Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

Communicating Process Architectures 2006 311
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
I0S Press, 2006

Video Processing in occam-pi

Carl G. RITSON, Adam T. SAMPSON and Frederick R.M. BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

{cr49,atsil, frmb}@kent.ac.uk

Abstract. Theoccam-1tlanguage provides many novel features for concurrent soft-
ware development. This paper describes a video processingefvork that explores
the use of these features for multimedia applications. éases are used to encap-
sulate operations on video and audio streams; mobile dpé&stgre used to transfer
data between them efficiently, and mobile channels allowptioeess network to be
dynamically reconfigured at runtime. We present demornstratpplications includ-
ing an interactive video player. Preliminary benchmarl@nsthat the framework has
comparable overhead to multimedia systems programmed trsiditional methods.

Keywords. occam-pi, concurrency, process networks, video, videogssing

Introduction

This paper describes a video processing framework writtetihé occam-Tt language. Its
design derives from the primary author’s experiences dg@we for and using a number
of open source video processing tools [1,2] and applicat{@m]. This work shows that
not only isoccam-tt suitable for developing whole multimedia applicationst, @#go offers
advantages for the development of individual multimedifvgre components.

A video processing framework, or more generally a multirmddamework, is an API
which facilitates the interaction and transfer of data lesmmultimedia-handling software
components. Almost all video processing systems are aaristt within such frameworks,
with distinct software components composed into pipelordayers.

Software components with standardised interfaces caty deesmodelled using object-
oriented techniques, and as a consequence most existmeMiarks are written in an object-
oriented style. AviSynth [1] (C++), the DirectShow Filter&ph [5] (C++), Kamaelia [6]
(Python) and GStreamer [7] (C/GLib [8]) are examples of.this

Communication between components is implemented eithetitegt calls to object
(component) methods [1], or by interaction with buffers7[5(often called pins or pads)
between components. The second approach can be directifetiaed, whereas the first
requires the addition of buffers between parallel comptsdine method call model, without
parallelism, is often preferred for interactive applioas. Here a control component pushes
or pulls data to or from the user, as it is easier to reasontatiheudata currently being
presented.

Neither of these approaches simplifies the design procads;ydarly in the presence of
parallelism. For example, in order to create a circular oh§lters using method calls, one
component must act as the initiator to avoid the system delatg into infinite recursion. It
is often difficult to reason about the correctness of syst@mduced using such methods.

The occam-tt language, with semantics based on Hoare’s CSP [9,10] anukeNsire-
calculus [11] process algebras, offers a number of featuhésh can be used to overcome
these problems:

https://core.ac.uk/display/64376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

312 C.G. Ritson et al. / Video Processingdacam-Tt

e The language’s formal basis makes it possible to reasont @aheiehaviour of con-
current processes and their interactions: for examplégdesitterns exist which guar-
antee freedom from deadlock [12].

e Mobile data types allow concurrent processes to safely dicieatly pass data
around by reference, whilst avoiding race-hazard andiafjasrors.

e Mobile channel ends and dynamic process creation fasilélw networks of pro-
cesses to be constructed, modified and destroyed at runtime.

The transputer processor [13], for which thecam language was originally developed,
has previously been used for multimedia [14], avatam-like languages have been de-
veloped which allow the dynamic specification of multimesyatems [15]. However, such
research predates tlmecam-1t language and thus cannot take advantage of its new fea-
tures [16,17] —occam-Trs potential in this area is as yet unexplored.

The framework presented in this paper usesam channels, grouped intoccam-1t
channel types, to provide a standardised interface bete@aponents. Mobile data provides
for efficient communication within the system, and mobilamhel ends allow those systems
to be reconfigured dynamically at run-time. The resultingcpss networks are similar to
the models of traditional video processing systems, bue lsavimplementation that more
closely resembles the design.

Section 1 explores the development ofamtam-Ttvideo player, looking at both ‘push’
and ‘pull’ modes of operation. Sections 2 and 3 examine tlopols and connectivity in
detail. Issues of dynamic network reconfiguration are dised in section 4, followed by an
example application in section 5. Section 6 discusses thelimg of status reporting in such
dynamic networks. Initial conclusions and a discussiorutiie work are given in section 7.

1. ovp — Theoccam-mt Video Player

This section explores the development of dweam-1t video player, ovp, in order to give
an insight into ideas underpinning the framework to be preskin the rest of the paper.
Readers with a particular interest in the framework’s impatation details may wish to skip
ahead to section 2.

1.1. Basic Player

A basic video player needs to process and output two traatataf(audio and video) concur-
rently. In order to achieve this we could use the processar&tahown in Figure 1. The spe-
cific decoder and output types can be inferred from the Irsgtup,init, messages which
propagate through the network. The network postt messages might look like Figure 2.
This is in effect a form of runtime typing, and as such thereagguarantee that the given
network of components will function together; section 7iscdsses this further.

Data will flow through the network as the output processesuo it (at a rate depen-
dent on timecodes embedded in the data flow). The networlaetiths a pipeline, with the de-
coders running in parallel with the output processes. Thlicantinue until anend message
is received, which will flush and shut down the network. Thigeg us linear playback.

1.2. User Control

A more general video player will have user control in the faxfmon-linear playback con-
trols and pausing. For this we need to modify the networknéral solution is presented in
Figure 3. The “User Control” process repositions the indetifi response to user seek re-
quests. The purpose of the “Flow Control” processes is Ibgias. As the network buffers
data, a pause or change in track position will take time terfilhrough from the demulti-

C.G. Ritson et al. / Video Processingdacam-Tt 313

Input File
Demuxer

Input File
Demuxer

Figure 2. Simpleoccam-Ttvideo player after init messages have passed through theret

—— User Control

Flow
Control

Input File
Demuxer

Figure 3. Process network for a seekalolecam-ttvideo player.

plexer to the outputs. This is not desirable if we want thevoek to appear responsive to user
input. The flow controls are thus used to drain the input armbdieg parts of the network
during a pause or seek, and purge the outputs, meaning thdaesenot have to wait for the
pipeline to empty before new data is presented.

One significant issue with this design is that it requirestdrmaporal position of both
streams to be the same after a seek or pause, otherwise iliére skew between them. This
is not something we can guarantee. After a pause we will mx@duced a skew proportional
to the size of any output buffers (audio output devices as¥ewe buffers). For seeking there
IS no guarantee that the resolution of positioning data kelithe same for all tracks. The
timeline resolution of video will typically be several sexts (depending on the frequency of
“key frames” upon which the decoder must synchronise), adibehundreds of milliseconds
(depending on packet size). Therefore, after a seek, tblestraill most likely be out of sync.

314 C.G. Ritson et al. / Video Processingdacam-Tt

This problem can be resolved by making two changes:

1. When unpausing or seeking, decide a new position forraasts and distribute this
to the flow controls, which then discard data before the nesition.
2. Provide synchronisation facilities in the output preess

1.3. Output Synchronisation

Device Output
Manager Device

[|

Clock

Figure 4. Breakdown of an output process, showing processes addétiggrechronisation.

In order to support output synchronisation, the output @sses are broken down into
three parts, as shown in Figure 4.

The embedded output device process acts in a pass-througtemdhe device man-
ager monitors the position of the output device using thetodes of its output stream and
delays frames appropriately using the clock process. Toekgrocess converts the KR
environment’s microsecond timers to nanosecond timecéilesn the KRC environment’s
nanosecond communication times, reading the time via stgti@ separate processes should
not lead to any significant inaccuracies, although it coddnefficient when used on a large
scale.

The device manager starts in an unsynchronised state, gudsts that the clock syn-
chronise when it receives a timecoded message, providetrttecode as the synchronisa-
tion point. On receipt of a purge message, the device mamagets the clock and returns
to an unsynchronised state. Synchronising all the outputeeonetwork is now done by
synchronising their respective clocks (Figure 5).

— User Control

l

Flow Device Output
Control Manager Device

Decoder

Input File
Demuxer

Clock Sync

Flow Device Output

Decoder ;
Control Manager Device

A

Figure 5. Theoccam-ttvideo player, push-based seekable design with synchioigguts.

Whenever a clock receives a synchronise or reset requéstwirds this to the “Clock
Sync” process. The clock sync process in turn initiates alsygmisation cycle (if one is

C.G. Ritson et al. / Video Processingdacam-Tt 315

not already running), which resets all other connectedkslo8 clock which has been reset
interrupts any pending alarms and refuses to accept new atguests until it has been
resynchronised.

Once all clocks are attempting to synchronise and have presdé¢he clock sync process
with the desired timecode, the sync process picks the satimecode and associates it
with a point in KRoC environment time. This association is the synchroniggtmnt and is
returned to all the clocks. All clocks thus acquire the sana@pmng of KRoC timer offset
to timecode. This process is very much like a barrier. In firadhe sync process returns a
synchronisation point slightly earlier than that requéstdlowing some propagation time.

A synchronisation mechanism similar to this could be ex¢ehtd work across multiple
distributed hosts, allowing the synchronisation of mudtighstributed output devices — a topic
for future research.

1.4. Pull Model

The design ideas so far presented only need employ the frarkisvstream protocab . MM
(see section 2). While these designs do work in practice, dhe overly complex; as a side-
effect of the input process driving the network, changeé&oflow must be applied in two
places. It makes more sense to have the process receivingegsests drive the network
and hence be able to respond directly to user requests. iSavé¢hcan use the framework’s
request/response protoc®sMM. CTL andP .MM. SEEKABLE (see section 3).

Keyboard

CT.USER.CMD

F————— e

CT.MM

|
|
|
|
|
! Device
B CT.MM | Manager
|
|
|
|
|

CT.USER.CMD

! I
! I
! I
! I
P.MM
: 8] Decoder }-5"™ :
I I
I

b _ |

Device
Driver

CT.MM.SEEKABLE CT.MM.SEEKABLE

CT.READY
Output Device

|
|
|
!
|
|
!
!
|
|
|
|
1

Play
Control

Input File
Demuxer

Clock Sync

Seekable
Decoder

CT.MM.SEEKABLE Output

Device

CT.MM.SEEKABLE

CT.USER.CMD

<

CT.READY

Figure 6. Process network for the complaeiecam-ttvideo player, based on a pull model.

Figure 6 shows the operating process network for the comptatam-1t video player,
built using a request/response model. The “Play Contralicess requests data from the
inputs via the decoding pipelines, and passes it to the tatpihich are synchronised as
previously described. The channel between the play coatrdithe clock sync process is
used to inform the clock sync process how many processesdshewsynchronised (some
tracks may have come to an end and will not need synchronisiing seekable decoders
are simplydecoder processes extended to hangleiM. CTL/SEEKABLE protocols using the
seekable wrapper described in section 3.4. A flow path eftists each output back to the
play control process vi@T.USER.CMD channel bundles. This allows user commands input
via the device, for example from an X11 window, to controlyblack.

An advantage of this design is that, since input tracks ansidered separate streams
and only share the common factor of the play control prodeasks need not come from

316 C.G. Ritson et al. / Video Processingdacam-Tt

the same source. This means that audio from one file could inioed with video from
another file without a complex backend synchronising theitiqgpocesses. A “multi-play”
mode in theoccam-Tt video player uses this feature to play the video from any remolb
files simultaneously, synchronised in the same way as a paudo and video tracks.

Another advantage of the pull model is that by adding filtelngclv intercept requests and
distribute them over input sources, many separate inpgt ¢elld be arbitrarily combined
into a single track (figure 7). This idea has not yet been implated.

Input File Video
Demuxer Decoder
Input File Video
Demuxer Decoder

Figure 7. Possible design for a Merge process, which combines twao otpats.

~"' Requests for first half

CT.MM.SEEKABLE

— .+ Requests for second half

2. Streaming — P.MM

At the heart of the framework is a single stream protacolM (Protocol MultiMedia), which
carries video and audio along with untyped “packet” data emshimands using a “push”
data flow model. The majority of the data elements are detlerabile [16]. If mobile data
types were not used then data would need to be copied betweanunicating processes —
highly inefficient for video, where the data-rate will typlty exceed 20MB/sec (for standard-
definition broadcast video). Using mobile data types, theelpe of processes can be ex-
tended with no significant decrease in performance.

PROTOCOL P.MM
CASE
init; MOBILE TRACK.INFO; MOBILE [IBYTE
packet; TID; MOBILE PKT.HDR; MOBILE []R.DESC; MOBILE []BYTE
video; TID; MOBILE VF.DESC; MOBILE []BYTE
audio; TID; MOBILE AF.DESC; MOBILE []BYTE
flush

purge
skip
end

init signals the start of a stream.

packet carries untyped media frames, typically compressed videmdio.

video carries a single video frame.

audio carries an audio frame of variable length.

flush instructs the receiver to output all ready buffers, thewéod the flush command. This
is necessary for the ideas presented in sections 3.4 and 1.

purge instructs the receiver to clear its internal state withaererating any output, and to
prepare for new data. The purge command is forwarded whemetegéver is ready for
new input. Like flush, this is used in sections 3.4 and 1.

skip instructs the receiver to do nothing. Unlike flush and putge not forwarded. This
command is used to build zero-place buffers (see sectign 3.5

C.G. Ritson et al. / Video Processingdacam-Tt 317

end indicates the end of the stream; no data will follow. Thisyides a form of graceful
termination [18]. On receipt the receiver should termirgter outputting any ready
buffers (like a flush) and propagating the end message, suitlesrestartable (such as
pluggable.stream. input.end in section 5).

2.1. P.MM Usage Contract

There is as yet no language syntax for the specification ofhwanncation contracts in the
occam-ttlanguage. For readability we have chosen to use a regulaessipn syntax for the
contracts presented here. Hoare’s CSP or a derivative sutthatiused in Singularity [19]
could also have been used.

The expected sequence of messages on a chanpealwis as follows:

skip*
(init
(packet|video|audio|flush|purge|skip)*
)7

end

In summary, this means that the only certain event is the étldecstream, which can
happen without prior initialisation. Thekip command is permitted before initialisation to
aid in the creation of zero-place buffers (see section 3.5).

Additionally, it is assumed there will not be a one-to-oneppiag between input and
output for processes implementiRgMM — a process may buffer as much or as little data as
needed while maintaining FIFO ordering. The effect of tkighat after sending amit,
purge Or end message to a process, it must not be assumed that the next mepsage
will be of that type. Video encoders and decoders in pawictgquire this form of internal
buffering.

2.2. Timing—TID

Each elementary type (packet, video, audio) is associateda®ID data structure (Temporal
IDentifier). A TID structure describes the position of a packet or frame withéntimeline
of the stream. This is done via the timecode field which is dsebdin nanoseconds from a
fixed point, typically the beginning of the stream. Nanosetsoare employed to allow the
framework to manipulate data from Matroska [20] files withtass of timing resolution;
however, microseconds would be sufficient for most presesdianformats. A duration in
milliseconds is also stored, although this has limited uses

DATA TYPE TID
PACKED RECORD
INT64 timecode:
INT duration:

Traditionally multimedia systems identify frames by theumber in sequence from the
beginning of the stream, or using SMPTE timecodes [21,22¢kvbombine time and frame
number offsets. This means that a stream is expected to hiaxedanumber of frames per
unit time. In contrast, the framework presented here ifiestframes purely based on time.
There are three significant reasons for this:

1. When combining different streams together, it is moreieffit to have a single com-
mon timeline to work with, rather than many sets of sample Ibemand rate pairs

318 C.G. Ritson et al. / Video Processingdacam-Tt

which must be normalised. Although at first this normal@aseems trivial, without
timecode-based identification there is no way to syncheoarsl temporally manip-
ulate streams without first knowing their respective samgies — limiting the ways
in which a system can dynamically adapt to new streams.

2. Any fixed sample rate system can be represented in a puredgdde-based system,
assuming the timecodes have sufficient resolution and range

3. Atimecode-based system can represent streams witlbleasample rates (discussed
in the following subsection).

2.3. Aside on Variable-Frame-Rate Video

Although variable sample rate audio is uncommon, mixed é&agte video content is already
in widespread circulation. In the production of NTSC tessen content and DVDs, it is com-
mon to use “pulldown” techniques to combine source matefidifferent frame rates (typi-
cally 23.976fps for content that originated on film, and Z0#s for content that originated
on video). These mixed content streams can be representexlancurately in the digital
domain by using a higher frame rate which is a common multpbdl the source rates (typ-
ically 119.880fps), and introducing “drop frames” where asiual frame data exists. This
technique is, however, only applicable where there is a@oient common multiple between
the frame rates.

An alternative is to convert the frame rates of the sourceernas; however, this conver-
sion often introduces visible artefacts. Changing the &aate of video can trivially be done
by dropping or duplicating existing frames, but this cayselsy motion; to avoid this, it is
necessary to synthesise new frames by estimating the maiftmjects in the video images.
Techniques to do this exist, but they are computationally expensive and do not work
well on “noisy” video.

A better option is to do away with the need for fixed frame radesl just tag each frame
with its corresponding time — this igriable frame rat€VFR) video. VFR avoids the need
for resampling entirely, and allows the entire informateamtent of the original video to be
preserved.

VFR allows the time and rate of change to be free of quantisaModern compressed
video formats are based around coding change — there is nibtoemde a new frame if
nothing has changed. This is typically dealt with using drames, so a staticimage becomes
a constant stream of “no change” messages. With VFR, therddwme no output at all,
offering potential bandwidth and disk space savings. Visisgnes requiring smooth motion
can have high rates of change, and other scenes lower ratdse Atream is not quantised, the
actual changes can be placed at the most visually pleasintgpotime, allowing acceptably
smooth motion at lower data rates.

While existing output devices operate at a fixed frame ratajem LCD displays are
capable of running at rates far in excess of the capturedfatieange in progressive video.
This gives good scope for coding motion in a more visuallyapieg way with less frames.
It seems likely that future display devices will allow thepliay to be updated upon demand;
they will be able to display VFR content without quantisatio

We feel that VFR has clear advantages over conventionalt@atiame-rate video.
Sample rates themselves result from the need to interfatte amalogue electronics, and
as the world moves toward purely digital production andwdeli of media content (high-
definition television, TV over the Internet and digital etedend mastering), it is our ex-
pectation that variable frame rate material will becomedfaadard. (It is worth noting that
Internet streaming protocols are already beginning to supfFR content [23,24].)

C.G. Ritson et al. / Video Processingdacam-Tt 319
2.4. Flexibility — TRACK.INFO

The TRACK.INFO data structure is heavily based on the “Track” descriptothi@ Ma-
troska [20] media container format. The Matroska formatdsigned to be able to hold an
arbitrary number of media tracks of any type, and thus pexichuch of the inspiration for
our framework’s track-handling capabilities. Earliersiens of theTRACK . INFO were almost
exact mirrors of the equivalent Matroska structure; howedte design has now been refined.
The TRACK element of the name of this structure is itself a MatroskadggSTREAM would

be equally suitable.

3. Interactivity — P.MM.CTL/SEEKABLE

The following protocols act as a request/response pairsede the commands in the stream
P.MM protocol to provide interactive facilities through a “guthodel. This pull model sac-
rifices full parallel processing; only a single request isstanding at a given time. It is in-
tended for interactive applications where filling the pipelwith data is undesirable (due to
the increase in end-to-end latency that results). Présudiiér processes can be added to keep
the pipeline full and restore parallel processing, if sareels

3.1. Feedback - P.MM.CTL

P.MM.CTL is the request protocol. The process “pulling” data sendsgesrequest and waits
for a response.

PROTOCOL P.MM.CTL
CASE
init
next
seek; INT; INT64

purge
end

init requests th&@RACK. INFO structure and setup data for the track.

next requests the logically next packet, video or audio framééstream.

seekrequests that the stream be repositioned to a new timecddiénttbe INT64. The INT
value is a constant describing how to handle cases wherexdoe tinecode requested
can not be reached, which is almost inevitable. If SSHEK . CLOSEST then the closest
match will be pickedSEEK . BACKWARD requests the closest point not after the specified
timecode, an®@EEK . FORWARD the closest point not before the specified timecode. In a
typical video playerSEEK . BACKWARD will be used for rewind, andEEK . FORWARD for
fast-forward, in order to give the behaviour that a user @@xpect.

purge requests that the process clear all internal buffers. Tégsest does not generate a
response and is simply propagated to the preceding process.

end requests that the process terminate, and that it requestthe of its preceding pro-
cesses. Like purge, this does not generate a response.

320 C.G. Ritson et al. / Video Processingdacam-Tt

3.2. Simplified P.MM — P.MM.SEEKABLE

P.MM.SEEKABLE is a simplifiedP.MM which carries responses. The data messages, packet,
video and audio have the same meaning as MM.

PROTOCOL P.MM.SEEKABLE

CASE
init; MOBILE TRACK.INFO; MOBILE []BYTE
packet; TID; MOBILE PKT.HDR; MOBILE []R.DESC; MOBILE []BYTE
video; TID; MOBILE VF.DESC; MOBILE []IBYTE
audio; TID; MOBILE AF.DESC; MOBILE []BYTE
seeked; INT64
end

init no longer represents the start of stream; it simply desstibe properties of the track
and is the response to an init request.

seekedis sent in response to a seek request, and carries the timetdtle new stream
position.

end means the end of the stream has been reached, but does watérttiat the component
has terminated.

3.3. P.MM.CTL/SEEKABLE Usage Contract

The expected sequence of requests 8nMi . CTL channel is as follows:
(init|next|seek|purge)* end
With the following request-response pattern:
init => (init | end)
next => (packet | video | audio | end)
seek => (seeked | end)

purge => ()
end => ()

3.4. Encapsulation

The P.MM andP.MM.CTL/SEEKABLE protocols were carefully designed to permit the con-
struction of a wrapper arouril MM processes which present® aMM.CTL/SEEKABLE inter-
face:seekable.wrapper (Figure 8).

|

|

| P.MM

| | zero.place.buffer L S
I Y Process
| P.MM

|

|

|

BOOL P.MM

P.MM.CTL/SEEKABLE |P.MM.CTL/SEEKABLE
<—|H seekable.wrapper F—v—’

.- ___ I

Figure 8. Process network for the seekable.wrapper.

1. At startup the wrapper requests anit message and other data from the preceding
process, and feeds it to the wrapped process untihan message is produced. This
init message is stored and used to respondntct requests from the successor
process.

C.G. Ritson et al. / Video Processingdacam-Tt 321

2. On anext request the wrapper makesxt requests to the preceding process, feeding
data to the wrapped process until output is produced. Theubid forwarded to the
successor. If arnd response is encountered from the preceding process then the
wrapped process is senf aush message which causes it to output any available data.
Should the wrapper receivefaush message from the wrapped process, it returns
end to the successor.

3. On aseek request, the wrapped process is seniwge. The wrapper waits fosurge
to be emitted by the wrapped process, discarding any intergeutput. At the same
time, theseek request is forwarded to the preceding process, and its mespie-
turned to the successor when the purge of the wrapped priscessiplete. This al-
lows the successor to assume the process is ready for a nemamirimmediately
following a response. It should however be noted the perdoice impact of this de-
sign has not been explored.

A purge request is handled much likeek without any response to the successor.

Anend requestis forwarded to the preceding process and sentwrépped process.

Once the wrapped process outpetis, then the wrapper terminates. This is the only

point at which the wrapped process will receivesad message.

ok

3.5. The zero.place.buffer

The seekable wrapper, along with many other processes ifradheework, makes use of
the zero.place.buffer process. It is a variant of the standasdcam “requester” or
“prompter” design pattern, using t&ip message of the.MM protocol to poll a process’s
ability to accept input. If a process acceptskdp message, it is “immediately” ready to
accept any other command. Hence, #eeo .place.buffer uses an explicit protocol com-
mand to interrogate a process rather than simply reportimgnvhe process has accepted an
already buffered message. A traditional “requester” vaiiart when its (typically one-place)
buffer is ready to be filled, whereas thero.place.buffer reports when the process to
which it is connected is ready. Tlero.place.buffer is named for this lack of buffering.

4. Dynamism and Reconnectivity — CT.1I0.CTL

While a multimedia system may be statically configured at mitertime, it is often more
useful to be able to dynamically reconnect its componenis issunning. The following
protocols provide a means to interrogate a component ps@d&sut its connectivity, and to
“plug” and “unplug” channel ends to create connections leetwprocesses at runtime. To
facilitate this, & .MM channel is placed in €T .MM mobile record, and a pair 6f. MM. CTL and
P.MM. SEEKABLE channels are placed inC& .MM. SEEKABLE channel type [17]. This method
of building channel ends is a result of the design ofdbheam-Tttype system.

This dynamism allows the construction of very flexible filuh processes. Until a file
has been opened and its header parsed, it is not known whks itgprovides and their de-
tails; with these features, the tracks to be used can betedlatruntime, and an appropriate
process network automatically constructed. While it wdadpossible to provide file input
processes with fixed sets of channel parameters which asfieshit runtime (these existed
in earlier versions of the framework), it is more convenienimplement these on top of this
generic architecture.

Processes implementing this interface are expected t@tpir two modes, “started”
and “stopped”. A stopped process can have its connectivitgriogated and changed,
whereas a started process can only be queried about its matigpped. It is expected that
processes initially start in the stopped mode, as theirectivity is undefined.

322 C.G. Ritson et al. / Video Processingdacam-Tt
4.1. PIO.CTL.RQ

P.I0.CTL.RQ is the request component of the protocol.

PROTOCOL P.IO.CTL.RQ
CASE

inputs
outputs
start
stop
status
end
plug.mm.i; INT64; CT.MM?
plug.mm.o; INT64; CT.MM!
plug.mms.i; INT64; CT.MM.SEEKABLE!
plug.mms.o; INT64; CT.MM.SEEKABLE?
unplug.i; INT64
unplug.o; INT64

inputs and outputs are used, respectively, to request details of the inputoatpmlts of the
process.

start and stop are used to change the mode of the process.

status queries the present mode of the process.

end closes down th&0.CTL interface; the process will terminate whelh of its connected
streams terminate.

plug.* andunplug.* messages are used to plug and unplug channel ends, witlhNThe
specifying the track number.

4.2. P.IO.CTL.RE

P.I0.CTL.RE is the response component.

PROTOCOL P.IO.CTL.RE
CASE
inputs; MOBILE []JINT; MOBILE []BOOL; MOBILE []JTRACK.INFO
outputs; MOBILE []INT; MOBILE []1BOOL; MOBILE []TRACK.INFO

plugged

started

stopped

error; INT

unplugged.mm.i; INT; CT.MM?
unplugged.mm.o; INT; CT.MM!
unplugged.mms.i; INT; CT.MM.SEEKABLE!
unplugged.mms.o; INT; CT.MM.SEEKABLE?

inputs and outputs return information describing the input and output convégtof the
process.

[JINT is an array of flags detailing the types of connections (streaseekable), and
whether a given connection must be plugged before the psaraas be started.
For a process which filters data rather than originatindhé,ihputs and outputs
will need to be plugged before the process can be started.

[1BOOL is an array of flags indicating whether a connection is pldggeunplugged.
This is separate from the other flags as it changes duringtpey where as the
others typically do not.

C.G. Ritson et al. / Video Processingdacam-Tt 323

[JTRACK. INFO is an array of the details of each connection. For inputswtiligypi-
cally be a partial specification. An exact specification ovimputs the process
will handle is not usually known in advance as most procesapport various
data formats. The framework currently supports only a sarfptrm of partial
specifications: unspecified values are given as zero.

plugged indicates a plug request was successful.

started andstoppedindicate that the process has either started or stopped.

error indicates an error occurred during a start, stop, unpluguerygof inputs or outputs.
The INT value is a constant representing the reason for the error.

unplug.* messages are the response to a successful unplug requasymsuccessful plug
request. The latter is required to prevent loss of the cHasm which could not be
plugged, in which case tHeNT value indicates why the plug failed.

It is anticipated that a process should check that inputscamouts being plugged are
compatible. This is not done in the framework at present @svidrification, like the partial
specification of track types, is beyond the scope of thisarede Ideally the specifications
of outputs should be updated as inputs are plugged; howeigwould require sending and
receiving from the inputs, which is forbidden when the psxcis stopped and would likely
block as the other end may also be stopped. This might pathnltie solved using a two
phase system of input plugging followed by output plugging.

There is also a problem with the stopped and started modepesition in that they
introduce the possibility of deadlock. If we stop a procesw® Avhich another process B is
attempting to communicate, then attempt to stop B, we ashlito deadlock as B may be
blocked trying to communicate with A. This problem can beided by stopping processes
in the same direction as the flow of data FaMM, or the flow of requests fdr.MM. CTL. It is,
however, undesirable to have a system in which a sequenbeasubis must be adhered to,
as it degrades the parallelism and is prone to implemenntatiwr.

One possible solution to the ordering and type checkinglprobwould be to have a ne-
gotiation phase between the processes being connectedsandmkected when connections
are plugged and unplugged. This would allow both ends of aection to know the state of
the other end and thus not initiate communication while i$ Wesconnected. Type negotia-
tion would occur during the connection phase. This modelldvadd a significant degree of
complexity which we would rather avoid.

Further work is required to establish a simpler and saferehfmif reconnectivity than
the one presented here, and to establish if wrappers likeeibleable wrapper can be created
for it.

5. dvplug — Digital Video Hot-plugging

The dvplug application (Figure 9) is a demonstration of tdigvideo input, an encoding
process, and the reconnectivity components of the framewtaesponds both to user input
and external events and demonstrates a possible real vpplidation for the reconnectivity
within the framework.

In the initial network, a clockedest.card source is wired through the control pro-
cess tecord.ctl) to the output. Adv1394.plug.detector process watches for new de-
vices being connected to the host’'s IEEE1394 [25] bus, apdrte their presence to the
player.spawner.

On connection of a DV [26] device (such as a video cameraplhger . spawner forks
a set of processes to take input from the new device, decaahel itemove the audio stream.
Using theCT.I0.CTL protocol, it stops theluggable.stream.input.end, disconnects

324 C.G. Ritson et al. / Video Processingdacam-Tt

l CT.USER.CMD

cTm output.
. CT.MM)

. pluggable.stream.input.end H record.ctl y device.

3
CT.I0.CTL]
Tttt CT.STATUS
H ' \ J

dv.input status.tap I R -
|: : xvid.recorder !

M : E CT.MM 3

H ' v id H

cTMM | H - xvid.]

: 1 | sanitise.timecodes o :

! CT.STATUS | AL p

" 1 '

complex.to.av H]

dv1394.

CT.MM

...

stream.
decoder

~
>~ < FORK
~

~ CT.STATUS
~

‘ dv1394.plug.detector player.spawner

Figure 9. Process network for the dvplug application.

the test.card source from it and plugs in the new device’s network. It thestarts the
pluggable.stream. input.end and stores theest . card source channel end for later use.

While the DV input network is connected, theayer . spawner ignores any messages
about new devices. Using status.tap (see section 6), it detects when the stream from
the DV input network terminateg{uggable.stream. input.end does not propagate end
messages). When such termination occurgthger . spawner disconnects the channel end
for the terminated DV input network and reconnects thet . card source. Then after re-
starting the network it returns to monitoring events fromdh1394 . plug.detector.

In parallel to this, therecord. ct1 process responds to record commands from the user,
and transfers data from thuggable.stream. input.end to the output. On receipt of a
record command, it forks a recording network, and startyiogpany received messages to it
in addition to the regular output. When the user requestetldeof recording, the recording
network is sent an end message, and the channel end to icediesl.

6. Status Reporting Backend

Every distinct component developed for the framework ta@&HRED CT.STATUS! channel
end as a parameter. This provides a means for processesputt debugging information,
errors and other events in a safe and uniform manner. Thenehand is manipulated using
a set of ‘status.” prefixed processes.

The status backend is implemented as a automatically ggoiWiway tree. Node cre-
ation requests are passed to the root which forks off thestewus . node processes before
passing connections to them back up the tree where they ared'm”. As messages pass
down the tree to the root, they pick up the tags of all the neéldeg pass through. By feeding
the output of the root to a terminal it is easy to monitor theaesion of the application net-
work (particularly ifstatus . debug calls are well placed). An example network instantiation
is shown in Figure 10.

Another method for implementing a similar backend woulddoede a flat structure with
a root process which grows and shrinks an array of channa aschodes are created and
destroyed. However such an approach would be inefficientesudt of resizing andLTing
over the root array. It would also not be able to tag message$ree fashion as the presented
implementation does, and would complicate process-toga®monitoring.

Other than user monitoring of the application, the statusiokk can be used by pro-
cesses within the network to monitor each other. This is dgn@sertingstatus . tap pro-
cesses which copy, to an extra channel, a given subset ofdbsages passing through them.

C.G. Ritson et al. / Video Processingdacam-Tt 325

event event

component @—»O-» status.tap > component

component

...... tagged error message

component

component

component

component @————. '

SHARED CT.STATUS!

Figure 10. Example instantiation of the status backend.

This mechanism is used in the dvplug application (see sebjito detect termination of DV
input networks, using ar0S event.

At present the tags within the backend are the strings passethtus . startup; this
could lead to name collisions in large networks. Howevestastus .node forking is done
at the root, there should be no problem allocating each nashégaie number as it is forked.
This could be used in place of or in addition to the textual eanan area for improvement
in future versions of the framework.

7. Conclusions and Future Work

7.1. Benchmarks

Preliminary profiling of theoccam-Tt Video Player (section 1) using a kernel-based pro-
filer [27] suggests that the framework presents no signifioxerhead. Framework code,
“ovp” in table 1, accounts for only 5% of execution time of thecam-1t Video Player. The
remainder is spent in external libraries, decoding (“lix@lec”) and copying data (“libc”).

Component CPU samples % CPU time
libavcodec.s0.51.5.0 167526 77.4733
libc-2.3.5.s0 35507 16.4204
ovp 11264 5.2091
libpthread-0.10.s0 1461 0.6756
libX11.50.6.2 160 0.0740
Id-2.3.5.s0 153 0.0708
libXv.s0.1.0 139 0.0643
libXext.s0.6.4 26 0.0120
libfaad.s0.0.0.0 1 4.6e-04

Table 1. Profiling data for thedccam-1tVideo Player (ovp).

Table 2 shows the profiling data obtained from MPlayer [3,28)opular open-source
video player. As the results show, the number of CPU cycled bg the framework is directly
comparable to that used by MPlayer’s core.

326 C.G. Ritson et al. / Video Processingdacam-Tt

Component CPU samples % CPU time
libavcodec.s0.51.5.0 156290 91.0818
mplayer 11382 6.6331
libc-2.3.5.s0 2182 1.2716
Id-2.3.5.s0 1044 0.6084
libpthread-0.10.s0 379 0.2209
libX11.s0.6.2 203 0.1183
libXv.s0.1.0 60 0.0350
libXext.s0.6.4 47 0.0274
libXcursor.s0.1.0.2 3 0.0017
libdl-2.3.5.s0 1 5.8e-04
libICE.s0.6.3 1 5.8e-04
libfreetype.s0.6.3.7 1 5.8e-04

Table 2. Profiling data for MPlayer.

The two differ in that MPlayer is able to decode compresseaticaand video directly
into its output buffers, whereas ovp must do a single copyaifmn at output time which
accounts for 15% of its execution time (“libc” in table 1).i$lis a limitation of the current
implementation, and could be solved by providing a mecmarigs buffer recycling.

7.2. Future Work

As the value of any particular framework lies in the functbty it provides, one clear expan-
sion of this work would be to develop more software compasefite present framework is
lacking any significant filtering components, so adding $emwideo operations (crop, scale,
merge, split) would be a logical next step. Following thigvduld be interesting to explore
writing spatial and temporal noise reduction filters, ughmgpccam-mtlanguage, as these are
common operations in broadcast systems and could take tadpaof internal parallelism.

For video surveillance applications, it would be usefultoyide processes for monitor-
ing sets of video streams and reporting changes. Procektges kind could also be used in
the control of robots and other embedded devices.

Extending the input and output capabilities of the framdwsralso an interesting area;
in particular, replacing the C components of the . input andmkv. input processes with
occam-Tt. These components were largely written in C as the languagéétter facilities
for handling complex data structures than the presenam-1. However, an attempt at an
occam-ttimplementation could inform the future development of tieguage’s data struc-
ture facilities.

One area left largely unsolved in the present frameworkgiers safe reconnectivity.
Reconnections need to be made both type-safe (in a highdemse, ensuring data formats
are the same) and deadlock-free. Although this safety ignatanteed for static networks,
the issue is mitigated by runtime checks. These are insefificvhen a component’s input
can potentially change format mid-stream (as a result ofameection).

Deadlock is possible in the current reconnectivity moderdcesses are not stopped in
the correct order (in the direction of data flow). This is noissue in small networks where a
single process is controlling the reconnection, but ingdasystem many different processes
may be modifying the network in parallel, in which case thaesing rules cannot easily be
enforced.

In order to maintain the simplicity of the framework’s presenterfaces, we feel that
reconnectivity will best be implemented using wrapper peses, concealing the inherent
complexity from component developers.

C.G. Ritson et al. / Video Processingdacam-Tt 327

It would also be desirable to provide a scripting languagetie specification of net-
works of filters (as AviSynth [1] does) and a tool for editingch networks in real-time (like
GraphEdit [29]), both of which might build on ideas presente[30].

A final area for future development is error handling. Thefesvork at present attempts
to conceal and suppress errors: an error will typically eaasmination of a filter or conver-
sion of it to a null filter which does nothing. This is an unsttctory state of affairs for broad-
cast applications; the framework should instead be ablet®ct errors by allowing failed
components to be replaced on-the-fly. One possibility isxaegtion-like model, where the
failed process emits an exception message providing iseptestate (channel ends, track in-
formation, etc.). A control process would handle the exioapimake any changes required,
then invoke a replacement process using the provided sifat@riation.

7.3. Final Remarks

We have explored, for the first time, the use of thbeam-1tlanguage’s unique concurrency
features for building a video processing framework andiappbns.

Multimedia systems must present a concurrent interfacéea¢al world, and hence
require some degree of internal concurrency. In systemsoleed using traditional methods,
concurrency must often be simulated by explicit schedulimgpccam-1t, concurrency can
be expressed directly using language constructs.

occam-Tts language features allow us to structure highly-coneunpeograms such that
they can be easily understood. Such programs can take fwdindéage of the concurrency
features of modern processing hardware, and their safefyepies can be reasoned about
using formal methods.

We have demonstrated that our framework has comparableafficto multimedia sys-
tems developed in C using traditional, non-concurrent wath This is the result of using
occam-1ts mobile data types, which allow safe, zero-copy data exghaetween concur-
rent processes.

We have described a process-oriented approach to the wgoiistr of reconfigurable
components usingccam-1ts mobile channel types. These components may be dynasicall
reconnected at runtime with minimal disruption to the réghe system.

To conclude, we have shown thatcam-1t and process-oriented techniques offer sev-
eral advantages to developers of multimedia systems whethingpreference to traditional
languages and design methods.

References

[1] AviSynth. Open source, scripted, video post-produttmol. URL:http://www.avisynth.org/.
[2] VirtualDub. Open source video capture/processingtutfbr 32-bit Windows platforms. URLhttp:
//www.virtualdub.org/.
[3] MPlayer. Open source multi-platform movie player. URIttp: //www.mplayerhq.hu/.
[4] Video LAN Client. Open source cross-platform media @ayJRL:http://www.videolan.org/.
[5] Microsoft. DirectShow. URL: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/directshow/htm/directshow.asp.
[6] BBC. Kamaelia. Open source concurrent Python baseditagith multimedia components. URIkttp:
//kamaelia.sourceforge.net/Home.
[7] GStreamer. Open source multi-media framework. URLtp: //www.gstreamer.net/.
[8] GLib. C utility library and object system. URILittp: //www.gtk.org/.
[9] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN: 0-13-153271-
5.
[10] A.W. Roscoe.The Theory and Practice of Concurrendyrentice Hall, 1997. ISBN: 0-13-674409-5.
[11] R. Milner. Communicating and Mobile Systems: the Pi-Calcul@ambridge University Press, 1999.
ISBN-10: 0521658691, ISBN-13: 9780521658690.

328 C.G. Ritson et al. / Video Processingdacam-Tt

[12] P.H. Welch, G.R.R. Justo, and C.J. Willcock. HighertleParadigms for Deadlock-Free High-
Performance Systems. In R. Grebe, J. Hektor, S.C. HiltolR.Mane, and P.H. Welch, editoi®ans-
puter Applications and Systems '93, Proceedings of the Y&8® Transputer Congresgolume 2, pages
981-1004, Aachen, Germany, September 1993. |I0S PressiiNettis. ISBN 90-5199-140-1. See also:
http://www.cs.kent.ac.uk/pubs/1993/279.

[13] Inmos Limited.The Transputer Databook (2nd Editiomymos Limited, 1989. INMOS document number:
72 TRN 203 01.

[14] Tony King. Pandora: An Experiment in Distributed Mutédia. Comp. Graph. Forum11(3):23-34,
1992.

[15] David May and Henk L. Muller. Using Channels for Multisia Communication. Technical report,
University of Bristol, Department of Computer Science, fegtny 1998.

[16] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic &lition and Zero Aliasing: aoccam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller,jids, Communicating Process Architec-
tures 2001volume 59 ofConcurrent Systems Engineerjmgges 243—-264, Amsterdam, The Netherlands,
September 2001. WoTUG, 10S Press. ISBN: 1-58603-202-X.

[17] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Caumitating Processes: Part |. In James Pascoe,
Peter Welch, Roger Loader, and Vaidy Sunderam, edi@osymunicating Process Architectures 2002
WoTUG-25, Concurrent Systems Engineering, pages 33143&@LPress, Amsterdam, The Netherlands,
September 2002. ISBN: 1-58603-268-2.

[18] P.H. Welch. Graceful Termination — Graceful ResettimgApplying Transputer-Based Parallel Machines,
Proceedings of OUG 1(ages 310-317, Enschede, Netherlands, April 1989. Occsan Group, 10S
Press, Netherlands. ISBN 90 5199 007 3.

[19] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hud.R. Larus, and S. Levi. Language support
for Fast and Reliable Message-based Communication in &intyuOS. InProceedings of EuroSys 2006
Leuven, Belgium, April 2006. URLattp://wuw.cs.kuleuven.ac.be/conference/EuroSys2006/
papers/pl77-fahndrich.pdf.

[20] Matroska. Extensible open standard audio and videtadoer format. URLhttp://www.matroska.
org/.

[21] American National Standards Institute. ANSI/SMPTEVE2986, “Television - Time and Control Code -
Video and Audio Tape for 525-Line/60-Field Systems”, Japu®86.

[22] Society of Motion Picture and Television Engineers. SME 12M-1999, “Television, Audio and Film -
Time and Control Code”, 1999.

[23] David Singer. Associating SMPTE time-codes with RTReains, January 2006. A mecha-
nism for associating SMPTE time-codes with media streamsa iway that is independent of the
RTP payload format of the media stream itself. URlt:tp: //www3.ietf.org/internet-drafts/
draft-ietf-avt-smpte-rtp-01.txt.

[24] Colin Perkins and Stephan Wenger. RTP Timestamp Fregyudfor Variable Rate Audio
Codecs, October 2004. IETF memo discussing the problems udfioacodecs with vari-
able external sampling rates. URL:http://www3.ietf.org/proceedings/05mar/IDs/
draft-ietf-avt-variable-rate-audio-00.txt.

[25] IEEE. Std. 1394-1995 - IEEE standard for a high perfarogeserial bus, August 1996. ISBN: 1-55937-
583-3.

[26] Society of Motion Picture and Television Engineers. BSME 314M-1999, “Television - Data Structure
for DV-Based Audio, Data and Compressed Video - 25 and 50Vbg99.

[27] OProfile. A system-wide profiler for Linux systems. URIttp://oprofile.sourceforge.net/.

[28] TUX Magazine. TUX 2005 Readers’ Choice Award WinnerRIlU http://www.tuxmagazine.com/
node/1000151.

[29] Microsoft. GraphEdit. DirectX SDK tool for creating dndebugging filter graphs. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directshow/htm/
simulatinggraphbuildingwithgraphedit.asp.

[30] D.J. Beckett and P.H. Welch. A Strict occam Design TdolC.R. Jesshope and A. Shafarenko, editors,
Proceedings of UK Parallel '9gpages 53—-69. Springer-Verlag, July 1996. ISBN: 3-5406860.

C.G. Ritson et al. / Video Processingdacam-Tt 329

A. Diagram Notation

Data Input, Output
or Manipulation Process

Control, Data Transport

Process or Buffer Process

Protocol Unidirectional

Connectivity

Channel Type Client-Server
Connectivity

Process Process

O Process Shared Channel End

7759'{57 > Child Process Spawning

Description

Process Process Communication

i | Subprocess Process ;

Name :
Subprocess

Process Expanded to
Show Internal Network

