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Abstract. Theoccam-π language provides many novel features for concurrent soft-
ware development. This paper describes a video processing framework that explores
the use of these features for multimedia applications. Processes are used to encap-
sulate operations on video and audio streams; mobile data types are used to transfer
data between them efficiently, and mobile channels allow theprocess network to be
dynamically reconfigured at runtime. We present demonstration applications includ-
ing an interactive video player. Preliminary benchmarks show that the framework has
comparable overhead to multimedia systems programmed using traditional methods.
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Introduction

This paper describes a video processing framework written in theoccam-π language. Its
design derives from the primary author’s experiences developing for and using a number
of open source video processing tools [1,2] and applications [3,4]. This work shows that
not only isoccam-π suitable for developing whole multimedia applications, but also offers
advantages for the development of individual multimedia software components.

A video processing framework, or more generally a multimedia framework, is an API
which facilitates the interaction and transfer of data between multimedia-handling software
components. Almost all video processing systems are constructed within such frameworks,
with distinct software components composed into pipelinesor layers.

Software components with standardised interfaces can easily be modelled using object-
oriented techniques, and as a consequence most existing frameworks are written in an object-
oriented style. AviSynth [1] (C++), the DirectShow Filter Graph [5] (C++), Kamaelia [6]
(Python) and GStreamer [7] (C/GLib [8]) are examples of this.

Communication between components is implemented either bydirect calls to object
(component) methods [1], or by interaction with buffers [5,7] (often called pins or pads)
between components. The second approach can be directly parallelised, whereas the first
requires the addition of buffers between parallel components. The method call model, without
parallelism, is often preferred for interactive applications. Here a control component pushes
or pulls data to or from the user, as it is easier to reason about the data currently being
presented.

Neither of these approaches simplifies the design process, particularly in the presence of
parallelism. For example, in order to create a circular ringof filters using method calls, one
component must act as the initiator to avoid the system descending into infinite recursion. It
is often difficult to reason about the correctness of systemsproduced using such methods.

The occam-π language, with semantics based on Hoare’s CSP [9,10] and Milner’s π-
calculus [11] process algebras, offers a number of featureswhich can be used to overcome
these problems:
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• The language’s formal basis makes it possible to reason about the behaviour of con-
current processes and their interactions: for example, design patterns exist which guar-
antee freedom from deadlock [12].

• Mobile data types allow concurrent processes to safely and efficiently pass data
around by reference, whilst avoiding race-hazard and aliasing errors.

• Mobile channel ends and dynamic process creation facilities allow networks of pro-
cesses to be constructed, modified and destroyed at runtime.

The transputer processor [13], for which theoccam language was originally developed,
has previously been used for multimedia [14], andoccam-like languages have been de-
veloped which allow the dynamic specification of multimediasystems [15]. However, such
research predates theoccam-π language and thus cannot take advantage of its new fea-
tures [16,17] —occam-π’s potential in this area is as yet unexplored.

The framework presented in this paper usesoccam channels, grouped intooccam-π
channel types, to provide a standardised interface betweencomponents. Mobile data provides
for efficient communication within the system, and mobile channel ends allow those systems
to be reconfigured dynamically at run-time. The resulting process networks are similar to
the models of traditional video processing systems, but have an implementation that more
closely resembles the design.

Section 1 explores the development of anoccam-π video player, looking at both ‘push’
and ‘pull’ modes of operation. Sections 2 and 3 examine the protocols and connectivity in
detail. Issues of dynamic network reconfiguration are discussed in section 4, followed by an
example application in section 5. Section 6 discusses the handling of status reporting in such
dynamic networks. Initial conclusions and a discussion of future work are given in section 7.

1. ovp – Theoccam-π Video Player

This section explores the development of theoccam-π video player, ovp, in order to give
an insight into ideas underpinning the framework to be presented in the rest of the paper.
Readers with a particular interest in the framework’s implementation details may wish to skip
ahead to section 2.

1.1. Basic Player

A basic video player needs to process and output two tracks ofdata (audio and video) concur-
rently. In order to achieve this we could use the process network shown in Figure 1. The spe-
cific decoder and output types can be inferred from the initial setup,init, messages which
propagate through the network. The network post-init messages might look like Figure 2.
This is in effect a form of runtime typing, and as such there isno guarantee that the given
network of components will function together; section 7.2 discusses this further.

Data will flow through the network as the output processes consume it (at a rate depen-
dent on timecodes embedded in the data flow). The network willact as a pipeline, with the de-
coders running in parallel with the output processes. This will continue until anend message
is received, which will flush and shut down the network. This gives us linear playback.

1.2. User Control

A more general video player will have user control in the formof non-linear playback con-
trols and pausing. For this we need to modify the network; an initial solution is presented in
Figure 3. The “User Control” process repositions the input file in response to user seek re-
quests. The purpose of the “Flow Control” processes is less obvious. As the network buffers
data, a pause or change in track position will take time to filter through from the demulti-
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Figure 1. Process network for a simpleoccam-π video player.

Figure 2. Simpleoccam-π video player after init messages have passed through the network.

Figure 3. Process network for a seekableoccam-π video player.

plexer to the outputs. This is not desirable if we want the network to appear responsive to user
input. The flow controls are thus used to drain the input and decoding parts of the network
during a pause or seek, and purge the outputs, meaning the user does not have to wait for the
pipeline to empty before new data is presented.

One significant issue with this design is that it requires thetemporal position of both
streams to be the same after a seek or pause, otherwise there will be skew between them. This
is not something we can guarantee. After a pause we will have introduced a skew proportional
to the size of any output buffers (audio output devices always have buffers). For seeking there
is no guarantee that the resolution of positioning data willbe the same for all tracks. The
timeline resolution of video will typically be several seconds (depending on the frequency of
“key frames” upon which the decoder must synchronise), and audio hundreds of milliseconds
(depending on packet size). Therefore, after a seek, the tracks will most likely be out of sync.
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This problem can be resolved by making two changes:

1. When unpausing or seeking, decide a new position for all streams and distribute this
to the flow controls, which then discard data before the new position.

2. Provide synchronisation facilities in the output processes.

1.3. Output Synchronisation

Figure 4. Breakdown of an output process, showing processes added to aid synchronisation.

In order to support output synchronisation, the output processes are broken down into
three parts, as shown in Figure 4.

The embedded output device process acts in a pass-through manner. The device man-
ager monitors the position of the output device using the timecodes of its output stream and
delays frames appropriately using the clock process. The clock process converts the KRoC
environment’s microsecond timers to nanosecond timecodes. Given the KRoC environment’s
nanosecond communication times, reading the time via requests to separate processes should
not lead to any significant inaccuracies, although it could be inefficient when used on a large
scale.

The device manager starts in an unsynchronised state, and requests that the clock syn-
chronise when it receives a timecoded message, providing the timecode as the synchronisa-
tion point. On receipt of a purge message, the device managerresets the clock and returns
to an unsynchronised state. Synchronising all the outputs of the network is now done by
synchronising their respective clocks (Figure 5).

Figure 5. Theoccam-π video player, push-based seekable design with synchronised outputs.

Whenever a clock receives a synchronise or reset request, itforwards this to the “Clock
Sync” process. The clock sync process in turn initiates a synchronisation cycle (if one is
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not already running), which resets all other connected clocks. A clock which has been reset
interrupts any pending alarms and refuses to accept new alarm requests until it has been
resynchronised.

Once all clocks are attempting to synchronise and have presented the clock sync process
with the desired timecode, the sync process picks the earliest timecode and associates it
with a point in KRoC environment time. This association is the synchronisation point and is
returned to all the clocks. All clocks thus acquire the same mapping of KRoC timer offset
to timecode. This process is very much like a barrier. In practice the sync process returns a
synchronisation point slightly earlier than that requested, allowing some propagation time.

A synchronisation mechanism similar to this could be extended to work across multiple
distributed hosts, allowing the synchronisation of multiple distributed output devices – a topic
for future research.

1.4. Pull Model

The design ideas so far presented only need employ the framework’s stream protocolP.MM
(see section 2). While these designs do work in practice, they are overly complex; as a side-
effect of the input process driving the network, changes to the flow must be applied in two
places. It makes more sense to have the process receiving user requests drive the network
and hence be able to respond directly to user requests. For this we can use the framework’s
request/response protocolsP.MM.CTL andP.MM.SEEKABLE (see section 3).

Figure 6. Process network for the completeoccam-π video player, based on a pull model.

Figure 6 shows the operating process network for the complete occam-π video player,
built using a request/response model. The “Play Control” process requests data from the
inputs via the decoding pipelines, and passes it to the outputs, which are synchronised as
previously described. The channel between the play controland the clock sync process is
used to inform the clock sync process how many processes should be synchronised (some
tracks may have come to an end and will not need synchronising). The seekable decoders
are simplydecoder processes extended to handleP.MM.CTL/SEEKABLE protocols using the
seekable wrapper described in section 3.4. A flow path existsfrom each output back to the
play control process viaCT.USER.CMD channel bundles. This allows user commands input
via the device, for example from an X11 window, to control playback.

An advantage of this design is that, since input tracks are considered separate streams
and only share the common factor of the play control process,tracks need not come from
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the same source. This means that audio from one file could be combined with video from
another file without a complex backend synchronising the input processes. A “multi-play”
mode in theoccam-π video player uses this feature to play the video from any number of
files simultaneously, synchronised in the same way as a pair of audio and video tracks.

Another advantage of the pull model is that by adding filters which intercept requests and
distribute them over input sources, many separate input files could be arbitrarily combined
into a single track (figure 7). This idea has not yet been implemented.

Figure 7. Possible design for a Merge process, which combines two other inputs.

2. Streaming – P.MM

At the heart of the framework is a single stream protocolP.MM (Protocol MultiMedia), which
carries video and audio along with untyped “packet” data andcommands using a “push”
data flow model. The majority of the data elements are declared mobile [16]. If mobile data
types were not used then data would need to be copied between communicating processes –
highly inefficient for video, where the data-rate will typically exceed 20MB/sec (for standard-
definition broadcast video). Using mobile data types, the pipeline of processes can be ex-
tended with no significant decrease in performance.

PROTOCOL P.MM

CASE

init; MOBILE TRACK.INFO; MOBILE []BYTE

packet; TID; MOBILE PKT.HDR; MOBILE []R.DESC; MOBILE []BYTE

video; TID; MOBILE VF.DESC; MOBILE []BYTE

audio; TID; MOBILE AF.DESC; MOBILE []BYTE

flush

purge

skip

end

:

init signals the start of a stream.
packet carries untyped media frames, typically compressed video or audio.
video carries a single video frame.
audio carries an audio frame of variable length.
flush instructs the receiver to output all ready buffers, then forward the flush command. This

is necessary for the ideas presented in sections 3.4 and 1.
purge instructs the receiver to clear its internal state without generating any output, and to

prepare for new data. The purge command is forwarded when thereceiver is ready for
new input. Like flush, this is used in sections 3.4 and 1.

skip instructs the receiver to do nothing. Unlike flush and purge it is not forwarded. This
command is used to build zero-place buffers (see section 3.5).
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end indicates the end of the stream; no data will follow. This provides a form of graceful
termination [18]. On receipt the receiver should terminateafter outputting any ready
buffers (like a flush) and propagating the end message, unless it is restartable (such as
pluggable.stream.input.end in section 5).

2.1. P.MM Usage Contract

There is as yet no language syntax for the specification of communication contracts in the
occam-π language. For readability we have chosen to use a regular expression syntax for the
contracts presented here. Hoare’s CSP or a derivative such as that used in Singularity [19]
could also have been used.

The expected sequence of messages on a channel ofP.MM is as follows:

skip*

(init

(packet|video|audio|flush|purge|skip)*

)?

end

In summary, this means that the only certain event is the end of the stream, which can
happen without prior initialisation. Theskip command is permitted before initialisation to
aid in the creation of zero-place buffers (see section 3.5).

Additionally, it is assumed there will not be a one-to-one mapping between input and
output for processes implementingP.MM – a process may buffer as much or as little data as
needed while maintaining FIFO ordering. The effect of this is that after sending aninit,
purge or end message to a process, it must not be assumed that the next output message
will be of that type. Video encoders and decoders in particular require this form of internal
buffering.

2.2. Timing – TID

Each elementary type (packet, video, audio) is associated with aTID data structure (Temporal
IDentifier). A TID structure describes the position of a packet or frame withinthe timeline
of the stream. This is done via the timecode field which is an offset in nanoseconds from a
fixed point, typically the beginning of the stream. Nanoseconds are employed to allow the
framework to manipulate data from Matroska [20] files without loss of timing resolution;
however, microseconds would be sufficient for most present media formats. A duration in
milliseconds is also stored, although this has limited uses.

DATA TYPE TID

PACKED RECORD

INT64 timecode:

INT duration:

:

Traditionally multimedia systems identify frames by theirnumber in sequence from the
beginning of the stream, or using SMPTE timecodes [21,22] which combine time and frame
number offsets. This means that a stream is expected to have afixed number of frames per
unit time. In contrast, the framework presented here identifies frames purely based on time.
There are three significant reasons for this:

1. When combining different streams together, it is more efficient to have a single com-
mon timeline to work with, rather than many sets of sample number and rate pairs
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which must be normalised. Although at first this normalisation seems trivial, without
timecode-based identification there is no way to synchronise and temporally manip-
ulate streams without first knowing their respective samplerates – limiting the ways
in which a system can dynamically adapt to new streams.

2. Any fixed sample rate system can be represented in a purely timecode-based system,
assuming the timecodes have sufficient resolution and range.

3. A timecode-based system can represent streams with variable sample rates (discussed
in the following subsection).

2.3. Aside on Variable-Frame-Rate Video

Although variable sample rate audio is uncommon, mixed frame rate video content is already
in widespread circulation. In the production of NTSC television content and DVDs, it is com-
mon to use “pulldown” techniques to combine source materialof different frame rates (typi-
cally 23.976fps for content that originated on film, and 29.970fps for content that originated
on video). These mixed content streams can be represented more accurately in the digital
domain by using a higher frame rate which is a common multipleof all the source rates (typ-
ically 119.880fps), and introducing “drop frames” where noactual frame data exists. This
technique is, however, only applicable where there is a convenient common multiple between
the frame rates.

An alternative is to convert the frame rates of the source materials; however, this conver-
sion often introduces visible artefacts. Changing the frame rate of video can trivially be done
by dropping or duplicating existing frames, but this causesjerky motion; to avoid this, it is
necessary to synthesise new frames by estimating the motionof objects in the video images.
Techniques to do this exist, but they are computationally very expensive and do not work
well on “noisy” video.

A better option is to do away with the need for fixed frame rates, and just tag each frame
with its corresponding time — this isvariable frame rate(VFR) video. VFR avoids the need
for resampling entirely, and allows the entire informationcontent of the original video to be
preserved.

VFR allows the time and rate of change to be free of quantisation. Modern compressed
video formats are based around coding change — there is no need to code a new frame if
nothing has changed. This is typically dealt with using dropframes, so a static image becomes
a constant stream of “no change” messages. With VFR, there would be no output at all,
offering potential bandwidth and disk space savings. Videoscenes requiring smooth motion
can have high rates of change, and other scenes lower rates. As the stream is not quantised, the
actual changes can be placed at the most visually pleasing points in time, allowing acceptably
smooth motion at lower data rates.

While existing output devices operate at a fixed frame rate, modern LCD displays are
capable of running at rates far in excess of the captured rateof change in progressive video.
This gives good scope for coding motion in a more visually pleasing way with less frames.
It seems likely that future display devices will allow the display to be updated upon demand;
they will be able to display VFR content without quantisation.

We feel that VFR has clear advantages over conventional constant-frame-rate video.
Sample rates themselves result from the need to interface with analogue electronics, and
as the world moves toward purely digital production and delivery of media content (high-
definition television, TV over the Internet and digital end-to-end mastering), it is our ex-
pectation that variable frame rate material will become thestandard. (It is worth noting that
Internet streaming protocols are already beginning to support VFR content [23,24].)
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2.4. Flexibility – TRACK.INFO

The TRACK.INFO data structure is heavily based on the “Track” descriptor inthe Ma-
troska [20] media container format. The Matroska format is designed to be able to hold an
arbitrary number of media tracks of any type, and thus provided much of the inspiration for
our framework’s track-handling capabilities. Earlier versions of theTRACK.INFO were almost
exact mirrors of the equivalent Matroska structure; however, the design has now been refined.
TheTRACK element of the name of this structure is itself a Matroska legacy;STREAM would
be equally suitable.

3. Interactivity – P.MM.CTL/SEEKABLE

The following protocols act as a request/response pair and extend the commands in the stream
P.MM protocol to provide interactive facilities through a “pull” model. This pull model sac-
rifices full parallel processing; only a single request is outstanding at a given time. It is in-
tended for interactive applications where filling the pipeline with data is undesirable (due to
the increase in end-to-end latency that results). Pre-rollbuffer processes can be added to keep
the pipeline full and restore parallel processing, if so desired.

3.1. Feedback – P.MM.CTL

P.MM.CTL is the request protocol. The process “pulling” data sends a single request and waits
for a response.

PROTOCOL P.MM.CTL

CASE

init

next

seek; INT; INT64

purge

end

:

init requests theTRACK.INFO structure and setup data for the track.
next requests the logically next packet, video or audio frame in the stream.
seek requests that the stream be repositioned to a new timecode held in theINT64. TheINT

value is a constant describing how to handle cases where the exact timecode requested
can not be reached, which is almost inevitable. If set toSEEK.CLOSEST then the closest
match will be picked.SEEK.BACKWARD requests the closest point not after the specified
timecode, andSEEK.FORWARD the closest point not before the specified timecode. In a
typical video player,SEEK.BACKWARD will be used for rewind, andSEEK.FORWARD for
fast-forward, in order to give the behaviour that a user would expect.

purge requests that the process clear all internal buffers. This request does not generate a
response and is simply propagated to the preceding process.

end requests that the process terminate, and that it request thesame of its preceding pro-
cesses. Like purge, this does not generate a response.
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3.2. Simplified P.MM – P.MM.SEEKABLE

P.MM.SEEKABLE is a simplifiedP.MM which carries responses. The data messages, packet,
video and audio have the same meaning as inP.MM.

PROTOCOL P.MM.SEEKABLE

CASE

init; MOBILE TRACK.INFO; MOBILE []BYTE

packet; TID; MOBILE PKT.HDR; MOBILE []R.DESC; MOBILE []BYTE

video; TID; MOBILE VF.DESC; MOBILE []BYTE

audio; TID; MOBILE AF.DESC; MOBILE []BYTE

seeked; INT64

end

:

init no longer represents the start of stream; it simply describes the properties of the track
and is the response to an init request.

seekedis sent in response to a seek request, and carries the timecode of the new stream
position.

end means the end of the stream has been reached, but does not indicate that the component
has terminated.

3.3. P.MM.CTL/SEEKABLE Usage Contract

The expected sequence of requests on aP.MM.CTL channel is as follows:

(init|next|seek|purge)* end

With the following request-response pattern:

init => (init | end)

next => (packet | video | audio | end)

seek => (seeked | end)

purge => ()

end => ()

3.4. Encapsulation

The P.MM andP.MM.CTL/SEEKABLE protocols were carefully designed to permit the con-
struction of a wrapper aroundP.MM processes which presents aP.MM.CTL/SEEKABLE inter-
face:seekable.wrapper (Figure 8).

Figure 8. Process network for the seekable.wrapper.

1. At startup the wrapper requests aninit message and other data from the preceding
process, and feeds it to the wrapped process until aninit message is produced. This
init message is stored and used to respond toinit requests from the successor
process.
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2. On anext request the wrapper makesnext requests to the preceding process, feeding
data to the wrapped process until output is produced. The output is forwarded to the
successor. If anend response is encountered from the preceding process then the
wrapped process is sent aflush message which causes it to output any available data.
Should the wrapper receive aflush message from the wrapped process, it returns
end to the successor.

3. On aseek request, the wrapped process is sent apurge. The wrapper waits forpurge
to be emitted by the wrapped process, discarding any intervening output. At the same
time, theseek request is forwarded to the preceding process, and its response re-
turned to the successor when the purge of the wrapped processis complete. This al-
lows the successor to assume the process is ready for a new command immediately
following a response. It should however be noted the performance impact of this de-
sign has not been explored.

4. A purge request is handled much likeseek without any response to the successor.
5. Anend request is forwarded to the preceding process and sent to thewrapped process.

Once the wrapped process outputsend, then the wrapper terminates. This is the only
point at which the wrapped process will receive anend message.

3.5. The zero.place.buffer

The seekable wrapper, along with many other processes in theframework, makes use of
the zero.place.buffer process. It is a variant of the standardoccam “requester” or
“prompter” design pattern, using theskip message of theP.MM protocol to poll a process’s
ability to accept input. If a process accepts askip message, it is “immediately” ready to
accept any other command. Hence, thezero.place.buffer uses an explicit protocol com-
mand to interrogate a process rather than simply reporting when the process has accepted an
already buffered message. A traditional “requester” will report when its (typically one-place)
buffer is ready to be filled, whereas thezero.place.buffer reports when the process to
which it is connected is ready. Thezero.place.buffer is named for this lack of buffering.

4. Dynamism and Reconnectivity – CT.IO.CTL

While a multimedia system may be statically configured at compile time, it is often more
useful to be able to dynamically reconnect its components asit is running. The following
protocols provide a means to interrogate a component process about its connectivity, and to
“plug” and “unplug” channel ends to create connections between processes at runtime. To
facilitate this, aP.MM channel is placed in aCT.MM mobile record, and a pair ofP.MM.CTL and
P.MM.SEEKABLE channels are placed in aCT.MM.SEEKABLE channel type [17]. This method
of building channel ends is a result of the design of theoccam-π type system.

This dynamism allows the construction of very flexible file input processes. Until a file
has been opened and its header parsed, it is not known what tracks it provides and their de-
tails; with these features, the tracks to be used can be selected at runtime, and an appropriate
process network automatically constructed. While it wouldbe possible to provide file input
processes with fixed sets of channel parameters which are satisfied at runtime (these existed
in earlier versions of the framework), it is more convenientto implement these on top of this
generic architecture.

Processes implementing this interface are expected to operate in two modes, “started”
and “stopped”. A stopped process can have its connectivity interrogated and changed,
whereas a started process can only be queried about its mode or stopped. It is expected that
processes initially start in the stopped mode, as their connectivity is undefined.
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4.1. P.IO.CTL.RQ

P.IO.CTL.RQ is the request component of the protocol.

PROTOCOL P.IO.CTL.RQ

CASE

inputs

outputs

start

stop

status

end

plug.mm.i; INT64; CT.MM?

plug.mm.o; INT64; CT.MM!

plug.mms.i; INT64; CT.MM.SEEKABLE!

plug.mms.o; INT64; CT.MM.SEEKABLE?

unplug.i; INT64

unplug.o; INT64

:

inputs and outputs are used, respectively, to request details of the inputs andoutputs of the
process.

start and stop are used to change the mode of the process.
status queries the present mode of the process.
end closes down theIO.CTL interface; the process will terminate whenall of its connected

streams terminate.
plug.* andunplug.* messages are used to plug and unplug channel ends, with theINT64

specifying the track number.

4.2. P.IO.CTL.RE

P.IO.CTL.RE is the response component.

PROTOCOL P.IO.CTL.RE

CASE

inputs; MOBILE []INT; MOBILE []BOOL; MOBILE []TRACK.INFO

outputs; MOBILE []INT; MOBILE []BOOL; MOBILE []TRACK.INFO

plugged

started

stopped

error; INT

unplugged.mm.i; INT; CT.MM?

unplugged.mm.o; INT; CT.MM!

unplugged.mms.i; INT; CT.MM.SEEKABLE!

unplugged.mms.o; INT; CT.MM.SEEKABLE?

:

inputs and outputs return information describing the input and output connectivity of the
process.

[]INT is an array of flags detailing the types of connections (stream or seekable), and
whether a given connection must be plugged before the process can be started.
For a process which filters data rather than originating it, the inputs and outputs
will need to be plugged before the process can be started.

[]BOOL is an array of flags indicating whether a connection is plugged or unplugged.
This is separate from the other flags as it changes during operation, where as the
others typically do not.
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[]TRACK.INFO is an array of the details of each connection. For inputs thiswill typi-
cally be a partial specification. An exact specification of what inputs the process
will handle is not usually known in advance as most processessupport various
data formats. The framework currently supports only a simple form of partial
specifications: unspecified values are given as zero.

plugged indicates a plug request was successful.
started andstoppedindicate that the process has either started or stopped.
error indicates an error occurred during a start, stop, unplug or query of inputs or outputs.

TheINT value is a constant representing the reason for the error.
unplug.* messages are the response to a successful unplug request, oran unsuccessful plug

request. The latter is required to prevent loss of the channel end which could not be
plugged, in which case theINT value indicates why the plug failed.

It is anticipated that a process should check that inputs andoutputs being plugged are
compatible. This is not done in the framework at present as this verification, like the partial
specification of track types, is beyond the scope of this research. Ideally the specifications
of outputs should be updated as inputs are plugged; however,this would require sending and
receiving from the inputs, which is forbidden when the process is stopped and would likely
block as the other end may also be stopped. This might potentially be solved using a two
phase system of input plugging followed by output plugging.

There is also a problem with the stopped and started modes of operation in that they
introduce the possibility of deadlock. If we stop a process Ato which another process B is
attempting to communicate, then attempt to stop B, we are likely to deadlock as B may be
blocked trying to communicate with A. This problem can be avoided by stopping processes
in the same direction as the flow of data forP.MM, or the flow of requests forP.MM.CTL. It is,
however, undesirable to have a system in which a sequence such as this must be adhered to,
as it degrades the parallelism and is prone to implementation error.

One possible solution to the ordering and type checking problems would be to have a ne-
gotiation phase between the processes being connected and disconnected when connections
are plugged and unplugged. This would allow both ends of a connection to know the state of
the other end and thus not initiate communication while it was disconnected. Type negotia-
tion would occur during the connection phase. This model would add a significant degree of
complexity which we would rather avoid.

Further work is required to establish a simpler and safer model for reconnectivity than
the one presented here, and to establish if wrappers like theseekable wrapper can be created
for it.

5. dvplug – Digital Video Hot-plugging

The dvplug application (Figure 9) is a demonstration of digital video input, an encoding
process, and the reconnectivity components of the framework. It responds both to user input
and external events and demonstrates a possible real world application for the reconnectivity
within the framework.

In the initial network, a clockedtest.card source is wired through the control pro-
cess (record.ctl) to the output. Adv1394.plug.detector process watches for new de-
vices being connected to the host’s IEEE1394 [25] bus, and reports their presence to the
player.spawner.

On connection of a DV [26] device (such as a video camera), theplayer.spawner forks
a set of processes to take input from the new device, decode itand remove the audio stream.
Using theCT.IO.CTL protocol, it stops thepluggable.stream.input.end, disconnects
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Figure 9. Process network for the dvplug application.

the test.card source from it and plugs in the new device’s network. It then restarts the
pluggable.stream.input.end and stores thetest.card source channel end for later use.

While the DV input network is connected, theplayer.spawner ignores any messages
about new devices. Using astatus.tap (see section 6), it detects when the stream from
the DV input network terminates (pluggable.stream.input.end does not propagate end
messages). When such termination occurs theplayer.spawner disconnects the channel end
for the terminated DV input network and reconnects thetest.card source. Then after re-
starting the network it returns to monitoring events from thedv1394.plug.detector.

In parallel to this, therecord.ctl process responds to record commands from the user,
and transfers data from thepluggable.stream.input.end to the output. On receipt of a
record command, it forks a recording network, and starts copying any received messages to it
in addition to the regular output. When the user requests theend of recording, the recording
network is sent an end message, and the channel end to it is discarded.

6. Status Reporting Backend

Every distinct component developed for the framework takesaSHARED CT.STATUS! channel
end as a parameter. This provides a means for processes to output debugging information,
errors and other events in a safe and uniform manner. The channel end is manipulated using
a set of “status.” prefixed processes.

The status backend is implemented as a automatically growing N-way tree. Node cre-
ation requests are passed to the root which forks off the newstatus.node processes before
passing connections to them back up the tree where they are “wired in”. As messages pass
down the tree to the root, they pick up the tags of all the nodesthey pass through. By feeding
the output of the root to a terminal it is easy to monitor the execution of the application net-
work (particularly ifstatus.debug calls are well placed). An example network instantiation
is shown in Figure 10.

Another method for implementing a similar backend would be to use a flat structure with
a root process which grows and shrinks an array of channel ends as nodes are created and
destroyed. However such an approach would be inefficient as aresult of resizing andALTing
over the root array. It would also not be able to tag messages in a tree fashion as the presented
implementation does, and would complicate process-to-process monitoring.

Other than user monitoring of the application, the status network can be used by pro-
cesses within the network to monitor each other. This is doneby insertingstatus.tap pro-
cesses which copy, to an extra channel, a given subset of the messages passing through them.
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Figure 10. Example instantiation of the status backend.

This mechanism is used in the dvplug application (see section 5) to detect termination of DV
input networks, using anEOS event.

At present the tags within the backend are the strings passedto status.startup; this
could lead to name collisions in large networks. However asstatus.node forking is done
at the root, there should be no problem allocating each node aunique number as it is forked.
This could be used in place of or in addition to the textual name – an area for improvement
in future versions of the framework.

7. Conclusions and Future Work

7.1. Benchmarks

Preliminary profiling of theoccam-π Video Player (section 1) using a kernel-based pro-
filer [27] suggests that the framework presents no significant overhead. Framework code,
“ovp” in table 1, accounts for only 5% of execution time of theoccam-π Video Player. The
remainder is spent in external libraries, decoding (“libavcodec”) and copying data (“libc”).

Component CPU samples % CPU time

libavcodec.so.51.5.0 167526 77.4733

libc-2.3.5.so 35507 16.4204

ovp 11264 5.2091

libpthread-0.10.so 1461 0.6756

libX11.so.6.2 160 0.0740

ld-2.3.5.so 153 0.0708

libXv.so.1.0 139 0.0643

libXext.so.6.4 26 0.0120

libfaad.so.0.0.0 1 4.6e-04

Table 1. Profiling data for theoccam-π Video Player (ovp).

Table 2 shows the profiling data obtained from MPlayer [3,28], a popular open-source
video player. As the results show, the number of CPU cycles used by the framework is directly
comparable to that used by MPlayer’s core.
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Component CPU samples % CPU time

libavcodec.so.51.5.0 156290 91.0818

mplayer 11382 6.6331

libc-2.3.5.so 2182 1.2716

ld-2.3.5.so 1044 0.6084

libpthread-0.10.so 379 0.2209

libX11.so.6.2 203 0.1183

libXv.so.1.0 60 0.0350

libXext.so.6.4 47 0.0274

libXcursor.so.1.0.2 3 0.0017

libdl-2.3.5.so 1 5.8e-04

libICE.so.6.3 1 5.8e-04

libfreetype.so.6.3.7 1 5.8e-04

Table 2. Profiling data for MPlayer.

The two differ in that MPlayer is able to decode compressed audio and video directly
into its output buffers, whereas ovp must do a single copy operation at output time which
accounts for 15% of its execution time (“libc” in table 1). This is a limitation of the current
implementation, and could be solved by providing a mechanism for buffer recycling.

7.2. Future Work

As the value of any particular framework lies in the functionality it provides, one clear expan-
sion of this work would be to develop more software components. The present framework is
lacking any significant filtering components, so adding simple video operations (crop, scale,
merge, split) would be a logical next step. Following this itwould be interesting to explore
writing spatial and temporal noise reduction filters, usingtheoccam-π language, as these are
common operations in broadcast systems and could take advantage of internal parallelism.

For video surveillance applications, it would be useful to provide processes for monitor-
ing sets of video streams and reporting changes. Processes of this kind could also be used in
the control of robots and other embedded devices.

Extending the input and output capabilities of the framework is also an interesting area;
in particular, replacing the C components of theavi.input andmkv.input processes with
occam-π. These components were largely written in C as the language has better facilities
for handling complex data structures than the presentoccam-π. However, an attempt at an
occam-π implementation could inform the future development of the language’s data struc-
ture facilities.

One area left largely unsolved in the present framework design is safe reconnectivity.
Reconnections need to be made both type-safe (in a high-level sense, ensuring data formats
are the same) and deadlock-free. Although this safety is notguaranteed for static networks,
the issue is mitigated by runtime checks. These are insufficient when a component’s input
can potentially change format mid-stream (as a result of a reconnection).

Deadlock is possible in the current reconnectivity model ifprocesses are not stopped in
the correct order (in the direction of data flow). This is not an issue in small networks where a
single process is controlling the reconnection, but in a larger system many different processes
may be modifying the network in parallel, in which case the ordering rules cannot easily be
enforced.

In order to maintain the simplicity of the framework’s process interfaces, we feel that
reconnectivity will best be implemented using wrapper processes, concealing the inherent
complexity from component developers.
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It would also be desirable to provide a scripting language for the specification of net-
works of filters (as AviSynth [1] does) and a tool for editing such networks in real-time (like
GraphEdit [29]), both of which might build on ideas presented in [30].

A final area for future development is error handling. The framework at present attempts
to conceal and suppress errors: an error will typically cause termination of a filter or conver-
sion of it to a null filter which does nothing. This is an unsatisfactory state of affairs for broad-
cast applications; the framework should instead be able to correct errors by allowing failed
components to be replaced on-the-fly. One possibility is an exception-like model, where the
failed process emits an exception message providing its present state (channel ends, track in-
formation, etc.). A control process would handle the exception, make any changes required,
then invoke a replacement process using the provided state information.

7.3. Final Remarks

We have explored, for the first time, the use of theoccam-π language’s unique concurrency
features for building a video processing framework and applications.

Multimedia systems must present a concurrent interface to the real world, and hence
require some degree of internal concurrency. In systems developed using traditional methods,
concurrency must often be simulated by explicit scheduling; in occam-π, concurrency can
be expressed directly using language constructs.

occam-π’s language features allow us to structure highly-concurrent programs such that
they can be easily understood. Such programs can take full advantage of the concurrency
features of modern processing hardware, and their safety properties can be reasoned about
using formal methods.

We have demonstrated that our framework has comparable efficiency to multimedia sys-
tems developed in C using traditional, non-concurrent methods. This is the result of using
occam-π’s mobile data types, which allow safe, zero-copy data exchange between concur-
rent processes.

We have described a process-oriented approach to the construction of reconfigurable
components usingoccam-π’s mobile channel types. These components may be dynamically
reconnected at runtime with minimal disruption to the rest of the system.

To conclude, we have shown thatoccam-π and process-oriented techniques offer sev-
eral advantages to developers of multimedia systems when used in preference to traditional
languages and design methods.
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A. Diagram Notation


