
H. Leitold and E. Markatos (Eds.): CMS 2006, LNCS 4237, pp. 67 – 86, 2006.
© IFIP International Federation for Information Processing 2006

Adding Support to XACML for Dynamic Delegation of
Authority in Multiple Domains

David W Chadwick, Sassa Otenko, and Tuan Anh Nguyen

University of Kent, Computing Laboratory, Canterbury, Kent, CT2 7NF
d.w.chadwick@kent.ac.uk, o.otenko@kent.ac.uk, tn32@kent.ac.uk

Abstract. In this paper we describe how we have added support for dynamic
delegation of authority that is enacted via the issuing of credentials from one
user to another, to the XACML model for authorisation decision making.
Initially we present the problems and requirements that such a model demands,
considering that multiple domains will typically be involved. We then describe
our architected solution based on the XACML conceptual and data flow
models. We also present at a conceptual level the policy elements that are
necessary to support this model of dynamic delegation of authority. Given that
these policy elements are significantly different to those of the existing
XACML policy, we propose a new conceptual entity called the Credential
Validation Service (CVS), to work alongside the XACML PDP in the
authorisation decision making. Finally we present an overview of our first
specification of such a policy and its implementation in the corresponding CVS.

Keywords: XACML, Delegation of Authority, Credentials, Attributes, Policies,
PDP.

1 Introduction

XACML is an OASIS standard for authorisation decision making. Many people are
starting to experiment with it in their applications e.g. [11, 12]. Some of its benefits
include: a flexible attribute based authorisation model, where access control decisions
can be made based on the attributes of the subject, the action and the target; a
comprehensive way of specifying conditions, so that arbitrarily complex conditions
can be specified; and the support for obligations.

However, one of the current drawbacks of using XACML is that it does not
support dynamic delegation of authority. A delegate is defined as “A person
authorized to act as representative for another; a deputy or an agent” [1]. Delegation
of authority is the act of one user with a privilege giving it to another user (a
delegate), in accordance with some delegation policy. A delegation tree may thus be
created, starting from the root user who has the privilege initially, to the users at the
leaves of the tree who end up with the authority to assert the delegated privilege, but
cannot delegate it themselves. Non leaf nodes in the tree are authorities (or
administrators) with permission to delegate, but may or may not be able to assert the
privilege themselves (according to the delegation policy). We differentiate between
static and dynamic delegation of authority, in that static delegation of authority is
when the non leaf nodes of the delegation tree are configured into software (or policy)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

68 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

prior to user access i.e. the shape of the delegation tree is known from the start, and
no new non-leaf nodes can be created without reconfiguring the software (or policy).
Dynamic delegation of authority is when only the root user and delegation policy are
configured into the software prior to user access, and users may dynamically delegate
authority to other users as and when they wish. In this case the delegation tree is
created dynamically as one user delegates to another, and new leaf (and non-leaf)
nodes are created spontaneously.

A responsive authorisation infrastructure that can cater for rapidly changing
dynamic environments should be able to validate the privileges given to any of the
users in a dynamically created delegation tree, even though the actual tree is not
known when the authorisation policy is written and fed into the policy decision point
(PDP). This requires the authorisation policy to be supplemented with a delegation
policy that will state how the delegation tree is to be constrained. As long as a user’s
credential falls within the scope of the delegation tree then it is considered valid, if it
falls outside the tree, and thus outside the delegation policy, it is not. The purpose of
the current research was to add dynamic delegation of authority to an authorisation
infrastructure that contains an XACMLv2 PDP (or in fact any PDP that bases its
access control decisions on the attributes of subjects), without changing the
XACMLv2 PDP or its policy1.

We assume that privileges can be formulated as attributes and given to users. An
important point to clarify at the outset is the difference between an attribute and a
credential (i.e. authorisation credential). An attribute is a property of an object2; a
credential is a statement or assertion about an attribute (in particular, a credential
must state: what the attribute is, who the attribute belongs to, who says so (i.e. who is
the credential issuer), and any constraints on its validity). Because attributes of an
entity do not always exist as part of the entity, they are often stored or transferred as
separate stand alone credentials. In this paper we are concerned with dynamic
delegation of authority from one user to another by the use of credentials. One
important feature of a credential is that it requires validation before the user can be
attributed with the asserted property.

The rest of this paper is structured as follows. Section 2 describes the problems that
need to be addressed when creating an infrastructure to support dynamic delegation of
authority between multiple domains, and this leads to various requirements being
placed on any proposed solution. Section 3 describes the new conceptual credential
validation service (CVS) that is proposed to resolve the problems and requirements
described in Section 2. Section 4 briefly describes the XACMLv2 infrastructure.
Section 5 discusses how the CVS could be incorporated into the XACML
infrastructure. Section 6 describes our implementation of a CVS. Section 7 concludes,
and looks at possible future work in this area.

1 Note that this research started whilst XACMLv2 was still under construction, when it was

known that XACMLv2 would not support dynamic delegation of authority. This was one of
the reasons for not proposing changes to XACMLv2. Work is currently underway to add
administration and delegation to XACML v3 [18], but this is complementary to the work
described here.

2 Dictionary.com defines an attribute as “A quality or characteristic inherent in or ascribed to
someone or something”.

 Adding Support to XACML for Dynamic Delegation of Authority 69

2 Problem and Requirement Statements

The underlying model used for dynamic delegation of authority in multiple domains
is an enhancement of the basic XACMLv2 model (see later). In this enhanced model a
user (subject) is dynamically given a set of attributes by one or more dynamically
created attribute authorities (AAs) in one or more domains, and these attributes are
presented (pushed) to or obtained (pulled) by the PDP as a set of credentials (usually
in the form of attribute assertions digitally signed by the AAs). The PDP makes its
access control decisions based on its policy, the validated set of subject attributes, the
target and environmental attributes and the parameters of the user’s request. Below
are a set of issues that need to be addressed in such a model.

1. Valid vs. Authentic Credentials. The first thing to recognise is the difference
between an authentic credential and a valid credential. An authentic credential,
from the perspective of authorisation decision making, is one that has been
received exactly as it was originally issued by the AA. It has not been tampered
with or modified. Its digital signature, if present, is intact and validates as
trustworthy meaning that the AA’s signing key has not been compromised, i.e.
his public key (certificate) is still valid. A valid credential on the other hand is
one that is trusted by the PDP’s policy for authorisation decision making. In order
to clarify the difference, an example is the paper money issued by the makers of
the game Monopoly. This money is authentic, since it has been issued by the
makers of Monopoly. The money is also valid for buying houses on Mayfair in
the game of Monopoly. However, the money is not valid if taken to the local
supermarket.

2. Credential validity is determined by target domain. The above discussion
leads onto the second problem that needs to be addressed in any solution, and this
is that there are potentially multiple domains within an authorisation
infrastructure. There are issuing domains, which issue credentials, and target
domains that consume credentials. The PDP is part of the target domain, and as
such it must use the policy of the target domain to decide whether a credential is
to be trusted or not i.e. is valid or not. So the validity of an authorisation
credential is ultimately determined by the (writer of the) PDP policy. A valid
credential is a credential that is trusted by the consumer of the credential.

3. Multiple trusted credential issuers. In any system of any significant size, there
will be multiple credential issuers. Some of these will be trusted by the target
domain, others will not be. Thus the system must be capable of differentiating
between trusted and untrusted issuers, and of dynamically obtaining this
information from somewhere. (In point 4 below we propose to use roots of trust.)
Different target domains in the same system may trust different issuers, and
therefore the PDPs must be capable of being flexibly configured via their policies
to say which issuers are trusted and which are not. For example, in the physical
world of shopping with credit cards, there are several issuers such as Amex and
Visa. Some shopkeepers accept (trust) both issuers, others only trust one of them.
It is their (the target domain’s) decision which card issuers to trust.

4. Identifying roots of trust. Point 3 above leads us to conclude that the PDP must
be configured, in an out of band trusted way, with at least one (authorization) root

70 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

of trust and it is from this root (or roots) of trust that all credentials must be
validated in order to be trusted. A root of trust must be a single entity identified
directly or indirectly by its public key3, since this key will be used to validate the
signed credentials that are received. Note that it is not possible to refer to a root
of trust through its set of assigned attributes, e.g. anyone with a project manager
attribute and company X attribute, since these attributes may identify several
candidate roots, and may be issued by several attribute authorities, in which case
it wont be known who to trust. This implies that a higher authority is the real root
of trust, the one who issues the set of attributes that can be trusted.

5. The role of the Issuer’s policy. Most issuers will have an Issuing Policy, to say
who is allowed to issue which credentials to which users, and what constraints
are placed on their use. This policy will include the delegation policy of the
issuer. Consequently there will be constraints on which credentials are deemed to
be valid within and without the issuing domain. However, the target domain may
choose to ignore these constraints and trust (treat as valid) credentials which the
issuer deems to be invalid. A well known example in the physical world concerns
supermarkets who issue their own discount coupons. These coupons state quite
clearly that they are only valid for use in supermarkets owned by the issuer.
However, it is often the case that a different brand of supermarket will accept
these discount coupons as a way of enticing the other supermarkets’ customers to
come and shop in their own supermarket. Thus the PDP must have a way of
either conforming to or overriding the issuer’s policy. If a target domain chooses
to ignore the issuer’s policy, then it is liable for any losses incurred by this. The
issuer cannot be held responsible for targets that ignore its Issuing Policy.

6. Obtaining the Issuing Policy. In a multi-domain system, the target domain may
not be aware of the issuing domain’s Issuing Policy, unless it is explicitly placed
into the issued credentials. If the complete Issuing Policy is not explicitly placed
in the issued credentials, but the target domain still wishes to enforce it and only
treat as valid those credentials that the issuer says are valid, then the target’s PDP
will need to infer or be configured with the issuer’s Issuing Policy. For example,
in SPKI [7], a credential is marked as being infinity delegatable or not, and does
not contain any other details of the Issuing Policy, such as who is entitled to be
delegated the privilege. Thus unless a delegatable credential explicitly contains
restrictions, or out of band means are used to transfer them, the target PDP will
infer than anyone is entitled to be delegated this credential.

7. Pulling credentials. The PDP may not have all the credentials it needs in order
to validate the credential(s) presented by the user, e.g. if only the leaf credential
in a delegation tree is presented, but none of the non-leaf credentials are
presented. In the most extreme case the user may not present any credentials at
all. For example, when a user logs into a portal and the portal displays only the
services this user is allowed to see, the portal has, unknown to the user, retrieved
the user’s credential(s) from a repository in order to determine which services to

3 When an X.509 conformant PKI is used which already has its own configured CA root public

keys, the globally unique name of the subject in the PKI certificate can be used to refer to the
authorization root of trust, instead of the public key in the certificate, in which case the
subject will be trusted regardless of which public/private key pair it is currently using.

 Adding Support to XACML for Dynamic Delegation of Authority 71

display. There is thus a strong requirement for the PDP (or a component of it) to
be able to pull the user’s credentials before making the access control decision.

8. Discovering credential locations. The user’s credentials may be stored and/or
issued in a variety of places, for example, each AA may store the attributes or the
credentials it issues in its own repository. One could always mandate that the user
collects together the credentials he wants to use, before attempting to gain access
to a resource e.g. as in the VOMS model [13]. This model has its merits in some
cases, but it is not always very user friendly. In fact, in some cases, the user may
not be aware what credentials have actually been issued to him – he might only
know what services he is allowed to access, as in the portal example given above.
In the general case there is no absolute requirement for the user to know what
credentials have been issued to him or where they are stored. Thus the PDP must
be capable of contacting different repositories/AAs in order to pull the user’s
credentials prior to making its access control decision.

9. Multiple user identities. If the user is known by different identities to the
different AAs, then there must be a way for the user to use these mixed
credentials in the same session. The GridShib project currently uses a mapping
table to convert between X.509 PKI identities and Shibboleth identity provider
identities [14]. But a more flexible approach is needed, in which the user may
determine which set of credentials are to be used in a given session and the PDP
can prove the user’s right to assert each one. We propose one solution to this in
[20].

10. Multiple credential formats. Following on from above, the user’s credentials
may be stored in different formats in the different repositories, and presented to
the PDP in different ways, e.g. as signed SAML assertions [2], as X.509 attribute
certificates [3], as Shibboleth encoded attributes [4] etc. The PDP (or a
component of it) therefore needs to be able to decode and handle credentials in
different formats.

11. Hierarchies of attributes. The attributes may form some sort of hierarchy, for
example in accordance with the NIST RBAC1 specification [5], in which the
superior attributes (or roles) inherit the privileges of the subordinate roles. The
PDP needs to be aware of this hierarchy when validating the credentials. For
example, if a superior role holder delegates a subordinate role to another user,
then the PDP needs to know if this delegation is valid or not, given that the
attributes are different. Furthermore some of the attributes known to the PDP
won’t form a hierarchy. Therefore the PDP needs to be able to cater for multiple
disjoint attribute hierarchies.

12. Constraining credential validity. Only part of an authentic credential might be
valid in a target domain. For example, a credential might contain multiple
attributes but the target domain only trusts the issuer to issuer a subset of the
enclosed attributes.

13. Known and unknown attributes. As federations between organisations become
more common, and dynamic VOs become more feasible, managers will realise
the need to define a common set of attributes that can be understood between
domains. The US academic community realised this some time ago, and this led
to the definition of EDU person [6], which is a collection of standard attribute
types. However, once organisations start to issue standard attributes, a PDP will

72 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

need to be able to differentiate between which standard attributes are valid
(trusted) and which are not. For example, suppose most organisations in the
world issue a standard Project Manager attribute to their project managers. In a
VO between organisations A and B, the PDP in organisation B might only want
to trust the Project Manager attributes issued by itself, and not those issued by
organisation A (or by C or D or any other organisation). Or alternatively it might
wish to downgrade those issued by organisation A and treat them as being
equivalent to a guest user attribute. Or it might decide to trust the project
managers from A as being equal to its own project managers. The PDP’s policy
needs to flexible enough to cater for all these requirements, including the ability
to perform attribute mappings.

3 Architecting a Solution

Given the problem statements and various requirements from above, one can see that
some new functional requirements have been placed on the PDP. Consequently, we
propose a new conceptual component called a Credential Validation Service (CVS),
whose purpose is to perform the new functionality. In essence the purpose of the CVS
is to validate a set of credentials for a subject, issued by multiple dynamic attribute
authorities from different domains, according to the local policy, and return a set of
valid attributes. How this conceptual component is merged into the XACML
infrastructure will be described later. The rationale for making the CVS a separate
component from the XACML PDP are several. Firstly, its purpose is to perform a
distinct function from the PDP. The purpose of the PDP is to answer the question
“given this access control policy, and this subject (with this set of valid attributes),
does it have the right to perform this action (with this set of attributes) on this target
(with this set of attributes)” to which the answer is essentially a Boolean, Yes or No4.
The purpose of the CVS on the other hand is to perform the following “given this
credential validation policy, and this set of (possibly delegated) credentials, please
return the set of valid attributes for this entity” to which the answer will be a subset of
the attributes in the presented credentials. Secondly, the XACML language is
incapable of specifying credential chains. This is because subjects and attribute
issuers are identified differently in the language, hence it is not possible to chain
delegated credentials together.

When architecting a solution there are several things we need to do. Firstly we
need a trust model that will tell the CVS which credential issuers and policy issuers to
trust. Secondly we need to define a credential validation policy that will control the
trust evaluation of the credentials. Finally we need to define the functional
components that comprise the CVS.

3.1 The Trust Model

The CVS needs to be provided with a trusted credential validation policy. We assume
that the credential validation policy will be provided by the Policy Administration

4 XACML also supports other answers: indeterminate (meaning an error) and not applicable

(meaning no applicable policy), but these are other forms of No.

 Adding Support to XACML for Dynamic Delegation of Authority 73

Point (PAP), which is the conceptual entity from the XACML specification that is
responsible for creating policies. If there is a trusted communications channel
between the PAP and the CVS, then the policy can be provided to the CVS through
this channel. If the channel is not trusted, or the policy is stored in an intermediate
repository, then the policy should be digitally signed by a trusted policy author, and
the CVS configured with the public key (or distinguished name if X.509 certificates
are being used) of the policy author. In addition, if the PAP or repository, has several
different policies available to it, to be used at different times, then the CVS needs to
be told which policy to use. In this way the CVS can be assured of being configured
with the correct credential validation policy. All other information about which sub
policies, credential issuers and their respective policies to trust can be written into this
master credential validation policy by the policy author.

In a distributed environment we will have many issuing authorities, each with their
own issuing policies provided by their own PAPs. If the policy author decides that his
CVS will abide by these issuing policies there needs to be a way of securely obtaining
them. Possible ways are that the CVS could be given read access to the remote PAPs,
or the remote issuing authorities could be given write access to the local PAP, or the
policies could be bound with their issued credentials and obtained dynamically during
credential evaluation. Whichever way is used, the issuing policies should be digitally
signed by their respective issuers so that the CVS can evaluate their authenticity.

The policy author may decide to completely ignore all the issuer’s policies (see
section 2 point 5), or to use them in combination with his own credential validation
(CV) policy, or to use them in place of his own policy. Thus this information (or
policy combining rule) needs to be conveyed as part of the CV policy.

3.2 The Credential Validation Policy

The CVS’s policy needs to comprise the following components:

- a list of trusted credential issuers. These are the issuers in the local and remote
domains who are trusted to issue credentials that are valid in the local domain. They
are the roots of trust. This list is needed so that the signatures on their credentials and
policies can be validated. Therefore the list could contain the raw public keys of the
issuers or it could refer to them by their X.500 distinguished names or their X.509
public key certificates.

- the hierarchical relationships of the various sets of attributes. Some attributes,
such as roles, form a natural hierarchy. Other attributes, such as file permissions
might also form one e.g. all permissions is superior to read, write and delete; and
write is superior to append and delete. When an attribute holder delegates a
subordinate attribute to another entity, the credential validation service needs to
understand the hierarchical relationship and whether the delegation is valid or not.

- a description (schema) of the valid delegation trees. This delegation policy
component describes how the CVS can determine if a chain of delegated credentials
and/or policies falls within a trusted tree or not. This is a rather complex policy
component, and there are various ways of describing delegation trees [3, 9] with no
widely accepted standard way. The essential elements should specify who is allowed
to be in the tree (both as an issuer and/or a subject), what constraints apply, and what
properties (attributes) they can validly have (assert) and delegate.

74 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

- a linking of trusted issuers to delegation trees. This is not necessarily a one to one
mapping. Several trusted issuers may be at the root of the same delegation tree, or one
issuer may be at the root of several delegation trees.

- the acceptable validity constraints of the various credentials (e.g. time constraints
or target constraints). Consider for example time constraints. An issuer gives each
issued credential a validity period, which may range from fairly short (e.g. minutes) to
very long (e.g. several years). The primary reason for issuing short lived certificates
(for other than intrinsically short lived permissions) is so that they do not need to be
revoked, and therefore the relying party does not need to consult revocation lists,
white lists, or OCSP servers etc. In the case of relatively long lived credentials, the
policy author may have his own opinion about which credentials to trust, from a
chronological perspective, and therefore may wish to place his own additional time
constraints on remotely issued credentials. For example, a plumber may have a
“certified plumber” credential, which is valid for 10 years from the date of issue. He
may be required to pass a competence test every ten years to prove that he is
conversant with the latest technology developments and quality standards before the
credential is renewed. However, in the target domain, the policy author may decide
that he does not want to accept anyone with a credential that is newer than one year
old, due to insufficient experience on the job, or is more than 8 years old, due to
doubts about competencies with the latest technologies. Consequently the CVS must
be told how to intersect the validity constraints on the credential with those in the
author’s policy.

- finally, we need a disjunctive/conjunctive directive, to say whether for each
trusted issuer and delegation tree, only the issuer’s issuing and delegation policy
should take effect, or only the author’s policy should take effect, or whether both
should take effect and valid credentials must conform to both policies.

Note that when delegation of authority is not being supported, the above policy can
still be used in simplified form where a delegation tree reduces to a root node that
describes a set of subjects. In this case the CV policy now controls which trusted
issuers are allowed to assign which attributes to which groups of subjects, along with
the various constraints and disjunctive/conjunctive directive.

XACMLv2 [8] is not a suitable instrument to express Credential Validation
Policies but neither is the current working draft of XACMLv3 [18]. An important
requirement for multi-domain dynamic delegation is the ability to accept only part of
an asserted credential. This means that the policy should be expressive enough to
specify what is the maximum acceptable set of attributes that can be issued by one
Issuer to a Subject, and the evaluation mechanism must be able to compute the
intersection of this with those that the Subject’s credential asserts. The approaches
used by XACML can only state that the asserted set of attributes or policies is fully
accepted, or fully rejected. In [18] the delegation is deemed to be valid if the issuer of
the delegated policy could have performed the request that the policy grants to the
delegatee. We think this is a serious deficiency, which lies at the core of the XACML
policy evaluation process.

We think it is a limitation on an independent issuing domain to have to take into
account all the policies that the validating domain supports, so that only fully
acceptable sets of credentials or policies can be issued to its subjects. Our model is
based on full independence of the issuing domain from the validating domain. So in

 Adding Support to XACML for Dynamic Delegation of Authority 75

general it is impossible for a validating domain to fully accept an arbitrary set of
credentials since the issuing and validating policies will not match. It is not possible
for the issuing domain to tell in advance in what context a subject’s credentials will be
used (unless new credentials are issued every time a subject requests access to a
resource) so it is not possible to tell in advance what validation policy will be applied
to them.

Having identified this problem, we propose a solution that uses a non-XACML
based credential validation policy first, and an XACML policy next, with the
validated delegated attributes.

3.2.1 Formal Credential Validation Policy
We define a Credential Validation Policy as an unordered set of tuples <S, I, C, E>,
where S is a set of Subjects to whom any Issuer from set I can assign at most a set of
Credentials C, but only if any of the conditions in set E holds true:

CVP = {<S, I, C, E>}
We define the Credential Validation process as a process of obtaining a subset of

valid credentials V, given an asserted set of credentials c, issued by issuer i to the
subject s, if condition e holds true at the time of evaluation:

V = { c∩C | c∩C≠∅, s⊆S, i⊆I, e⊆E, <S, I, C, E>⊆CVP }
Note that in XACML the only possible evaluation of a Credential Validation

process is:

V = { c | c⊆C, s⊆S, i⊆I, e⊆E, <S, I, C, E>⊆CVP }
Further, we define a dynamic delegation process as a process of obtaining a set R

of Credential Validation rules for intermediate issuers, i.e. the issuers on the path
from the policy writer to the end user, where the intermediate issuer s is issued a set
of Credentials c by a higher level issuer i, subject to condition e and a constraint on
subject domain d:

Rs = { <d∩S\s, s, c∩C, e> | c∩C≠∅, s⊆S, i⊆I, e⊆E,

<S, I, C, E>⊆CVP∪Ri }
Thus the issuer i can allow the issuer s to delegate a subset of his own privileges to

a subset of his own set of subjects, subject to the condition e being stricter than that
imposed on i.

Note the recursive nature of the process - the tuple <S, I, C, E> must belong to the
CVP or to the set of valid rules for issuer i. Note also that loops in the delegation are
prohibited by excluding the holder of the rule from the set of possible subjects.

XACML currently lacks the expressiveness for deriving new Credential Validation
rules given the set of existing rules and valid credentials.

3.3 The CVS Functional Components

Figure 1 illustrates the architecture of the CVS function and the general flow of
information and sequence of events. First of all the service is initialised by giving it

76 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

Fig. 1. Data Flow Diagram for Credential Validation Service Architecture

the credential validation policy (step 0). Now the CVS can be queried for the valid
attributes of an entity (step 1). Between the request for attributes and returning them
(steps 1 and 6) the following events may occur a number of times, as necessary i.e.
the CVS is capable of recursively calling itself as it determines the path in a
delegation tree from a given node to a root of trust. The Policy Enforcer requests
credentials from a Credential Provider (step 2). When operating in credential pull
mode, the credentials are dynamically pulled from one or more remote credential
providers (these could be AA servers, LDAP repositories etc.). The actual attribute
request protocol (e.g. SAML or LDAP) is handled by a Credential Retriever module.
When operating in credential push mode, the CVS client stores the already obtained
credentials in a local credential provider repository and pushes the repository to the
CVS, so that the CVS can operate in logically the same way for both push and pull
modes. After credential retrieval, the Credential Retriever module passes the
credentials to a decoding module (step 3). From here they undergo the first stage of
validation – credential authentication (step 4). Because only the Credential Decoder is
aware of the actual format of the credentials, it has to be responsible for
authenticating the credentials using an appropriate Credential Authenticator module.
Consequently, both the Credential Decoder and Credential Authenticator modules are
encoding specific modules. For example, if the credentials are digitally signed X.509
attribute certificates, the Credential Authenticator uses the configured X.509 PKI to
validate the signatures. If the credentials are XML signed SAML attribute assertions,
then the Credential Authenticator uses the public key in the SAML assertion to

Credential Validation Service

Policy
Admin
Point

Credential
Provider

Credential
Validation Policy

Enforcer

Credential
Decoder

Credential
Retriever

Credential
Authenticator

0. Initialize with a policy

1. Request attributes

2. Request credentials

3. Return credentials

4. Authenticate
credentials

5. Return authentic
transcoded credentials

6. Return attributes

 Adding Support to XACML for Dynamic Delegation of Authority 77

validate the signature. The Credential Decoder subsequently discards all unauthentic
credentials – these are ones whose digital signatures are invalid. Authentic credentials
are decoded and transformed into an implementation specific local format that the
Policy Enforcer is able to handle (step 5).

The task of the Policy Enforcer is to decide if each authentic credential is valid (i.e.
trusted) or not. It does this by referring to its Credential Validation policy to see if the
credential has been issued by a root of trust or not. If it has, it is valid. If it has not, the
Policy Enforcer has to work its way up the delegation tree from the current credential
to its issuer, and from there to its issuer, recursively, until a root of trust is located, or
no further issuers can be found (in which case the credential is not trusted and is
discarded). Consequently steps 2-5 are recursively repeated until closure is reached.
Remember that in the general case there are multiple credential providers, who each
may have their own Issuing Policies, which may be adhered to or ignored by the
Policy Enforcer according to the CV policy. There are also issues of height first or
breadth first upwards tree walking, or top-down vs. bottom-up tree walking. These are
primarily implementation rather than conceptual issues, as they effect performance
and quality of service, and so we will address them further in Section 6 where we
describe our implementation of a CVS.

The proposed architecture makes sure that the CVS can:

• Retrieve credentials from a variety of physical resources
• Decode the credentials from a variety of encoding formats
• Authenticate and perform integrity checks specific to the credential encoding

format

All this is necessary because realistically there is no way that all of these will fully
match between truly independent issuing domains.

4 The XACML Model

Figure 2 shows the overall conceptual set of interactions, as described in XACMLv2
[8]. The PDP is initially loaded with the XACML policy prior to any user’s requests
being received (step 1). The user’s access request is intercepted by the PEP (step 2), is
authenticated, and any pushed credentials are validated and the attributes extracted
(note that this is not within the scope of the XACML standard). The request and user
attributes (in local format) are forwarded to the context handler (step 3), which may
ask the PIP for additional attributes (steps 6 to 8) before passing the request to the
PDP (step 4). If the PDP determines from the policy that additional attributes are still
needed, it may ask the context handler for them (step 5). Optionally the context
handler may also forward resource content (step 9) along with the additional attributes
(step 10) to the PDP. The PDP makes a decision and returns it via the context handler
(step 11) to the PEP (step 12). If the decision contains optional obligations they will
be enforced by the obligations service (step 12).

As can be seen from Figure 2, XACMLv2 currently has nothing to say about
credentials or how they are validated.

78 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

Fig. 2. Data Flow Diagram for XACML Architecture

5 Incorporating the CVS into XACML

Figure 3 shows the ways in which the CVS could be incorporated into the XACML
model. The CVS could be an additional component called by either the PEP (step
101) or the context handler (step 103), or it could completely replace the PIP (step 6)

Fig. 3. Incorporating the CVS into XACML

 Adding Support to XACML for Dynamic Delegation of Authority 79

in which case the Subject would now send credentials to the PIP/CVS rather than
attributes (step 107a).

The advantages of having the CVS called by the PEP, is that existing XACMLv2
implementations do not need to change. The PEP optionally passes a bag of
credentials to the CVS (push mode), the CVS fetches all or more credentials as
needed (pull mode), and returns a set of valid subject attributes to the PEP, which it
can pass to the existing XACML context handler. The disadvantage of this model is
that each application will need to be modified in order to utilise the CVS, since the
PEP is an application dependent component. Note that this model, when operating in
push mode only, with no credential retrievals, is similar to that being proposed by the
WS-Trust specification, in which the Security Token Service (STS) operates as a
token validation service [10]. However, the STS has no equivalent functionality of the
CVS operating in credential pull mode.

The advantage of having the CVS called by the context handler is that existing
applications i.e. the PEP, may not need to change. The only change that is needed is
to the context handler component of XACML implementations. Depending upon its
interface, PEPs may not need to change at all. Support for multiple autonomous
domains that each support delegation of authority can be added to applications
without the application logic needing to change. Only a new credential validation
policy is needed. Credentials that were previously invalid (because they had been
delegated) would now become valid, once the appropriate policy is added to the PAP.

The advantage of replacing the PIP by the CVS, is that we have the opportunity of
using digitally signed credentials for constructing target attributes and environmental
attributes as well as subject attributes. For example, time may be obtained from a
secure time stamping authority as a digitally signed credential (step 107b), and
validated according to the CV policy. This is our favoured approach.

The disadvantage of the last two approaches is that incorporating the CVS inside
the policy evaluator introduces transforms to the request context that are invisible to
the PEP. At the current time we do not know which approach will eventually be
favored.

Note that the integration scenarios do not affect the implementation of the CVS,
which is explained in the next section.

6 Implementing the CVS

There are a number of challenges involved in building a fully functional CVS that is
flexible enough to support the multiple requirements outlined in section 2. Firstly we
need to fully specify the Credential Validation Policy, including the rules for
constructing delegation trees. Then we have to engineer the policy enforcer with an
appropriate algorithm that can efficiently navigate the delegation tree and determine
whether a subject’s credentials are valid or not.

6.1 Credential Validation Policy

We have implemented our CV policy in XML, according to our own specified
DTD/schema, shown in Appendix 1. Most components of the policy are relatively

80 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

straightforward to define, apart from the delegation tree. We have specified the list of
trusted credential issuers by using their distinguished names (DNs) from their X.509
public key certificates. We chose to use distinguished names rather than public keys
for two reasons. Firstly, they are easier for policy writers to understand and handle,
and secondly it makes the policy independent of the current key pair in use by a
trusted issuer.

The attribute hierarchies are specified by listing superior-subordinate attribute
value pairs. There can be multiple independent roots, and attribute values can be
independent of any hierarchy if so wished.

In our first implementation, we have specified a delegation tree as a name space
(domain) and a delegation depth. Anyone in the domain who is given a credential may
delegate it to anyone else in the same domain, who in turn may delegate it to anyone
else in the same domain until the delegation depth is reached. We currently use
X.500/LDAP distinguished names to define the domains. This format allows the
policy writer to define a domain using included and excluded subtrees and so
construct any arbitrary LDAP subtree in which the delegates must belong. This name
form is already used in the PKI world, for example in the name constraints X.509
extension [3]. Furthermore since we refer to the credential subjects and issuers by
their LDAP DNs, it was natural to constrain who could be in a delegation tree by
referring to them by their DNs. Another constraint that we place on a delegation tree
is that the same attribute (or its subordinate) must be propagated down the tree, and
new unrelated attributes cannot be introduced in the middle of a delegation tree. We
recognise that a more flexible approach will be to define delegation trees by referring
to the attributes of the members rather than their distinguished names, as for example
is used by Bandmann et al [9]. Their delegation tree model allows a policy writer to
specify delegation trees such as “anyone with a head of department attribute may
delegate a project manager attribute to any member of staff in the department”. This is
a future planned enhancement to our work.

Finally, the policy links the trusted issuers to the delegation domains and the
attributes that each issuer is trusted to issue, along with any additional time/validity
constraints that are placed on the issued credentials. (The constraints have not been
shown in the schema.)

In our current implementation we do not pass the full Issuing Policy along with the
issued credential, we only pass the tree depth integer. Therefore the CVS does not
know what the issuer’s intended name space is (we assume that the credential issuing
software will enforce the Issuing Policy on behalf of the relying party). The CV
policy writer is free to specify his own (more restrictive) name space for the
delegation tree, or to specify no name space restrictions and allow a credential holder
to effectively delegate to anyone. The only way to (partially) enforce the Issuing
Policy in our current implementation is to repeat the issuer’s name space in the
delegation tree of the CV policy, and to assume that no further restrictions are placed
by the issuer on any particular delegate. A future planned enhancement is to carry the
Issuing Policy in each issued credential, and to allow the CV policy writer to enforce
it, or overwrite it with his own policy, or force conformance to both. In this way a
more sophisticated delegation tree can be adhered to.

 Adding Support to XACML for Dynamic Delegation of Authority 81

6.2 Delegation Tree Navigation

Given a subject’s credential, the CVS needs to create a path between it and a root of
trust, or if no path can be found, conclude that a credential cannot be trusted. There
are two alternative conceptual ways of creating this path, either top down, also known
as backwards [3, 17] (i.e. start at a root of trust and work down the delegation tree to
all the leaves until the subject’s credentials are found) or bottom up, also known as
forwards (i.e. start with the subject’s credential and work up the delegation tree until
you arrive at its root). Neither approach is without its difficulties. Either way can fail
if the credentials are not held consistently – either with the subject or the issuer. As Li
et al point out [17], building an authorisation credential chain is more difficult than
building an X.509 public key certificate chain, because in the latter one merely has to
follow the subject/issuer chain in a tree, whereas in the former, a directed graph rather
than a tree will be encountered. Graphs may arise for example when a superior
delegates some privileges in a single credential that have been derived from two of
more credentials that he possesses, or when attribute mappings occur between
different authorities. Even for the simpler PKI certificate chains, there is no best
direction for validating them. SPKI uses the forwards chaining approach [15]. As
Elley et al describe in [16], in the X.509 model it all depends upon the PKI trust
model and the number of policy related certificate extensions that are present to aid in
filtering out untrusted certificates. Given that our delegation tree is more similar to a
PKI tree, and that we do not have the policy controls to filter the top/down
(backwards) approach, and furthermore, we support multiple roots of trust so in
general would not know where to start, then the top down method is not appropriate.

There are two ways of performing bottom up (forwards) validation, either height
first in which the immediately superior credential only is obtained, recursively until
the root is reached, or breadth first in which all the credentials of the immediate
superior are obtained, and then all the credentials of their issuers are obtained
recursively until the root or roots are reached. The latter approach may seem counter-
intuitive, and certainly is not sensible to perform in real time in a large scale system,
however a variant of it may be necessary in certain cases, i.e. when two or more
superior credentials have been used to create a subordinate one, or when a superior
possess multiple identical credentials issued by different authorities. Furthermore,
given that in our federation model described in section 2 we allow a user to simply
authenticate to a gateway and for the system to determine what the user is authorised
to do (the credential pull model), the first step of the credential validation process is to
fetch all the credentials of the user. This is performed by the Credential Retriever in
Figure 1. Thus if the CVS recursively calls itself, the breadth first approach would be
the default tree walking method. Thus we have to add a tree walking directive to the
credential validation method, which can be set to breadth first for the initial call to the
CVS, and then to height first for subsequent recursive calls that the CVS makes to
itself.

In order to efficiently solve the problem of finding credentials, we add a pointer in
each issued credential that points to the location of the issuer’s credential(s) which are
superior to this one in the delegation tree. This pointer is similar to the
AuthorityInformationAccess extension defined in [19]. Although this pointer is not

82 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

essential in limited systems that have a way of locating all the credential repositories,
in the general case it is needed.

In the case of relatively long lived credentials, we envisage that a background task
could be run when the system is idle, that works its way down the delegation trees
from the roots, in a breadth first search for credentials, validates them against the CV
policy, and caches the valid attributes for each user for a configuration period of time
that is approximately equal to the revocation period. Then when a user attempts to
access a resource, the CVS will be able to give much faster responses because the
high level branches of the delegation tree will have already been validated.

7 Conclusions and Future Work

Providing XACML with support for dynamic delegation of authority that is enacted
via the issuing of credentials from one user to another, is a non-trivial task to model
and engineer. In this paper we have presented the problems and requirements that
such a model demands, and have architected a solution based on the XACML
conceptual and data flow models. We have also presented at a conceptual level the
policy elements that are necessary to support this model of dynamic delegation of
authority. Given that these policy elements are significantly different to those of the
existing XACMLv2 policy, and that the functionality required to evaluate this policy
is significantly different to that of the existing XACML PDP, we have proposed a
new conceptual entity called the Credential Validation Service, to work alongside the
PDP in the authorisation decision making. The advantages of this approach are
several. Firstly the XACML policy and PDP do not need to change, and support for
dynamic delegation of authority can be phased in gradually. The exact syntax and
semantics of the new policy elements can be standardised with time, based on
implementation experience and user requirements. We have presented our first
attempt at defining and implementing such a policy, and now have an efficient
implementation that supports dynamic delegation of authority. A live demonstration is
available at http://issrg-beta.cs.kent.ac.uk:8080/dis.html.

Future work will look at supporting more sophisticated delegation trees and
schema, and enforcing (or ignoring) Issuing Policies in target domains by passing the
full policy embedded in the issued credentials. We also plan to incorporate additional
policy elements in the delegation trees, such as attribute mappings of the kind
described in [18].

Acknowledgments. We would like to thank the UK JISC for supporting this work
under the research project entitled “Dynamic Virtual Organisations in e-Science
Education (DyVOSE)”.

References

1. See http://dictionary.reference.com/search?q=delegate
2. OASIS. “Assertions and Protocol for the OASIS Security Assertion Markup Language

(SAML) V2.0”, 15 January 2005

 Adding Support to XACML for Dynamic Delegation of Authority 83

3. ISO 9594-8/ITU-T Rec. X.509 (2001) The Directory: Public-key and attribute certificate
frameworks

4. Scot Cantor. “Shibboleth Architecture, Protocols and Profiles, Working Draft 02, 22
September 2004, see http://shibboleth.internet2.edu/

5. David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn And Ramaswamy
Chandramouli. “Proposed NIST Standard for Role-Based Access Control”. ACM
Transactions on Information and System Security, Vol. 4, No. 3, August 2001, Pages 224–
274

6. Internet2 Middleware Architecture Committee for Education, Directory Working Group
(MACE-Dir) “EduPerson Specification (200312)”, December 2003. Available from
http://www.nmi-edit.org/eduPerson/internet2-mace-dir-eduperson-200312.html

7. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen. “SPKI Certificate
Theory”. RFC 2693, Sept 1999.

8. “OASIS eXtensible Access Control Markup Language (XACML)” v2.0, 6 Dec 2004,
available from http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

9. O. Bandmann, M. Dam, and B. Sadighi Firozabadi.”Constrained delegation”. In
Proceedings of the IEEE Symposium on Research in Security and Privacy, pages131-140,
Oakland, CA, May 2002. IEEE Computer Society Press.

10. Paul Madsen. “WS-Trust: Interoperable Security for Web Services”. June 2003. Available
from http://webservices.xml.com/pub/a/ws/2003/06/24/ws-trust.html

11. Markus Lorch , Seth Proctor , Rebekah Lepro , Dennis Kafura , Sumit Shah. “First
experiences using XACML for access control in distributed systems”. Proceedings of the
2003 ACM workshop on XML security, October 31-31, 2003, Fairfax, Virginia

12. Wolfgang Hommel. “Using XACML for Privacy Control in SAML-based Identity
Federations”. In 9th IFIP TC-6 TC-11 Conference on Communications and Multimedia
Security (CMS 2005), Springer, Salzburg, Austria, September 2005

13. Alfieri R, et al. VOMS: an authorization system for virtual organizations, 1st European
across grids conference, Santiago de Compostela. 13-14 February 2003. Available from:
http://grid-auth.infn.it/docs/VOMS-Santiago.pdf

14. Tom Barton, Jim Basney, Tim Freeman, Tom Scavo, Frank Siebenlist, Von Welch,
Rachana Ananthakrishnan, Bill Baker, Kate Keahey. “Identity Federation and Attribute-
based Authorization through the Globus Toolkit, Shibboleth, GridShib, and MyProxy”. To
be presented at NIST PKI Workshop, April 2006.

15. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, Ronald
L. Rivest. “Certificate chain discovery in SPKI/SDSI”. Journal of Computer Security,
Issue: Volume 9, Number 4 / 2001, Pages: 285 - 322

16. Y. Elley, A. Anderson, S. Hanna, S. Mullan, R. Perlman and S. Proctor, “Building
certificate paths: Forward vs. reverse”. Proceedings of the 2001 Network and Distributed
System Security Symposium (NDSS’01), Internet Society, February 2001, pp. 153–160.

17. Ninghui Li, William H. Winsborough, John C. Mitchell. “Distributed credential chain
discovery in trust management”.Journal of Computer Security 11 (2003) pp 35–86

18. XACML v3.0 administration policy Working Draft 05 December 2005. http://www.oasis-
open.org/committees/documents.php?wg abbrev=xacml.

19. Housley, R., Ford, W., Polk, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile," RFC 3280, April 2002

20. David Chadwick. “Authorisation using Attributes from Multiple Authorities” in
Proceedings of WET-ICE 2006, June 2006, Manchester, UK

84 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

Appendix 1: CVS Policy Schema

<?xml version="1.0" >
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:permis="http://sec.cs.kent.ac.uk/permis" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="CVSPolicy" type="permis:CVSPolicyType"/>
 <xs:complexType name="CVSPolicyType" >
 <xs:sequence>
 <xs:element name="TrustedIssuers" type="permis:TrustedIssuersType" />
 <xs:element name="AttributeHierarchies"
type="permis:AttributeHierarchiesType" />

<xs:element name="Domains" type="permis:DomainsType"/>
 <xs:element name="AttributeAssignments"
type="permis:AttributeAssignmentsType" />
 </xs:sequence>
 <xs:attribute name="CVSPolicyID" use="required" type="xs:anyURI"/>
 </xs:complexType>
<!-- -->
<xs:complexType name="TrustedIssuersType">
 <xs:sequence>

<xs:element name="TrustedIssuer" maxOccurs="unbounded"
type="permis:TrustedIssuerType"/>
 </xs:sequence>
</xs:complexType>
<!-- -->
<xs:complexType name="TrustedIssuerType">

<xs:attribute name="TrustedIssuer" use="required" type="xs:anyURI"/>
 <!-- Only LDAP and HTTP URLs are currently allowed for issuers -->
 <xs:attribute name="TID" use="required" type="xs:ID"/
</xs:complexType>
<!-- -->
<xs:complexType name="AttributeHierachiesType">
 <xs:sequence>

<xs:element name="AttributeHierarchy" maxOccurs="unbounded"
type="permis:AttributeHierarchyType" />
 </xs:sequence>
</xs:complexType>
<!-- -->
<xs:complexType name="AttributeHierachyType">

<xs:sequence>
<xs:element name="Superior" type="permis:SuperiorValueType"

maxOccurs="unbounded" >
<xs:sequence>

 <xs:attribute name="AttributeOID" use="required" type="xs:anyURI"/
 <!-- Must be encoded according to SAML LDAP Profile e.g. urn:oid:1.2.3.4 -->
 <xs:attribute name="FriendlyName" use="required" type="xs:ID"/
</xs:complexType>
<!-- -->
 <xs:complexType name="SuperiorValueType">

<xs:sequence>

 Adding Support to XACML for Dynamic Delegation of Authority 85

<xs:element name="Subordinate" type="permis:SubordinateValueType"
minOccurs="0" >

<xs:sequence>
 <xs:attribute name="Value" use="required" type="xs:ID" / >
 </xs:complexType>
<!-- -->
<xs:complexType name="SubordinateValueType">
 <xs:attribute name="Value" use="required" type="xs:IDREF"/
</xs:complexType>
<!-- -->
<xs:complexType name="DomainsType">
 <xs:sequence>
 <xs:element name="Domain" maxOccurs="unbounded" type="permis:DomainType" />
 </xs:sequence>
</xs:complexType>
<!-- -->
 <xs:complexType name="DomainType">
 <xs:sequence>

<xs:element name="RootNode" type="permis:RootNodeType"
maxOccurs="unbounded"

<xs:sequence>
 <xs:attribute name="DomainID" use="required" type="xs:ID"/ </xs:complexType>
<!-- -->
 <xs:complexType name="RootNodeType">
 <xs:sequence>

<!-- the excluded nodes must be immediately subordinate to the root node.
Only LDAP and HTTP URLs are currently allowed for nodes -->
<xs:element name="ExcludedNode" type=" xs:anyURI " minOccurs="0"

maxOccurs="unbounded"
<xs:sequence>

 <xs:attribute name="Name" type="xs:anyURI" use="required"/>
</xs:complexType>
<!-- -->
<xs:complexType name="AttributeAssignmentsType">
 <xs:sequence>

<xs:element name="AttributeAssignment" maxOccurs="unbounded"
type="permis:AttributeAssignmentType"/>
 </xs:sequence>
</xs:complexType>
<!-- -->
<xs:complexType name="AttributeAssignmentType" >
 <xs:sequence>

<xs:element name="Attribute" type="permis:AttributeType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="AAID" use="required" type="xs:ID"/>
 <xs:attribute name="TI" use="required" type="xs:IDREF"/
 <xs:attribute name="DomainID" use="required" type="xs:IDREF"/>

<xs:attribute name="DelegationDepth" use="optional"
type="xs:nonNegativeInteger"/>
 </xs:complexType>
<!-- -->

86 D.W. Chadwick, S. Otenko, and T. Anh Nguyen

<xs:complexType name="AttributeType">
<xs:sequence>
<xs:element name="AttributeValue" type="permis:SubordinateValueType"

minOccurs="0" >
<xs:sequence>

 <xs:attribute name="FriendlyName" use="optional" type="xs:IDREF"/
</xs:complexType>
<!-- -->
</xs:schema>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

