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Abstract. We are interested in languages that provide powerful abstractions for con-
currency and parallelism that execute everywhere, efficiently. Currently, the existing
runtime environments for the occam-π programming language provide either one of
these features (portability) or some semblance of the other (performance). We believe
that both can be achieved through the careful generation of C from occam-π, and
demonstrate that this is possible using the Transterpreter, a portable interpreter for
occam-π, as our starting point.
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Introduction

The Transterpreter [1] is a virtual machine for CSP [2] and Pi-calculus [3] based languages.
Intended as a platform for concurrent language design and research, it also fully supports
the execution of programs written in the occam-π [4] language. To support our research
goals, the Transterpreter was designed to be extensible and portable. This does mean that it
is unlikely to be able to achieve the level of performance that could be obtained by compiling
directly to native code. However, what the Transterpreter lacks in performance, it possesses
in portability, and has enabled the execution of occam-π on platforms as diverse as the Mac
OS X (PowerPC) and the LEGO Mindstorms (H8/300) [5]. Porting the Transterpreter to a
POSIX compliant OS, such as Mac OS X, is no harder than recompiling 4000 lines of ANSI
C. Where the platform is more specialised, such as the LEGO Mindstorms, a new wrapper
must be written to interface with the platform appropriately. Such a wrapper can be as short
as 100 lines of code.

Techniques to improve the performance of the Transterpreter are being constantly eval-
uated. Such performance optimisations are however only implemented where they do not
sacrifice portability. As an example, Just-In-Time (JIT) compilation may not be practical on
all platforms, and must therefore be implemented in a way that does not make the virtual
machine unportable. Additionally, recent ports of the Transterpreter to the Tmote Sky [6],
a wireless sensor network platform based on the Texas Instruments MSP430 [7], and to the
multi-core Cell Broadband Engine [8,9], have identified platforms with specialised needs
on which interpretation provides a suboptimal solution. On small battery powered devices,
power conservation is likely to be a major concern and the overhead of interpretation may
therefore not be acceptable. The Cell Broadband Engine, on the other hand, contains spe-
cialised vector processing units, capable of performing high performance vector operations
on 128-bit wide data. These units are also capable of running scalar code, and therefore the
Transterpreter, but they do so with a large performance penalty. In order to effectively use
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occam-π on the Cell Broadband Engine, on wireless sensor networks and in a host of other
specialised applications, it seems necessary to be able to generate efficient native code.

Given the diverse run-time environments we wish to target, the goal becomes not just
the generation of native code, but to realise a code-generation framework which can, without
undue effort, target a wide variety of architectures. Our ultimate goal is therefore to create a
native code compiler which is as portable as the Transterpreter, and yet generates executables
with performance comparable to the existing native code compilers. In this paper we will
therefore explore the steps necessary for generating efficient native code, in a retargetable
manner.

1. An Overview of occam Environments

A number of occam compilers and runtimes exist which allow occam programs to be in-
terpreted or executed natively. These environments vary in terms of their portability and per-
formance, as well as the assistance they can offer the developer in implementing sound con-
currency. Each environment presents its own challenges as a starting point for developing an
efficient, portable code generator for occam inspired languages.

1.1. Existing Compilers

The most prominent occam compiler currently available is the “Kent Retargetable occam-π
Compiler”, KRoC [10,11], which is being developed at the University of Kent, originally
as part of the occam-for-all project [12]. KRoC compiles both occam2.1 and the new dy-
namic occam-π language [4] to native code using the custom tranx86 [13] code genera-
tor. tranx86 generates code for the IA-32 architecture; code-generators for PowerPC, MIPS
and SPARC targets are in development. SPOC, the “Southampton Portable occam Com-
piler” [14,15], implements the occam2 and occam2.1 languages [16] by compiling them
to ANSI C code. This allows SPOC to generate code for a wide variety of platforms, even
though it has not been under active development for some time.

Other occam compilers exist, notably the occam1 [17] compiler in the Amsterdam
Compiler Kit [18,19,20], which can generate native code for the IA-32 and a number of more
archaic architectures. occam compilers which do not generate code for modern architectures
are mostly of historical interest, and include the original Inmos compilers, written in occam,
and later rewritten in C. occam has also found use in compiler courses, as is the case with
the µoccam dialect developed and used at the University of Edinburgh [21].

A number of new occam-inspired compilers are currently being developed. 42 [22], is
a small extensible compiler aimed at concurrent language design and development. It im-
plements a small CSP-based language as the foundations for future research. 42 uses the
Transterpreter as its underlying runtime, and has supported the work presented in this paper,
as the host for the C code-generator. KRoC has approached the point where it is becoming
extremely difficult to extend sensibly and the NoCC compiler [23] is being developed at
the University of Kent to replace it. Additionally development of the Grid-occam compiler
has been reported in [24], as an occam compiler for distributed computing on the .NET
platform.

1.2. Towards Native Code

In order to develop a portable and efficient code generator for occam-π programs we have
explored the most desirable features of the existing environments described above. This has
made it possible to provide an approach which combines the best features from each of the
existing implementations.
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The virtual machine solutions are generally the most portable, and are often implemented
in languages which compile on a wide variety of platforms. Virtual machines, where they
have been designed to be cleanly separable functional units, can be viewed as a set of interre-
lated components for implementing and executing a language. The Transterpreter’s scheduler
is written entirely in ANSI C, as a set of reusable functions. These scheduler functions will
be utilised unmodified in our native code generation approach. As we are investigating fast
and portable native code generation, we will not require any other direct support from the
Transterpreter.

SPOC compiles to ANSI C code, which is further translated to native code by GCC
or some other C compiler. This achieves good performance, especially for sequential code,
and provides good portability. The performance of scheduling code is affected by SPOC
having to work within the constraints of the C programming language, and it cannot provide
the same performance as KRoC. KRoC, and its successor NoCC, make use of custom na-
tive code generators capable of generating very efficient scheduler code. While they do op-
timise sequential code, our testing indicates that they do not achieve the same performance
as SPOC, which has most of GCC’s optimisations at its disposal. Our intent is to attempt to
combine the performance of KRoC’s scheduling code with the sequential performance and
portability of SPOC.

To generate efficient native code, we look to the approach used in the Amsterdam Com-
piler Kit, which eliminates the need to implement native code generators for each new lan-
guage front-end. This is done by using a common intermediary language, which has a per-
sistent form that a language front-end can store to disk. Back-ends can then be invoked on
the (architecture independent) intermediary code, in order to generate native code. Thus, ef-
fort invested in the code generator will automatically benefit all language front-ends [18].
Unfortunately GCC does not allow language front-ends to be decoupled from back-ends in
this manner, as its intermediary language can only be expressed in-memory. Other compiler
frameworks provide intermediary formats which are easier to target than GCC, but they gen-
erally do not provide code generators for nearly as many platforms.

We would ideally write a new front-end for the GCC compiler, enabling the generation
of efficient native occam-π code in a portable manner. This is a large undertaking, and we
instead settle for implementing an alternative translation through C. We can then use this to
explore the performance that may ultimately be gained from employing the GCC toolchain
as our back-end.

2. Using C as an Intermediary Language for occam

C is a useful intermediary language, popular because of its wide availability and portabil-
ity. Many languages, including the Glasgow Haskell Compiler (GHC) [25], nesC [26] (an
event-based language for embedded systems programming) and Mercury [27] (which em-
ploys techniques similar to those described in this paper) are compiled first to C, and then
to native code using GCC. Using C as an intermediary language can present some specific
challenges however, as C was not specifically designed to specifically as an intermediary
language. For example, GHC’s “Evil Mangler” [28], must modify the assembly instructions
generated from C by the GCC compiler, in order to let GHC manage its own stack. In order
to translate an occam-π program into C, we must therefore ensure that the C language allows
us to fully express the semantics of an occam-π program.

2.1. occam-π Particulars

occam-π uses co-operative scheduling, implemented by well-defined scheduling points in a
program. The most common scheduling points are channel communications, which are ex-
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plicit synchronisation points for occam-π processes. Channel communication is effectively
a rendezvous between two processes, where both must have engaged in and completed the
communication, before either is allowed to continue. The first process to arrive at a channel
communication must therefore block and wait for the process communicating on the other
end to arrive. Our occam-π processes will all be multiplexed within a single operating sys-
tem context, and the execution of the first process must therefore be suspended, and an avail-
able process must be scheduled in its stead. This will allow the program to progress to the
point where the second process arrives to complete the communication.

An occam-π program must therefore be able to suspend execution of a process at a
rescheduling point, and resume execution of some other process at an arbitrary rescheduling
point. This is not a natural style of programming to employ in C, which therefore has no
explicit support for suspending and resuming execution at well-defined, but arbitrarily paired
points in a program.

2.2. Translating to C

When using C as an intermediary language we do not have direct access to the executing
program’s instruction pointer, and are therefore unable to use it to perform unpredictable
jumps between points in a program. We must also honour the C stack, which makes jumping
between functions difficult.

ANSI C defines goto and labels, but these are not particularly useful, as a goto must
reference a named label. This means that a goto can not jump to an arbitrary location in a
program, but only to the specific label it references. Furthermore, gotos are not allowed to
cross a function boundary, as this would most likely invalidate the C stack. The pure ANSI C
goto is therefore not expressive enough to allow the implementation of the transfer of control
needed to implement an occam-π scheduler.

While it is possible to use inline assembly constructs to perform arbitrary jumping within
a program, the approach taken by CCSP [29], we do not consider this as a feasible solution,
as we are extremely attentive to our overall goal of ensuring easy portability. Allowing the
use of inline assembly instructions would require that these be re-written for each target ar-
chitecture. If this assembly becomes non-trivial, we have failed in creating an easily portable
native code occam-π compiler.

Use of the setjmp/longjmp macros to facilitate transfer of control within a pro-
gram is also problematic. It is possible to find examples of coroutines implemented using
setjmp/longjmp. However these rely specific behaviours of the macros, which are not well
defined. Furthermore, as noted in [30], the macros are notoriously difficult to implement,
and it is unwise to make generalised assumptions about them, making the exotic use of
setjmp/longjmp likely to be non-portable.

2.3. Using ‘switch’ Statements

The SPOC compiler has already demonstrated that it is possible to translate occam2 and
occam2.1 into ANSI C, and compile it using GCC or some other ANSI C compiler. SPOC
will translate occam constructs directly to C where possible, so that occam SEQs and WHILEs
are translated into for or while loops. SPOC must also deal with the scheduling of occam
processes and does this by making heavy use of the C switch statement. Therefore, the job
of the SPOC scheduler is to obtain processes from the scheduling queue or channel queues,
and continue its execution by selecting the correct branch of a switch statement.

The scheduler dispatches execution to a process by first obtaining a pointer to the C
function corresponding to it, as well as a pointer to its environment, all wrapped up in the
process descriptor taken off the run-queue. The environment contains the IP variable, which
holds the value of the branch in the function’s switch statement that must be executed next.
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When the function is entered (see listing 1), control will be passed to the appropriate branch
(case) in the switch statement. As each branch in the switch statement contains one atomic
sequence of occam code, control does not need to be transferred until execution completes
the statement immediately before the next branch (the OUTPUT1 macro in listing 1). The ar-
guments to the OUTPUT1 macro contain the ‘label’ of the next branch to execute, in this case
‘1’. The arguments also specify the channel used for communication and the memory loca-
tion containing the item being communicated. When the OUTPUT1 macro needs to schedule
another process, a C return statement is executed, returning control to the scheduler, which
is then able to select the next process from the run-queue and resume its execution. The pro-
cess shown in listing 1 will eventually be placed back on the run-queue, and subsequently
executed by the scheduler. When this happens, execution will resume from case 1.

switch(Env−>IP) {
case 0:

Env−>Temp = 97;
OUTPUT1(FP−>Chan51, &Env−>Temp, 1);

case 1:
... /∗ More cases may follow ∗/

}

Listing 1. Part of a simple SPOC process

2.4. Labels as Values and Computed ‘goto’s

Another approach which enables transfer of control between arbitrary scheduling points is
to use the GCC ‘labels as values’ extension. The extension is primarily provided by GCC in
order to facilitate the writing of threaded1 interpreters. Threaded interpreters do away with
the traditional fetch-execute loop, and instead ‘compile’ bytecode into an array of addresses
corresponding to the start of an instruction. At the end of the C code implementing a par-
ticular instruction, a jump to the next instruction is performed by using a ‘computed goto’:
goto ∗∗(pc++); or similar. This can improve the performance of an interpreter over a pure
switch based one, as the fetch-execute loop is eliminated. Execution speeds can be further
improved weaving the instruction fetch into the code for each instruction, to help the C opti-
miser fill load and branch delay slots [31,32].

The remainder of this paper will discuss a method for generating C code from occam-π
sources using ‘labels as values’ and ‘computed goto’.

3. Using the Transterpreter as a Runtime for Native C

This section describes the mechanisms used to transform an occam-π program into a C
program that can be compiled into native code by a compiler that supports ‘labels as values’
and ‘computed goto’. Both the C compiler found in the GNU Compiler Collection (gcc),
and the Intel Compiler (icc) provide these extensions. Unmodified scheduler functions from
the Transterpreter are used to provide the scheduling functionality required for the generated
C programs. Because the scheduler functionality is provided as a set of C functions, the C
stack must be left intact by the occam-π program. It is therefore not possible to jump across
function boundaries using goto, and the entire occam-π program must be compiled as a
single C function.

The translations described in this paper are used by the 42 compiler to turn occam-π-
like programs into C. It would also be possible to translate the Extended Transputer assembly

1threading in this context does not relate to multiple execution contexts, i.e. threads, but to a dispatch mech-
anism used in interpreters.
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Code (ETC) [33] generated by the occ21 compiler in this manner, although such a translator
has not been implemented at the time of writing. A translation from ETC is likely to produce
poorer quality code, as a great deal of useful semantic information is lost in the translation
from occam-π to Extended Transputer assembly Code.

3.1. An Overview of the Execution Environment

The scheduler is implemented as a number of C functions, called using the C stack,
which must be available for this purpose. A separate stack (the workspace) is allocated
for the occam-π program, indexed using the workspace-pointer (wptr). In addition to the
workspace-pointer, a number of pointers are needed to hold the scheduling queues. The fptr
and bptr, front- and back-pointer respectively, are used to keep the linked list of runnable
processes. Runnable processes are inserted onto the back-pointer, and the next scheduled pro-
cess is taken off the front-pointer. A timer queue is kept in the tptr, with the next timeout
stored in tnext. The timer queue contains a list of processes ordered by timeout, and care
must be taken to insert processes into the correct place in the queue.

Listing 2 shows the state described above as defined in the generated C file. Depending
on the architecture, it is possible to place one or more of these pointers in machine regis-
ters; shown here is the code generated for an Intel IA-32 compatible processor, where the
workspace pointer wptr has been placed in the base pointer register ebp. On architectures
with larger register sets, it is possible to keep a larger amount of scheduling pointers in reg-
isters, thereby improving scheduling performance slightly.

register int ∗wptr asm("ebp");
int ∗fptr, ∗bptr, ∗tptr, tnext;

Listing 2. Required state

The workspace grows upwards, and the workspace pointer is therefore initialised to point
into the bottom of the allocated workspace. The scheduling pointers are initialised to be null.

3.2. Simple ‘goto’s

ANSI C’s goto statement is used to transfer execution between well known points in the
program. This is used to implement PROC invocations and complex loops which we cannot
translate into while or for loops easily.

3.3. Manipulating State

The program’s state, other than that shown in listing 2, is stored in the workspace, and indexed
by the wptr variable. Storing a value into the workspace becomes a simple assignment using
the workspace pointer as an index: wptr[1] = 2. Complex expressions are translated directly
into C wherever practical, in order to let the C compiler perform any optimisations possible:
wptr[2] = wptr[1] + (wptr[3] / 2);.

Workspace is allocated and deallocated by modifying the address held in wptr. For ex-
ample, allocating eight slots, each the size of the machine word, is done by subtracting from
the wptr: wptr = wptr − 8;, deallocation by adding: wptr = wptr + 8;.

3.4. Manipulating Processes: Labels as Values

The “labels as values” extension provides the ability to take the address of a label by using
the && operator. The application of this operator produces the address of a variable, and can
be used in arbitrary expressions and assignments. It is therefore possible to take the address
of a label which may be needed in the future: &&L10.
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Once we have obtained such a value, we can use it in, for example, the add to queue(int

∗wptr, void ∗iptr); function, which takes a process descriptor (actually the workspace
pointer) of a process, as well as its initial instruction pointer and stores it onto the scheduling
queue. This function is used to make a function runnable, by adding it onto the scheduling
queue: add to queue((int)(wptr − 4), (int) &&L13);.

3.5. Calls and Returns: Computed ‘goto’s

It is often necessary to use the address of a location that appears after the current state-
ment. We can get the address of such locations by dropping labels in the code, which we
can then reference using the ‘labels as values’ extension. Listing 3 shows the code for a
call, used to invoke a PROC. This code needs to store the return address, which is done by
placing the cur ip 42 label after the code implementing the call. The call code can then
reference this label in order to put it in the return address slot in the new PROCs stack
frame: wptr[−4] = (int) &&cur ip 42;. The remaining two assignments into the new
stack frame are used to pass values to the new PROC. Finally the stack frame is allocated by
moving the wptr up by four slots, and the goto is executed.

wptr[−4] = (int) &&cur ip 42;
wptr[−3] = wptr[2];
wptr[−2] = wptr[3];
wptr = wptr − 4;
goto L8;

cur ip 42:

Listing 3. Calling a PROC

wptr = wptr + 4;
goto ∗wptr[−4];

Listing 4. Returning from a PROC

The return address now resides in the stack frame allocated by the previous call. Even-
tually the call will return, at which point the address will be loaded out of the stack and used
as an argument to a goto (listing 4). A special syntax is used to indicate that the argument of
the goto is not a label in itself, but rather an expression containing the address of a label, a
‘computed goto’: goto ∗expression;. To return from a call the stack frame is deallocated:
wptr = wptr + 4;, and the return address is read out from the stack and used in the goto.

3.6. Scheduling

‘Labels as values’ and the ‘computed goto’ are used to deal with scheduling points. An
occam-π program has a fixed number of scheduling points, most often in the form of channel
communications. When a scheduling point is reached, the location of the currently executing
context must be stored so we can return to it later. A previously executing context must
then be loaded, so that execution can be resumed. The prototype for the in function, which
performs this task, is shown in listing 5. This is an explicit scheduling point, where execution
will have to transfer elsewhere in the program.

char ∗in(int nbytes, int ∗chan ptr, char ∗write start, char ∗iptr);

Listing 5. Prototype for the ‘in’put part of a communication

The in function takes as arguments, the number of bytes which are being communicated,
a pointer to the channel word on which the communication is occurring, a pointer to the
location where the data should be put, and finally a pointer to the location where the current
process would like execution resumed once the communication has successfully completed.
The function returns the address where execution should resume once the in has completed
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successfully. The address returned may be that of the process which engaged the other side
of the communication. If this process is not yet ready, an address of an arbitrary process from
the scheduling queue will be returned instead. A typical communication is shown in listing 6.

goto ∗(in(4, (int ∗) wptr[1], (char ∗)(wptr + 3), &&id in aa));
id in aa:

Listing 6. Performing a communication

When execution reaches the statement in listing 6, the in function will be called.
The arguments given here are: 4, the number of bytes to transfer; wptr[1], dereference
of a workspace location, containing the address of the channel being communicated on;
wptr + 3, the location where the value which will be received is going to be stored; and
lastly &&id in aa the address of the label located immediately following the in function.
This address is stored by the in function, so that when the channel communication has com-
pleted and this process is rescheduled, execution can resume from that point, i.e. the label
id in aa. Once in progress, the in function will, if the other side of the communication is
already waiting, perform the copy of data into wptr + 3, and return, using the other sides
resume address as the return value. If the other side is not yet ready, the in function will
park the current process in the channel, and pick off a new process from the run-queue and
return its address. It is only at some later point in the execution of the program, when another
scheduling function returns the address of the label id in aa that execution will resume at
this point.

3.7. Limitations of This Approach

The approach for native code generation presented in this paper has some limitations. There
are a number of ways in which these may be addressed, including the use of the method
employed to perform gotos across function boundaries, as described in [27]. This approach is
not entirely portable however, and in this paper we also discuss the possibility of interfacing
directly with existing compiler frameworks (see section 5.1 on the facing page).

While the scope of the approach described in this paper is limited to small monolithic
programs, as described below, this does not leave it without merit. We are currently using
it give us confidence that a compiler framework such as GCC can provide excellent perfor-
mance for CSP based languages without an unnecessarily large development overhead. It is
also possible to use the method described in this paper to target fairly small devices, such as
sensor networks and the individual vector processing units on the Cell Broadband Engine.
These platforms can be used for prototyping work, on which we can evaluate the benefit of
native code compilation on small, constrained devices, before taking our approach further.

• Code size limitations: occam-π programs are being compiled into one large mono-
lithic function in order to enable the use of ‘labels as values’ and ’computed gotos’.
This can present a problem for GCC, as it compiles and optimises a function at a
time, and does not perform well when single functions become very large. Both com-
pilation time, and memory usage can be substantial when compiling large monolithic
functions.

• External linkage: This is related to the compilation of occam-π programs as one
monolithic function. It is not possible to cross a function boundary using a goto, and
it is therefore not possible to combine several pre-compiled object files together to
form a complete native occam-π program. Separate compilation can reduce compi-
lation times, and allow for dynamic (runtime) linkage. Dynamic linkage is not a great
concern on the targets we are currently dealing with.

• Floating point arithmetic: C does not provide full control over the floating point
unit. For example, it is not possible for a program to set rounding modes, or receive
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floating point traps. This is potentially problematic for the generation of floating point
code from occam-π programs, as occam-π does provide fine grained control over
floating point operations.

4. Performance

This section outlines some preliminary performance figures for native code generated using
the 42 compiler. We present two benchmarks: commstime and matrix multiply. Commstime
is used to measure the context switch time of a CSP based runtime, and highlights the time
it takes to switch from one running process to another. We have also included a benchmark
which performs a naive matrix multiplication, in order to assess the effectiveness of GCC
in optimising generated looping code. The matrix multiply benchmark contains three nested
loops which performs a matrix multiplication on two 500 by 500 arrays of integers. The
initialisation of the two arrays is included in the measured time. Further benchmarks will be
produced as the 42 compiler matures.

The benchmarks have been run against KRoC 1.4.1-pre4, SPOC 1.3, and the Transter-
preter 0.7. The benchmarks were executed on an unloaded Intel Pentium 4 CPU running at
3.60GHz, using a Linux 2.6.15 (preemptible) kernel. The first two entries (“Generated C’) in
table 1 and 2 refers to the programs compiled to native C using the approach presented in this
paper.

Commstime nanoseconds
Generated C, -O0 110
Generated C, -O22 8

KRoC 14
KRoC, -io -is -it 12

SPOC, -O0 65
SPOC, -O2 31

Transterpreter 147

Table 1. Commstime, context switch times

Matrix Multiply milliseconds
Generated C, -O0 1707
Generated C, -O22 1052

KRoC 1939
KRoC, -io -is -it 1930

SPOC, -O0 1486
SPOC, -O2 683

Transterpreter 35870

ANSI C -O0 1444
ANSI C -O2 672

Table 2. Matrix multiplication times

While the benchmark presented are preliminary and should not be taken as conclusive,
they do offer an indication that our approach is worth further investigation. The commstime
benchmark currently indicates that the approach presented has a context switch time which is
slightly faster than KRoC’s. The Transterpreter scheduler, which is also used in the generated
C code, does not however deal with priority, which may account for some of the difference
in speed. The matrix multiply benchmark illustrates the value of relying on optimisations al-
ready present in the GCC compiler. This leaves the C generator with the significantly simpler
task of producing optimisable code, rather than optimised code.

5. Future Directions

5.1. Using a Compiler Framework

In this paper, we have concentrated on producing fast and portable native code for the occam-
π language, and languages like it. We have placed particular emphasis on ensuring portability,

2additionally the --fomit-framepointer and --inline-functions flags have been used.
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to enable code-generation for a large number of architectures with minimum effort. In our
effort to compile to as many architectures as possible, many existing compiler frameworks
become unavailable to us, as they only target four to five of the ‘major’ architectures (i.e. plat-
forms such as the IA-32, PowerPC and Sparc). None of the compiler frameworks which the
authors have investigated, including: C-- [34], LLVM [35], Zephyr [36] and MLRISC [37],
provide the desired level of portability, as compared with the GNU Compiler Collection.
They do however, present more friendly compiler targets than GCC.

5.2. Using GCC as a Compiler Framework

The GNU Compiler Collection [38] (GCC) contains a number of language front-ends and
target back-ends. GCC currently supports the compilation of C, C++, Java, Ada, ObjectiveC
and Fortran95, and generates code for a large number of architectures, listed on the GCC
compilers backend status page [39]. Further, a number of front- and back-ends are in de-
velopment, many with the aim of being integrated into GCC proper, once a suitable point
of maturity has been reached. These include front-ends for BCPL [40], Modula-2 [41] and
the logic programming language Mercury [42]. Additionally the Treelang front-end serves as
an example of how to write a front-end for GCC. Back-ends for the MSP430 [43] and Cell
Broadband Engine [44] are under active development.

GCC started out as a C compiler, targeting only the major architectures used by the GNU
project, but has in recent years been progressing towards becoming a more generic compiler
construction framework. GCC has over the years, in no small part due to its open nature,
evolved into a multi-language compiler, which targets over 30 platforms. While it has been
notoriously difficult to write a new language front-end for the GCC compiler in the past,
better documentation [45,46], example front-ends, and an internal representation less biased
towards C/C++-like procedural languages has made this task easier. Writing a language front-
end for GCC is still no trivial undertaking, as a language front-end must interface directly
with GCC, and produce in memory GENERIC datastructures [47], which can then be lowered
to other internal datastructures automatically, in order to perform optimisations and code
generation.

5.2.1. Interfacing occam-π with GCC

This paper has been describing a method of interfacing with GCC through the use of C as
an intermediary language. This comes at the cost of expressiveness, due to the constraints of
the C language. The harder, but more flexible way to use GCC is to interface with it directly,
and make the front-end generate GCC’s internal datastructures. This however requires an in-
timate understanding of the internals of GCC, which requires considerably more effort than
generating C code. Furthermore, it is yet to be determined if GCC’s internal program repre-
sentation GENERIC is able to represent occam-π programs. Since GENERIC is designed as
a language independent representation, this is not likely to be as big an issue as it would have
in the past.

We chosen to evaluate the potential performance of using GCC as a back end for occam-
π by using C as an intermediary language, rather than starting with the more tricky direct
integration into GCC. As we have shown that excellent performance, and portability can be
obtained from GCC, we are confident in our ability to provide a front-end for GCC in the
future.

6. Conclusions

This paper has demonstrated the feasibility of automatic generation of C code from occam-π
programs, which, when compiled to native code, exhibits very good performance, both in
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terms of context switch times, and sequential code. We have demonstrated that existing com-
pilers and code generators can be used to generate native occam-π programs with perfor-
mance which compares very favourably with existing solutions.

The potential problems concerning code size limitations and the lack of separate compi-
lation have been identified. In the immediate future however, we are most interested in using
this method to target relatively small devices such as the MSP430 and the vector processing
units in the Cell Broadband Engine, where these problems are not likely to present a great
concern for our prototyping efforts.

Eventually, we would like to overcome these problems by taking a more direct route
toward native code than through C, while not sacrificing portability. We will be investigating
the use of the currently experimental 42 compiler for the Transterpreter, and making it gener-
ate native code using an existing code generation framework. While options such as C-- and
LLVM seem like attractive targets, they do not currently target nearly as many languages as
the GNU Compiler Collection.
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