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Abstract. In this paper we present an estimation of distribution par-
ticle swarm optimization algorithm that borrows ideas from recent de-
velopments in ant colony optimization. In the classical particle swarm
optimization algorithm, particles exploit their individual memory to ex-
plore the search space. However, the swarm as a whole has no means
to exploit its collective memory (represented by the array of pbests)
to guide its search. This causes a re-exploration of already known bad
regions of the search space, wasting costly function evaluations. In our
approach, we use the swarm’s collective memory to estimate the distribu-
tion of promising regions in the search space and probabilistically guide
the particles’ movement towards them. Our experiments show that this
approach is able to find similar or better solutions than the standard
particle swarm optimizer with fewer function evaluations.

1 Introduction

The first Particle Swarm Optimization (PSO) algorithm was introduced by
Kennedy and Eberhart [4, 7] and was inspired by the social behavior of ani-
mals such as birds, fish and humans. Like other population-based optimization
algorithms, PSO is initialized with a population of complete solutions (called
particles) randomly located in a d-dimensional solution space. A particle i at
time step t has a position vector xt

i and a velocity vector vt
i, which are also

randomly initialized. A fitness function f : S → < where S ⊂ <d, determines
the quality of a particle’s position, i.e., a particle’s position represents a solution
to the problem being solved. Particles also have a vector that represents their
own best previous position. So, for the i-th particle, the vector pi has a fitness
value pbesti = f(pi). Finally, the best position the swarm has ever visited during
a run is stored in a vector s whose fitness value is gbest = f(s)3.

3 In most implementations, vector s does not exist. Rather, the index of the particle
with the best position is assigned to variable g, so that s = pg.
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The algorithm iterates updating particles’ velocity and position until a stop-
ping criterion is met, usually a sufficiently good solution value or a maximum
number of iterations. The updating rules are:

vt+1
i = vt

i + ϕ1U1(0, 1) ∗ (pi − xt
i) + ϕ2U2(0, 1) ∗ (s− xt

i) (1)

xt+1
i = xt

i + vt+1
i (2)

where ϕ1 and ϕ2 are two constants called the cognitive and social coefficients
respectively, U1(0, 1) and U2(0, 1) are two d-dimensional uniformly distributed
random vectors in which each component goes from zero to one, and ∗ is an
element-by-element vector multiplication operator.

Clerc and Kennedy [2] introduced the concept of constriction in PSO. Since
it is based on a rigorous analysis of the dynamics of a simplified model of the
original PSO, it became highly influential in the field to the point that it is now
referred to as the canonical PSO. The difference with respect to the original
PSO is the addition of a constriction factor in Equation 1. The modified velocity
updating rule becomes

vt+1
i = χ(vt

i + ϕ1U1(0, 1) ∗ (pi − xt
i) + ϕ2U2(0, 1) ∗ (s− xt

i)) (3)

with

χ =
2k∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ (4)

where k ∈ [0, 1], ϕ = ϕ1 + ϕ2 and ϕ > 4. Usually, χ is set to 0.729 and ϕ1 and
ϕ2 are set to 2.05 [5, 16]. This is the PSO version we use in our comparisons4.

From Equations 1 and 3, it is clear that the behavior of every particle is
partially determined by its previous experience. This memory allows a particle
to search somewhere around its own previous best position and the best position
ever found by a particle in its neighborhood. However, during a search different
particles move and test (i.e., evaluate the objective function) over and over again
the same or approximately the same region in the search space without any
individual improvement. While this is part of the search process and allows
the swarm to escape from local optima, it is also a waste of computing power
when the explored regions have been visited before by the swarm. This happens
because the swarm as a single entity does not learn.

In this paper, we present a generic modification to the PSO paradigm that
allows a particle swarm estimate the distribution of promising regions of the
fitness landscape by exploiting the information it gains during the optimization
process. This distribution is in turn used to try to keep the particles within the
promising regions. It is a modular extension that can be used in any PSO variant

4 This is perhaps not the best choice. The canonical PSO has not been proved to be
the best performing PSO. However, since there is no agreement on this issue, we
decided to use this version as our reference.



that uses a position update rule based on previously found solutions. The esti-
mation of the distribution is done by means of a mixture of normal distributions
taking into account the array of pbests. It borrows some ideas from recent devel-
opments in Ant Colony Optimization (ACO) [3] in which an archive of solutions
is used to select the next point to explore in the search space. The underlying
assumption of independence between variables common to many Estimation of
Distribution Algorithms (EDAs) for continuous optimization problems (see [12])
is also present in this work.

The rest of the paper is organized as follows. Section 2 presents some back-
ground information on the class of estimation of distribution optimization algo-
rithms to which our proposed algorithm belongs. Section 3 presents in detail the
estimation of distribution particle swarm optimizer proposed in this paper. In
section 4 we describe the experimental setup we used to assess the performance
of our proposed algorithm. Section 5 presents our empirical results along with
some discussion. In section 6 we conclude.

2 Estimation of Distribution Optimization Algorithms

Evolutionary Algorithms (EAs) that use information obtained during the opti-
mization process to build probabilistic models of the distribution of good regions
in the search space and that use these models to generate new solutions are called
Estimation of Distribution Algorithms (EDAs) [12]. The fully joint probability
distribution characterizes the problem being solved. Depending on whether there
is a priori knowledge about the underlying distribution or not, one can use a
suitable parameterization to get fast convergence rates or use machine learning
methods to approximate this unknown distribution, respectively. The latter case
is the most commonly found in practice.

EDAs differ in the way they gather information during the optimization pro-
cess, use the gathered information to build probabilistic models, and in the way
they use these models to generate new solutions. An experimental comparison
of some of the best known EDAs has been done by Kern et al. [9].

A pseudo-code view of the algorithmic structure behind most EDAs can
be seen in Algorithm 1. An EDA starts with a solution population X0 and a
solution distribution model P0. The mail loop consists of four principal stages.
The first stage is to select the best individuals (according to some fitness criteria
f) from the population. These individuals are used in a second stage in which
the solution distribution model Pt is updated or recreated. The third stage
consists of sampling the updated solution distribution model Pt+1 to generate
new solutions Xt+1

offspring. The last stage involves the base population Xt
base, the

new solutions and the fitness criteria. The end result is a new base population
and the process starts over again until the stopping criteria are satisfied.

There has been a growing interest for EDAs in the last years. It is out of
the scope of this paper to describe the approaches taken to implement the ideas
just described. For a comprehensive presentation of the field see the work of
Larrañaga and Lozano [10].



Algorithm 1 Algorithmic structure of EDAs.
/* Initialization */
Initialize population of solutions X0

base and solution distribution model P0

/* Main Loop */
while Stopping criteria are not satisfied do

Xt
parent = select(Xt

base, f) /* Selection */

Pt+1 = estimate(Xt
parent,Pt) /* Estimation */

Xt+1
offspring = sample(Pt+1) /* Sampling */

Xt+1
base = replacement(Xt+1

offspring,Xt
base, f) /* Replacement */

t = t + 1
end while

3 Estimation of Distribution Particle Swarm
Optimization Algorithm

PSO algorithms are considered to be part of the emerging field of Swarm Intelli-
gence [1,8]. Swarm Intelligence is the discipline that studies natural and artificial
systems comprised of multiple simple entities that collectively exhibit adaptive
behaviors. Some examples of natural swarm intelligent systems are ant colonies,
slime molds, bee and wasp swarms.

Besides PSO, the other prominent representative of artificial swarm intel-
ligent systems is Ant Colony Optimization (ACO) [3]. ACO is usually used
for solving combinatorial optimization problems. In ACO, artificial ants build
solutions incrementally selecting one solution component at a time. The prob-
abilistic selection is biased by a trail of pheromone deposited by other ants in
previous iterations of the algorithm. The amount of pheromone is proportional
to the quality of complete solutions, so that ants will prefer to choose previously
known good solution components than bad ones. In fact, the role of the so-called
pheromone matrix is to approximate the distribution of good solutions in the
search space. Seen from this point of view, ACO is an EDA.

A recent development of ACO that extends it to continuous optimization
is called ACOR [13, 14]. ACOR approximates the joint probability distribution
one dimension at a time by using mixtures of weighted Gaussian functions. This
allows the algorithm to deal with multimodal functions. Figure 1 illustrates the
idea of approximating the distribution of good regions in a single dimension
using a mixture of weighted Gaussian functions.

The source of information to parameterize these univariate distributions is
an archive of solutions of size k. The i-th component of solution the l-th solution
is denoted by si

l. For an n-dimensional problem, 1 ≤ i ≤ n and 1 ≤ l ≤ k. For
each dimension i, the vector µi =< si

1, . . . , s
i
k > is the vector of means that is

used to model the univariate probability distribution of the i-th dimension. The
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Fig. 1. Mixture of weighted Gaussian functions

vector of weights w =< w1, . . . , wk > is the same across all dimensions because
it is based on the relative quality of the complete solutions. Every iteration, after
the solutions are ranked, the weights are determined by

wl =
1

qk
√

2π
e
− (l−1)2

2(qk)2 (5)

where q is a parameter that determines the degree of preferability of good so-
lutions. With a small q the best solutions are strongly preferred to guide the
search.

Since ACOR samples the mixture of Gaussians, it has to first select one of
the Gaussian functions from the kernel. The selection is done probabilistically.
The probability of choosing the l-th Gaussian function is

pl =
wl∑k

j=1 wj

(6)

Then, ACOR computes the standard deviation of the chosen Gaussian func-
tion as

σi
l = ξ

k∑
e=1

|xi
e − xi

l|
k − 1

(7)

where ξ is a parameter that allows the algorithm balance its exploration – ex-
ploitation behaviors. ξ has the same value for all the dimensions. Having com-
puted all the needed parameters, ACOR samples the Gaussian function to gen-
erate a new solution component. The process is repeated for every dimension,
for every ant until a stopping criterion is met.



This lengthy presentation of ACOR was needed to introduce our Estimation
of Distribution Particle Swarm Optimization (EDPSO) algorithm. The reason is
that EDPSO borrows some ideas from ACOR. First, the array of pbests plays the
role of the solution archive in ACOR. In EDPSO, k (i.e., the size of the solution
archive) is equal to the number of particles. The dynamics of the algorithm,
however, is somewhat different. EDPSO works as a canonical PSO as described
in section 1 but with some modifications: after the execution of the velocity
update rule shown in Equation 3 the EDPSO selects one Gaussian function just
as ACOR does. Then, the selected Gaussian function is evaluated (not sampled)
to probabilistically move the particle to its new position. If the movement is
successful, the algorithm continues as usual, but if the movement is unsuccessful,
then the selected Gaussian function is sampled in the same way as in ACOR.
The result is a “hybrid” algorithm that explores the search space using the
PSO dynamics but when this approach fails (i.e., when a particle’s tendency
is to move far away from good solutions) a direct sampling of the probability
distribution is used instead. It is important to mention that when the selected
Gaussian function is evaluated, we use an unscaled version of it, so that its range
is [0,1] (i.e., a true probability). A pseudo-code version of EDPSO can be seen
in Algorithm 2.

4 Experimental Setup

To evaluate the performance of EDPSO we used the most commonly used bench-
mark functions in the PSO literature (see [6] for details). We have compared our
algorithm with the canonical PSO as described in section 1. Table 1 shows the
initialization ranges and the goals that had to be achieved by the algorithms in
terms of solution quality, although this goal was not used as a stopping criterion.
We ran 30 independent runs for each function in 30,40 and 50 dimensions for
a maximum of 120 000, 160 000, and 200 000 function evaluations respectively.
The number of particles was equal to 40.

Table 1. Parameters for the test functions

Function Initialization range Goal

Sphere [−100, 100]D 0.01
Rosenbrock [−30, 30]D 100
Rastrigin [−5.12, 5.12]D 100
Griewank [−600, 600]D 0.1
Ackley [−32, 32]D 0.1

All the benchmark functions we used have the global optimum at or very
near the origin, i.e., at the center of the search domain and hence a symmetric
uniform initialization would induce a possible bias [11]. To avoid this problem,
all functions were shifted to a random location within the search range. This



Algorithm 2 Pseudocode version of the EDPSO algorithm

/* Initialization. k is the number of particles, and n is the dimension of the problem
*/
for i = 1 to k do

Create particle i with random position and velocity
end for
Initialize gbest and all pbesti to some sensible values

/* Main Loop */
t = 0
while gbest is not good enough or t < tmax do

/* Evaluation Loop */
for i = 1 to k do

if f(xi) is better than pbesti then
pi = xi

pbesti = f(xi)
end if
if pbesti is better than gbest then

gbest = pbesti

s = pi

end if
end for
/* Update Loop */
Rank all pbesti according to their quality
Compute w =< w1, . . . , wk > using Equation 5
Compute all pl using Equation 6
for i = 1 to k do

for j = 1 to n do
vij = χ(vij + ϕ1U1(0, 1)(pij − xij) + ϕ2U2(0, 1)(sij − xij))
xcandidate

ij = xij + vij

Select a Gaussian function from the kernel according to pl, name it gi
l .

Compute σi
l using Equation 7

probmove = σi
l

√
2πgi

l (x
candidate
ij ) /* σi

l

√
2π unscales the function */

if U3(0, 1) < probmove then
xij = xcandidate

ij /* The particle moves normally */
else

xij = sample(gi
l ) /* New position is a sample from the chosen function */

end if
end for

end for
t = t + 1

end while



approach has been used before and does not confine the swarm to a small region
of the search space as is usually done with asymmetrical initializations [15].

Table 2 shows the parameter settings for the algorithms used in our experi-
ments.

Table 2. Parameters used by the algorithms

Algorithm Parameter Value

Canonical PSO
ϕ1 2.05
ϕ2 2.05
χ 0.729

EDPSO

ϕ1 2.05
ϕ2 2.05
χ 0.729
q 0.1
ξ 0.85

5 Results

The benefits of estimating the probability distribution of good regions in the
search space and to guide the swarm to search them are reflected (in general)
in the quality of the solutions achieved, as well as in the number of function
evaluations needed to achieve a solution of certain quality. Table 3 shows the
average fitness value (of the best particle in the swarm) after the maximum
number of allowed function evaluations.

Table 3. Average fitness value after the maximum number of allowed function evalu-
ations over 30 runs

Algorithm Dimension Sphere Rosenbrock Rastrigin Griewank Ackley

Canonical PSO
30 0.0 37.48 73.52 0.023 13.35
40 0.0 55.06 133.15 0.037 18.78
50 0.0 102.4 203.8 0.1 18.3

EDPSO
30 0.0 22.3 25.6 0.0012 0.000019
40 0.0 37.3 33.43 0.00098 0.00004
50 0.0 48.12 56.18 0.0029 0.7

In all benchmark functions, except in the case of the Sphere function, a ten-
dency can be immediately recognized: EDPSO can find better solution qualities
after the same number of function evaluations. This is particularly true in the
case of the Rastrigin and Ackley functions.

Regarding the issues of speed and reliability, Table 4 shows the average num-
ber of function evaluations needed to achieve the solution qualities defined in



Table 1 and the probability of achieving them, defined as the success rate (a suc-
cessful run is one that achieves the specified goal). The average was computed
over the successful runs only and rounded off to the nearest integer number
greater than the actual number.

Table 4. Average number of function evaluations needed to achieve the solution qual-
ities defined in Table 1 and the probability of achieving them.

Algorithm Dimension Sphere Rosenbrock Rastrigin Griewank Ackley

Canonical PSO
30 13049,1.0 20969,0.86 7880,0.9 11907,0.93 13980,0.06
40 19365,1.0 38442,0.83 13296,0.16 17563,0.93 –
50 27451,1.0 61124,0.66 – 24584,0.76 –

EDPSO
30 5988,1.0 20921,0.96 18549,1.0 5520,1.0 5656,1.0
40 8717,1.0 24896,0.9 28045,1.0 7866,1.0 8437,1.0
50 11971,1.0 50442,0.86 41659,1.0 10741,1.0 20284,0.96

From Table 4, it can be seen that EDPSO is faster than the Canonical PSO
in getting to the desired objective function value in all functions except in Ras-
trigin. Entries marked with “–” specify cases in which the goal was not reached
in any run. From our experiments, it can be observed that EDPSO shows a
significant improvement in terms of the number of function evaluations it needs
to get to a certain solution quality. It should also be noted that the behavior of
the Canonical PSO is not robust as we go into higher dimensions. In contrast,
EDPSO is quite consistent. The Rastrigin case is better explained after exam-
ining Figure 5 which shows how the solution quality improves over time for the
benchmark problems in 30 dimensions.

The data in Tables 3 and 4 give only a partial view of the behavior of the
algorithms. Specifically, they do not show how the solution quality evolves over
time. Knowing this is particularly useful to identify which algorithm is best suited
for real-time applications in which there are hard time limits or for applications
in which we are interested in the solution quality only. In Figure 2(c) it can be
seen how the goal defined in Table 1 was reached first by the Canonical PSO
but it can also be seen how it stagnates and cannot find better solutions after
some more iterations.

6 Conclusions

In this paper we have introduced an Estimation of Distribution Particle Swarm
Optimization (EDPSO) algorithm. It is in fact a modular extension that can
be used in any other PSO variant that uses a position update rule based on
previously found solutions. In effect, it is a learning mechanism that helps the
particle swarm explore potentially good regions of the search space. It benefits
from the information gathered during the optimization process that is encoded
in the array of pbests. The end result is a PSO variant that not only finds
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Fig. 2. Solution quality over time. Lines represent the average solution value.



better solutions than the Canonical PSO, but also does it with fewer function
evaluations. There are some cases, however in which speed is sacrificed for the
sake of finding better solutions.

EDPSO is not a pure Estimation of Distribution Algorithm (EDA). It ex-
plores the search space in the same way as the Canonical PSO but becomes an
EDA whenever particles are pushed further away from good regions (so learnt
by the whole swarm). It remains a research issue the problem of handling in-
teractions between variables and the correct parameterization of the probability
distributions. The results reported here are encouraging enough to continue look-
ing for ways to allow the particle swarm learn from its past experience.
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