
Design Principles for Metaheuristics:
Problem Types and Avoiding Bottlenecking

Colin G. Johnson
Computing Laboratory

University of Kent
C.G.Johnson@kent.ac.uk

Abstract: This paper is concerned with an aspect of the design of metaheuristic algorithms,
such as evolutionary algorithms, tabu search and ant colony optimization. The topic that is con-
sidered is how problems can be represented when they are given to a metaheuristic algorithm.
A particular difficulty is presented, viz. the “bottleneck”, where the problem is artificially con-
verted into a new representation in order to fit the standard input to the metaheuristic. Such
bottlenecks cause problems in interpreting or trusting the solution given by the metaheuristic. In
order to alleviate this problem, we suggest ways in which three types of problem (data-driven,
specification-driven and interactive) can be presented to metaheuristics in a bottleneck-free way,
and how problems which use multiple solution-types can be tackled.

Keywords: Metaheuristics, software design, specification, interactivity, bottlenecks, problem-
solving.

1 Introduction

The aim of this paper is to discuss an aspect of the design of metaheuristic algorithms. By
metaheuristics we mean computational algorithms which perform heuristic search over some
search space, and which are not tied to a specific problem. Examples include evolutionary
algorithms, tabu search, and ant colony optimization. This work fits into a wider project which
aims to provide a framework for the sensible design of such metaheuristics—a design framework.
The eventual aim of this framework is to make clear the choices which need to be made in
applying metaheuristics, and provide a set of techniques which support those design decisions.
This paper focuses on one such choice, viz. the choice of how the problem is represented as an
input to the metaheuristic.

2 Describing problems

An important part of solving a problem on a computer is giving some kind of description
of the problem to the machine. Clearly in general this encompasses the whole of computer
programming. We can narrow this down by asking a more focused question: what (if any) is
the best way to describe a particular problem to a metaheuristic algorithm?

One way to approach this is by taking some ill-defined problem in the world and making the
problem more “formal” or “exact”. Some problems (or aspects thereof) are capable of being
described compactly in such a format. Examples: a robot should not be allowed to operate
outside a particular area; a timetable should not expect the same person to be in two places at
once; a program should identify whether a particular record is in a database or not. Problems
which can most naturally be described in these terms can be called specification-defined problems.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


However not all problems fit into this category of specification-defined problems. Many problems
are essentially defined by data, as noted by Partridge and colleagues [14, 15, 16]. These can be
termed data-defined problems:

“Many problems, however, are manifest as little more than sets of input-output
data. They exist in systems of high complexity where our knowledge of the underlying
mechanisms is both crude and fragmentary. Some examples of data-defined problems
are: human face recognition; signature recognition; prediction of periodic fluctuations
in water consumption of electricity demand for a city; optimal control of chemical
processes and manufacturing plants; adjustment of treatment dosage on the basis of
bodily response to last dosage, etc. In all of these cases, it is far easier to collect
examples of the data (both good and bad examples) than it is to determine in more than
a very rough and fragmentary manner precisely how the output depends on the input.”
[15]

The danger with such problems is that it is tempting to force them through a specification
bottleneck (Partridge’s term). In this situation the practitioner takes a number of examples of
the problem at hand and constructs an artificial specification which abstracts from the original
data. In some instances of this the process may be good, because in the process of abstraction
the practitioner-as-expert adds in expert knowledge which is not easily to extract from the
examples alone. Often, however, this is an entirely artificial exercise which can easily remove
aspects of the original data which are important but not obvious to the specification-maker.

However there is a converse danger which is less well known, which we shall term a data bottle-
neck. This problem arises when the user trains the metaheuristic using a sample of training data
that satisfies the specification, rather than measuring the extent to which the solutions satisfy
the specification directly. Again, the problem has been presented to the metaheuristic in a way
which does not respect the structure of the problem.

It would seem to be ideal to present both data-defined and specification-defined problems to the
metaheuristic so that their fitness is evaluated without forcing the problem through a bottleneck.
How this can be achieved is discussed below.

A third type of problem which doesn’t fit naturally into either the specification-defined or data-
defined category is the class of problems which are interactive. Attempts at the “solution” of
such “problems” (those terms are rather problematic in this context) are defined not with respect
to a predefined notion of quality, but defined via interaction with a user as the individuals are
generated.

There are a number of reasons why this interaction might be a core part of how success is defined.
One reason, as demonstrated by the examples in [1, 2], is that an aesthetic judgement needs
to be made about the objects generated: are they beautiful, are they engaging, do they blend
harmoniously with other objects? A second, related, kind of search is a search for individuals
which have some subjectively-assessed quality. For example a metaheuristic applied to music
synthesis (e.g. [7]) may have the aim of producing a sound which is melancholy in quality.
Finally the aim of a particular application may be to exploit the ability of humans to pick out
patterns in complex environments. This idea has been applied by Venturini et al. [19] in data
mining, where various views on a dataset are provided to a human user and the user interactively
evolves those which pick out particular interesting features of the dataset.

Again there are difficulties if problems which are naturally interactively-defined are presented
to metaheuristics in a different way. An interactively-defined problem can be forced through a
specification bottleneck. For example the user might try and define what a melancholy melody



might be: slow, in a minor key, et cetera. Or in can be forced through a data bottleneck, for
example by giving lots of examples and training the machine via some measure of similarity to
those examples. Once again, neither of these approaches seems satisfactory; it would seem that
the interactively-defined problems are a distinct problem-type.

We have defined three problem-types: data-defined, specification-defined, and interactively-
defined. Some applications may involve aspects of each. To summarize this section here are
examples of each of the problem types and combinations thereof, drawn from mobile robotics.

Pure specification A robot should move from point A to point B, without hitting any obsta-
cles.

Pure data The robot should move towards a particular person, regardless of where they are in
the room.

Pure interactive The robot should trace out a pattern with the pen attached to it which is
interesting to an observer.

Specification and data The robot should chase another robot, whilst not leaving a predefined
area.

Specification and interactive The robot should trace out a pattern which is interesting to
an observer, but never move further than one metre in each minute.

Data and interactive The robot should recognize another robot in its environment and in-
teract with that robot in a style which engages the attention of an audience.

Specification, data and interactive The robot should recognize another robot in its envi-
ronment and interact with that robot in a style which engages the attention of an audience,
whilst not moving out of a metre-wide square on the floor.

3 Design choices for problem-presentation to metaheuristics

It would be desirable to find ways in which each of the three problem types could be tackled
using metaheuristic methods without needing to carry out the “bottleneck” transformations.
Moreover it is important that combinations of these problem-types can be processed by the
metaheuristic in a way which allows the various aspects to be processed in the way that is most
natural to them. This is one of the reasons why the various bottlenecks are often resorted to: for
example a metaheuristic is designed to take problems in the form of training data, so when a user
wants to specify something which is naturally a piece of specification (e.g. a safety constraint)
they translate that into the input language of the metaheuristic by providing a set of examples.

It is in the assessment of putative solutions to problems by the metaheuristic that these different
problem types become important. Such an assessment is part of most metaheuristic approaches,
for example the calculation of fitness in genetic algorithms. These assessments typically offer a
numeric quality score or (for population-based methods) a ranking of the current attempts.

Data-defined problems fit most naturally into this framework. The data used in defining the
problem provides a natural set of fitness cases against which the solution-attempt can be as-
sessed.

Specification-defined problems fit less naturally. Typically these are forced through a data bot-
tleneck by using the specification to generate a number of fitness cases which are compatible
with the specification. To deal with such problems in a way that respects the structure of the



problem we need to develop methods of directly assessing whether a potential solution is com-
patible with the specification, and to measure how far such solutions are from the specification.
One approach is through the use of static program analysis [13] in the determination of fitness in
genetic programming. That is, instead of running the generated program on a set of test cases,
the fitness is assessed by running an analysis on the program which checks whether the program
is compatible with statements in the specification, regardless of input data. Thus the specifica-
tion is never driven through the data bottleneck in being assessed. This has been successfully
applied to some simple problems in genetic programming [6, 8, 9].

This technique allows the specification-defined problem to be handled naturally, that is a direct
check is made on whether the program satisfies the specification rather than this being checked
indirectly. Nonetheless there are problems with this approach. Firstly there is the problem that
specification-satisfaction is very often a binary true-false condition: either the program satisfies
the condition or it does not. This could potentially make it difficult for a search algorithm within
a metaheuristic to get a grip on how close a particular attempt is to satisfying the specification.
There are a number of approaches to this. Firstly for some problems there may be many small,
easy-to-satisfy-individually specification statements, and it is bringing all of these together into
a single satisfactory specification which is the difficulty. In these cases a count of the number
of specification statements provides a fitness measure. Secondly it may be possible to devise
weaker specification which smooth out the fitness landscape, e.g. by breaking down a complex
specification statement into a number of sub-statements. An example of work similar to this
is the recent work by Harman et al. [5] on evolutionary testing which smoothes out the fitness
landscape by ensuring that rarely visited areas of code are visited more frequently by adjusting
the input space.

Finally, interactive problems are superficially easy to fit into a framework of fitness-assessment,
but there are a number of issues which need to be considered more carefully. The previous
two methods were consistent, in the sense that the same individual presented to the fitness-
evaluation algorithm would be scored the same (or ranked the same relative to others). This is
not true for interactively-defined problems. In these problems the whim of the human assessor
or the context of a particular individual in a population can change the assessment of its fitness.
Indeed there is some evidence [11] for an implicit fitness scaling effect in such systems; initially
the user will give a high fitness score to anything that is vaguely like a desired/desirable output.
However as the population becomes occupied by “better” individuals, individuals which scored
highly early may be scored less well relative to the more converged population.

These are interesting issues, but they are not difficulties with the use of metaheuristics for
interactively-defined problems. Indeed they are natural ways of interacting with individuals in
this situation. For example it is more natural to make aesthetic judgements in a comparative
fashion (A is better/more exciting/more beautiful/more interesting than B) than to give absolute
ratings. Indeed it seems reasonable to say that the above issues are advantages, because they
deal with these interactively-defined problems in a natural way, rather than forcing them to be
dealt with using concepts such as consistency of evaluation which are more suited to the other
two types of problems.

Nonetheless there are difficulties with using metaheuristics for interactively-defined problems.
One difficulty, notable particularly with population-based approaches, is that users become bored
with making appraisals of many different individuals. One possible solution to this is to embed
the evolutionary within a natural context such as a virtual environment [18] or a performance
setting [3]. This could be enhanced by the use of affective computing techniques [17] to directly
assess user’s affective response to individuals in the population.

As briefly discussed earlier, some problems have aspects which belong to more than one category.



For example a problem can easily have its task specified in a data-defined fashion whilst also
needing to satisfy some constraints which are given in a specification-defined way. This is where
the use of metaheuristics in the way described above can do things which are difficult for other
methods. For example multicriterion optimization could be applied to find solutions which
are both formally compatible with specification statements whilst solving a data-rich problem.
Such techniques have been applied, for example, to the evolution of a robot controller which
guaranteedly satisfies a dynamic safety constraint whilst also following another robot [10].

Typically methods of creating software are tied closely to problem type. So for example specifi-
cations can be converted into programs which satisfy that specification using a formal method
such as refinement [4, 12]. However once we have committed to developing a piece of software
in that fashion, it becomes difficult to incorporate aspects of the problem which are naturally
defined e.g. in a data-defined way. The metaheuristic approach makes combination of methods
much easier to achieve.

4 Conclusions

This paper has introduced the idea that there are natural ways of describing problems, and
given three examples of such descriptions (data-defined, specification-defined and interactively-
defined) which cover a wide range of real-world problems. The disadvantages of solving problems
by putting them through a bottleneck and forcing them into a different framework has been
outlined and examples given. This classification of problem types has then been used as a way
of classifying the inputs to metaheuristics, and ways in which problems of the various kinds can
be naturally represented to metaheuristics has been discussed. Finally, the use of multicriterion
optimization as a way of tackling problems that contain multiple problem-types as aspects of
their solution has been discussed. Some practical examples of all of these approaches are given
in the papers cited; this paper attempts to bring these together as a soft engineering design
framework.

References

[1] Peter J. Bentley, editor. Evolutionary Design by Computers. Morgan Kaufmann, 1999.

[2] Peter J. Bentley and David W. Corne, editors. Creative Evolutionary Systems. Morgan
Kaufmann, 2002.

[3] John A. Biles. GenJam Populi: Training an IGA via audience-mediated performance. In
Proccedings of the 1995 International Computer Music Conference, 1995.

[4] John Derrick and Eerke Boiten. Refinement in Z and Object-Z. Springer, 2001.

[5] Mark Harman, Lin Hu, Rob Hierons, Andre Baresel, and Harmen Sthamer. Improving
evolutionary testing by flag removal. In W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A.
Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, Proceedings of the
Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 2002.

[6] Lorenz Huelsbergen. Abstract program evaluation and its application to sorter evolution.
In Proceedings of the 2000 Congress on Evolutionary Computation, pages 1407–1414. IEEE
Press, 2000.

[7] Colin G. Johnson. Exploring the sound-space of synthesis algorithms using interactive
genetic algorithms. In Geraint A. Wiggins, editor, Proceedings of the AISB Workshop on
Artificial Intelligence and Musical Creativity, Edinburgh, 1999.



[8] Colin G. Johnson. Deriving genetic programming fitness properties by static analysis. In
James Foster, Evelyne Lutton, Conor Ryan, and Andrea Tettamanzi, editors, Proceedings
of the 2002 European Conference on Genetic Programming. Springer, 2002.

[9] Colin G. Johnson. What can automatic programming learn from theoretical computer
science? In Xin Yao, Qiang Shen, and John Bullinaria, editors, Proceedings of the 2002 UK
Workshop on Computational Intelligence, 2002.

[10] Colin G. Johnson. Genetic programming with guaranteed constraints. In Ahmad Lotfi and
Jonathan M. Garibaldi, editors, Applications and Science in Soft Computing, pages 95–100.
Springer, 2004.

[11] Tony D. May. Music and computers: The design and implementation of a musical genetic
algorithm. Master’s thesis, University of Kent, 2000.

[12] Carroll Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.

[13] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999.

[14] D. Partridge and A. Galton. The specification of ‘specification’. Minds and Machines,
5(2):243–255, 1995.

[15] D. Partridge and W.B. Yates. Data-defined problems and multiversion neural-net systems.
Journal of Intelligent Systems, 7(1–2):19–32, 1997.

[16] Derek Partridge. The case for inductive programming. IEEE Computer, pages 36–41,
January 1997.

[17] Rosalind Picard. Affective Computing. MIT Press, 1997.

[18] D. Rowland and F. Biocca. Cooperative design methodology: Genetic sculpture park.
Leonardo, 35(2):193–196, 2002.

[19] G. Venturini, M. Slimane, F. Morin, and J.-P. Asselin de Beauville. On using interactive
genetic algorithms for knowledge discovery in databases. In T. Bäck, editor, Proceedings
of the Seventh International Conference on Genetic Algorithms, pages 696–703. Morgan
Kaufmann, 1997.


