic information about Erlang pro-
grams are stored in tables such as var visib,fun visib
and fun def. The table var visib stores visibility infor-
mation on variables, namely which occurrences of a
variable name identify the same variable. This table has
two columns: occurrence and first occurrence. The for-
mer is the identifier of a variable occurrence, and the
latter is the identifier of the first occurrence of the same
variable. The table fun visib stores similar information
for function calls, and fun def maintains the arity and
the defining clauses of functions.

The rename variable and rename function transfor-
mation is supported with three further table, forbid-
den names, scope and scope visib. The first describes
names that are not allowed to use for variables (and for
functions). This table contains the reserved words in
Erlang, names of the built-in functions, and also user-
specified forbidden names. The scope table contains the
scope of the nodes, what is the most inner scope they
are in. The scope visib table stores the hierarchy of the
scopes.

As you can observe the resulting data structure is not
a tree, but rather a graph, which represents more gen-
eral connections. We hope it makes easier to implement
the refactor steps.

4.3.1 The Implementation Architecture
Figure 10 summaries the implementation architec-
ture of this approach. The refactor step updates the

source
Program Standard

parser
tree
Parse

SyntaxTools
AST

RefactorerDatabase
Constructor

DB DB Code Builder
source
Program

Location Parser
AST

DB

UpdaterDB

Figure 10. The Implementation Architecture

database (which represents the AST and the seman-
tic information), but the position information might

1 The price for the separation of tables containing syntactic infor-
mation from tables containing semantic information is an increased
redundancy in the database. For example, the “names” table stores
the variable name for each occurrence of the same variable.

no longer reflect the actual positions in the program
source. In order to keep the position information up-
to-date, we build up the updated syntax tree from the
database and use the pretty-printer to refresh the code,
then the position information is updated by a simul-
taneous traversal of the syntax tree represented in the
database, and the AST generated by parsing the re-
freshed code.

4.4 Comparison
The major difference between the two approaches lies
in how the syntactic and semantic information is stored
and manipulated. Our first impression is that the sec-
ond approach needs more time and effort on database
designing and the migration of information from ab-
stract Erlang syntax trees to the database; whereas the
first approach is relatively light-weight. However, as
the second approach tries to avoid reconstruction of
the database between two consecutive refactorings by
incrementally updating the database so as to keep the
stored syntactic and semantic information up-to-date,
it may worth the effort. At this stage, it is hard to say
which approach is better.

Once both of the two refactoring tools have had
support for a number of representative, module-aware
refactorings, we would like to test and compare them
on some large-scale Erlang programs, and find out the
pros and cons of each approach.

5. Refactorings: The Next Step
The refactorings implemented by both teams thus far
are structural by nature; we plan also to implement
module and data refactorings in line with our work in
HaRe. We are also investigating transformations of fea-
tures characteristic to Erlang, In this section we look at
one example, which changes the pattern of communi-
cation within a system. We first present a scenario.

A system is constructed in which communication
between processes is asynchronous; that is, messages
are sent and receipts are not required. It becomes possi-
ble to optimise processing within the network by chop-
ping out whole sections; this, however, requires send-
ing a reply back to the sender. As is the case in many
software developments, a refactoring can be the first
step in modifying the system; in this case, the first step
is to make the communication synchronous. In pictures,
one way communication

is replaced by a two-way, synchronous pattern:

Such a transformation requires a message send to be
followed by a receipt, transforming

pid!{self(),msg}

to

pid!{self(),msg},
receive

{pid, ok}-> ok

and in the recipient the code

receive {Parent,msg} -> body

is replaced by

receive {Parent,msg} ->
Parent!{self(),ok},
body

We envisage implementing other concurrency-related
refactorings, and in particular we expect to support
transformations of concurrent systems written within
the OTP framework; we discuss some other Erlang-
specific refactorings now.

Built-in support for concurrency is one of the main
features of Erlang. In a well-designed Erlang program,
there should be a one-to-one mapping between the
number of parallel processes and the number of truly
parallel activities in the real world. The following refac-
toring allows to adjust the process structure in a pro-
gram.

• Introduce/remove concurrency by introducing or re-
moving concurrent processes so as to achieve a bet-
ter mapping between the parallel processes and the
truly parallel activities of the problem being solved.
For example, using processes and message passing
when a function call can be used instead is a bad
programming practice, and this refactoring should
help to eliminate the un-desired process and mes-
sage passing with a function call.

While defensive-style programming is a good pro-
gramming practice when a sequential programming
language is used, non-defensive style programming is
the right thing to do when programming with Erlang.
Erlang’s worker/supervisor error handling mechanism
allows a clear separation of error recovery code and
normal case code. In this mechanism, both workers
and supervisors are processes, where workers do the
job, and supervisors observe the workers. If a worker
crashes, it sends an error signal to its supervisor.

• From defensive-style programming to non-defensive
style. This refactoring helps to transform defensive-
style sequential error-handling code written in Er-
lang into concurrent error handling, typically using
supervisor trees.

Erlang programming idioms also expose various refac-
toring opportunities. Some examples are:

• Transform a non-tail-recursive function to a tail-
recursive function. In Erlang, all servers must be
tail-recursive, otherwise the server will consume
memory until the system runs of it.

• Remove import attributes. Using import attributes
makes it harder to directly see in what module a
function is defined. Import attributes can be re-
moved by using remote function call when a call
of function defined in another module is needed.

• From meta to normal function application by replac-
ing apply(Module, Fun, Args) with

Module:Fun(Arg1, Arg2,..., ArgN)

when the number of elements in the arguments,
Args, is known at compile-time.

• Refactoring non-OTP code towards an OTP pattern.
Doing this from pure Erlang code is going to be very
challenging, but the whole transformation can be de-
composed into a number of elementary refactorings,

and each elementary refactoring brings the code a
bit closer to the desired OTP pattern.

6. Conclusion
We conclude by surveying related work, and by looking
at what we plan to do next.

6.1 Related Work
Programmers used refactoring to make their code more
readable, better structured or more apt for further exten-
sions long before the first papers appeared on the topic
(e.g. [13]). The field was given much greater promi-
nence with the publication by Fowler’s [6], which par-
ticularly addressed a wide range of ‘manual’ refactor-
ings for Java.

Tool support for refactoring is available mostly to
object-oriented languages. The first tool was the refac-
toring browser for Smalltalk [16]. Most tools target
Java (IntelliJ Idea, Eclipse, JFactor, Together-J etc.),
but there are some for .NET (ReSharper, C# Refactory,
Refactor! Pro and JustCode!), C++ (SlickEdit, Ref++
and Xrefactory) and other languages as well. Common
refactorings offered by the tools include those that re-
name program entities (variables, subprograms, mod-
ules), those that extract or inline program units, or those
that change the static model of classes. A good sum-
mary of tools and refactorings can be found at [5],
and [12] is an exhaustive survey of the field of software
refactoring.

Marcio Lopes Cornèlio formalizes refactorings in
an object-oriented language [2]. Some preconditions
of refactorings are not simple to compute from the
static program text in case of dynamic languages like
Smalltalk and Python [16, 15]. The Smalltalk refac-
toring browser applies dynamic analysis to resolve this
problem.

To improve the quality of a code according to a re-
design proposal or enforce coding conventions needs
support for complex refactoring operations. Planning a
sequence of refactoring steps needs refactoring analy-
sis and plan to achieve desirable system structure [14].
Frameworks and libraries change their APIs from time
to time. Migrating an application to a new API is te-
dious work, but typically some eighty percent of the
changes will be refactoring steps. Automated detec-
tion, record and replay of refactoring steps may sup-
port upgrading of components according using the new
API [3].

6.2 Future Work
It is a short-term goal for the teams to contrast their
approaches on example code bases, to compare the
utility of the two approaches. For instance, the ADT
approach has the advantage of being more lightweight,
but the database representation can offer versioning of
code and the concurrent handling of refactoring steps
in some cases.

In the medium term, each team will build support for
further refactorings, particularly those supporting prac-
tising Erlang programmers. In particular we will build
refactorings to support the transformation of data rep-
resentations, changes to patterns of concurrent commu-
nication and integration with the OTP framework.

In the longer term we look forward to machine-
supported refactoring becoming a valuable part of the
Erlang programmers’ toolkit.

References
[1] Carlsson, R. . Erlang Syntax Tools. http://

www.erlang.org/doc/doc-5.4.12/lib/syntax
tools-1.4.3/doc/html/.

[2] Cornèlio, M.L.: Refactorings as Formal Refinements,
PhD thesis, Universidade Federal de Pernambuco, 2004.

[3] Dig, D.: Toward Automatic Upgrading of Component-
Based Applications, ECOOP 2006 Doctoral Symposium
and PhD Students Workshop, Nantes, Fance, 2006.
http://www.ecoop.org/phdoos/ecoop2006ds/.

[4] Diviánszky, P. and Szabó-Nacsa, R. and Horváth, Z.
Refactoring via Database Representation. In L. Csőke,
P. Olajos, P. Szigetváry, and T. Tómács, editors, The
Sixth International Conference on Applied Informatics
(ICAI 2004), Eger, Hungary, volume 1, pages 129–135,
2004.

[5] Fowler, M.: Refactoring Home Page, http://www.
refactoring.com/.

[6] Fowler, M. et. al., Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.

[7] Refactoring Functional Programs, http://www.cs.
kent.ac.uk/projects/refactor-fp/.

[8] Gorrie, L.. Distel: Distributed Emacs Lisp (for Erlang).

[9] Li, H. and Reinke, C. and Thompson, S., Tool Support
for Refactoring Functional Programs in, ACM SIG-
PLAN Haskell Workshop 2003, Uppsala, Sweden, Jo-
han Jeuring (ed.), 2003.

[10] Li, H. and Reinke, C. and Thompson, S., The Haskell
Refactorer, HaRe, and its API., Electr. Notes Theor.
Comput. Sci., 141 (4), 2005.

[11] Lindahl, T. and Sagonas, K. F.. TypEr: a Type
Annotator of Erlang Code. In ACM SIGPLAN Erlang
Workshop 2005, 2005.

[12] Mens, T. and Tourwé, T., A Survey of Software
Refactoring, IEEE Trans. Software Eng., 30 (2), 2004.

[13] Opdyke, W.: Refactoring Object-Oriented Frameworks,
PhD thesis, University of Illinois at Urbana-Champaign,
1992.

[14] Perez, J. Overview of the Refactoring Discovering
Problem, ECOOP 2006 Doctoral Symposium and
PhD Students Workshop, Nantes, Fance, 2006. http:
//www.ecoop.org/phdoos/ecoop2006ds/.

[15] Adventures in Refactoring Python. http://blogs.
warwick.ac.uk/refactoring/, Sep. 24, 2006.

[16] Roberts, D., Brant, J. and Johnson, R. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Sys-
tems (TAPOS), special issue on software reengineering,
3(4):253–263, 1997.

[17] Szabó-Nacsa, R. and Diviánszky, P. and Horváth, Z.
Prototype Environment for Refactoring Clean Programs.
In The Fourth Conference of PhD Students in Computer
Science (CSCS 2004), Szeged, Hungary, July 1–4, 2004.

http://www.erlang.org/doc/ doc-5.4.12/lib/syntax_tools-1.4.3/doc/html/
http://www.erlang.org/doc/ doc-5.4.12/lib/syntax_tools-1.4.3/doc/html/
http://www.erlang.org/doc/ doc-5.4.12/lib/syntax_tools-1.4.3/doc/html/
http://www.ecoop.org/phdoos/ecoop2006ds/
http://www.refactoring.com/
http://www.refactoring.com/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.ecoop.org/phdoos/ecoop2006ds/
http://www.ecoop.org/phdoos/ecoop2006ds/
http://blogs.warwick.ac.uk/refactoring/
http://blogs.warwick.ac.uk/refactoring/

	Introduction
	Refactoring
	Tool Support for Refactorings

	Refactoring Erlang Programs
	Language Issues
	Infrastructure Issues

	Our Approaches
	The Interface
	The Kent Approach
	The SyntaxTools Package
	Adding Static Semantics, Locations, and Type Information
	The Implementation Architecture

	The Eötvös Loránd Approach
	The Implementation Architecture

	Comparison

	Refactorings: The Next Step
	Conclusion
	Related Work
	Future Work

