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A parallel ‘String Matching Engine’ for use in high speed network intrusion 
detection systems. 

Abstract 
This paper describes a finite state machine approach to string matching for an intrusion detection 
system.  To obtain high performance, we typically need to be able to operate on input data that is 
several bytes wide.  However, finite state machine designs become more complex when operating 
on large input data words, partly because of needing to match the starts and ends of a string that 
may occur part way through an input data word. 

Here we use finite state machines that each operate on only a single byte wide data input.  We then 
provide a separate finite state machine for each byte wide data path from a multi-byte wide input 
data word.  By splitting the search strings into multiple interleaved substrings and by combining the 
outputs from the individual finite state machines in an appropriate way we can perform string 
matching in parallel across multiple finite state machines. 

A hardware design for a parallel string matching engine has been generated, built for 
implementation in a Xilinx Field Programmable Gate Array and tested by simulation. The design is 
capable of operating at a search rate of 4.7 Gbps with a 32-bit input word size. 

Introduction 
Network intrusion detection consists of monitoring computer networks for various types of security 
attack.  This can be network wide monitoring (network based) or it can be at each individual host 
computer in the system (host based).  Basic network security is provided by network firewalls, 
which act as an intermediary between the Internet and a local network – these filter network traffic 
on the basis of header fields in the packets such as the source and destination IP address and TCP 
port numbers.  This type of filtering is good at blocking a large proportion of unwanted incoming 
traffic.  However, some network attacks may be targeted at machines such as web and mail servers 
that need to be visible through the firewall.  In this case, it may be necessary to look inside each 
incoming data packet to determine whether it represents a potential threat. We may then wish to 
block that traffic (intrusion prevention) or be able to generate an alert that potentially malicious 
traffic is present (intrusion detection).  The problem is that we may have no particular field to 
examine inside the packet, and may need to search the entire packet.  This is the standard technique 
that we use for intrusion detection:  we first look at the header fields of the packet to see if the 
packet is potentially of interest and if so we then search the content of the packet for one or more 
related intrusion detection ‘signatures’.  These signatures are short search strings which are chosen 
as representing a high probability of an attack occurring when present, whilst having a low 
probability of occurring otherwise. 

A lot of current intrusion detection systems are software based, the most well known example 
probably being Snort (Roesch, 1999).  Software solutions can however have problems when 
presented with a high network load. One solution can be to use host based intrusion detection and to 
require each computer to perform its own intrusion detection.  This however can be targeted by 
denial of service attacks to put the intrusion detection software on individual machines under heavy 
load. Host based solutions are also only possible if we are able to add intrusion detection software 
to each host system, and this may not be the case with some embedded systems. 

15th Annual EICAR Conference "Security in the Mobile and Networked World"

- 10 -



  

Summary of this paper 
This paper looks at the string matching part of intrusion detection and describes how it is possible to 
build a ‘string matching engine’ for implementation in a Field Programmable Gate Array (FPGA) 
that uses fine grained parallelism to improve its search rate.  The method used is to operate on a 
multi byte input data word and to partition the matching operation between a set of Finite State 
Machines (FSMs), each of which processes one of the byte streams from a multi-byte wide network 
input and looks for parts of the search string.  The results from these multiple FSMs are then 
combined in a particular way so as to determine whether a string has been matched across all the 
FSMs. 

The next section describes the background and outlines some of the related work in this field.  The 
following section describes the operation of the parallel string matching system proposed in this 
paper.  The software section gives the results of processing multiple search strings and the resource 
requirements for various string set sizes and implementation options.  The next section gives details 
of a hardware design for a string matching engine and its performance and resource requirements. 
The final section gives conclusions and ideas for further work. 

Discussion 
A lot of existing intrusion detection systems are software based, the most well known example 
probably being Snort (Roesch, 1999).  Many improvements have been made to Snort by optimising 
the order in which data is compared.  Work by (Kruegel & Toth, 2003) uses rule clustering and is 
implemented as a modified snort rule engine.  This uses decision trees to reduce the number of 
comparisons made against incoming network data and uses a multiple string matching algorithm 
based on the work by (Fisk & Varghese, 2001). 

A paper by (Abbes, Bouhoula & Rusinowitch, 2004) describes a system using a decision tree in 
conjunction with protocol analysis.  The protocol analysis uses a specification file for the protocol 
being monitored and performs ‘Aho-Corasick’ (Aho & Corasick, 1975) string matching on only the 
appropriate parts of the data stream.  This technique reduces the overall workload and also reduces 
the number of false positives as compared with performing matching on the entire data packet or 
using simple offset and depth constraints. 

Work by (Paul, 2004) looks at distributed firewalls and implements stateful packet classification 
spread across consecutive firewalls. This helps to spread the workload between separate machines. 

It can be difficult to perform intrusion detection in software at high network traffic rates and 
hardware solutions may be required.  Software solutions being essentially sequential also suffer 
from performance problems as we increase the number of rules; (Cho & Mangione-Smith, 2004) 
state that a software system with 500 rules may have difficulty in sustaining a throughput of 100 
Mbps. Hardware solutions have different limitations; we can often increase the number of rules 
without affecting throughput because of the use of parallelism – the cost of increasing the number 
of rules may be an increase in hardware resource utilisation instead. 

Overview of existing solutions 
A number of hardware based string matching systems for intrusion detection have been described in 
the literature; an overview of some of the techniques is given below. 

A product called ClassiPi from PMC-Sierra is described by (Iyer, Kompella & Shelat, 2001), this is 
a classification engine and implemented as an application specific integrated circuit (ASIC).  This 
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device allows software-like algorithms to be used for various packet classification and packet 
inspection operations, including the use of regular expressions to search the contents of packets. 

Work by (Attig & Lockwood, 2005) uses Bloom filters to perform string searching. Bloom filters 
provide an efficient method to perform searching for a large number of strings in parallel, but suffer 
from the disadvantage of producing false positive matches.  Attig and Lockwood show that Bloom 
filters can be used as a very efficient front end to remove the bulk of the network traffic that is 
known to be benign before input into a conventional software intrusion detection system. 

(Cho et.al., 2004) describe a system that uses multiple matching systems, each of which will search 
incoming network data for a set of distinct string ‘prefixes’.  For each possible string prefix, their 
system will lookup the remaining part of the string that must be compared sequentially against the 
incoming data to determine whether that string is actually present.  Multiple strings with identical 
prefixes need to be distributed between different matching systems. 

An interesting approach is taken by (Baker & Prasanna, 2004), who have a series of input 
comparators for each data byte of interest – the output of these comparators each feed into a 
pipeline of flip-flops.  Strings can be identified by the use of an AND function that looks for all the 
required data bytes for a string in the appropriate positions within the pipeline.  They show that this 
can be extended to operate with multi-byte input data by the use of multiple sets of pipelines and 
looking for strings across the set of pipelines at all byte alignments. 

Finite state machine approaches 
A number of systems have been designed that use Finite State Machines (FSM) to perform the 
searching – most of these use a Deterministic Finite Automata (DFA) to implement string matching.  
This type of FSM has sets of states, inputs and outputs; the FSM can be in one of its states and there 
is a mapping between each pair of current state and input to the next state and output.  When used in 
string matching, we use the FSM state to define how much of a string we have matched so far. 

The approaches taken by (Sugawara, Inaba & Hiraki, 2004) and by (Tripp, 2005) is to first 
compress multi-byte input data into a number of different patterns that are of interest and then to 
use DFAs to perform string matching several bytes at a time. (Moscola, Lockwood, Loui & Pachos, 
2003) convert regular expressions into DFA that operate one byte at a time and show that this can 
be used to perform matching for standard spam-assassin rules without creating too many DFA 
states. 

A different approach is taken by (Franklin, Carver & Hutchings, 2002), who implement Non-
deterministic Finite Automata (NFA) in hardware to perform matching of strings from the Snort 
rule set, this approach first being proposed by (Sidhu & Prasanna, 2001).  This was extended by 
(Clark & Schimmel, 2004) to operate with multi byte input data. 

The text by (Hopcroft, Motwani & Ullman, 2001) gives a comprehensive coverage of Deterministic 
and Non-deterministic Finite Automata. 

String matching algorithms 
There are many string matching algorithms described in the literature, most of which were 
originally devised for software implementation.  A hardware implementation has slightly different 
requirements than that for a software implementation and may well need to be less complex.  For 
efficiency it is more common to build systems that work on a stream of data, rather than providing 
random access to the contents of a buffer; ideally we would like the string matching to operate at a 
deterministic rate to avoid the need for buffering.  

15th Annual EICAR Conference "Security in the Mobile and Networked World"

- 12 -



  

The fastest method of matching strings is considered to be the Boyer-Moore algorithm (Boyer & 
Moore, 1977) and its successors.  This performs string matching on a ‘right to left’ basis and skips 
forward on a mismatch.  This gives an average performance that is usually sub-linear, but a worst 
case performance that may require us to look at some input bytes many times. 

The ‘Knuth Morris Pratt’ (KMP) algorithm (Knuth, Morris & Pratt, 1977), performs matching on a 
left to right basis and on mismatch will use the longest partial match as a starting point for further 
matching.  The algorithm can be adapted to operate at deterministic data rate and not re-examine 
input data on a mismatch. 

The Aho-Corasick algorithm (Aho et.al., 1975) matches several strings at the same time.  This 
works by constructing a trie containing the various strings and this is traversed as the data arrives.  
As with KMP, this can also be modified to operate at a deterministic rate only looking at each input 
data item once. 

Both KMP and Aho-Corasick can be implemented by creating a FSM that operates at one input data 
item per clock cycle and are therefore ideal for hardware implementation.  A common method of 
implementation for both these algorithms uses a maximum FSM size of an initial state and one state 
per search character (in one or all strings). When using Aho-Corasick, we would have fewer states 
when common prefixes of search strings enable us to share a FSM state. The state transition 
information in both cases will vary in complexity determined by whether on mismatch of a partly 
matched string there exists a suffix of the data matched that forms a smaller partial match of that 
string (or another). 

Parallel string matching 
From the work presented by (Sugawara et.al., 2004) and (Tripp, 2005), we can see that  high 
performance can be obtained by creating a FSM that will match multiple bytes in the same clock 
cycle.  However this has the overhead of compressing the input data so as to present a small input 
word to the FSM.  A second issue is that the start and ends of strings have a high chance of 
appearing part way through an input data word, so we may need to match parts of the start and end 
of a string with ‘wild card’ characters. 

It is far easier to match data from an 8-bit input bus, but this does not give such good throughput.  
The solution proposed here is to use multiple finite state machines in parallel to process the input 
data.  Course grained parallel FSM solutions have already been implemented, such as the work 
described by (Moscola et.al., 2003), where input packets are allocated to a number of content 
scanners on a round robin basis.  We propose a fine-grained from of parallelism, where multiple 
finite state machines process each packet in parallel. 

Parallel finite state machines 
The approach we take here is to provide a finite state machine for each byte stream from a multi-
byte input data word.  If we have a w-byte wide input word, then we can use w  separate finite state 
machines, each of which are looking for all w  instances of the ‘substrings’ made up from a w-way 
interleave from the search string. An example of such a system is shown in Figure 1. 

A related, but different, approach is taken by (Tan & Sherwood, 2005) who use multiple FSMs 
running in parallel to match a sequence of bits, with each FSM matching a particular bit position 
from the input data. 
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Figure 1 - Matching Interleaved substrings. 

All w  instances of our FSM are identical, and each will be looking for all w  substrings.  Each FSM 
has a w-bit Boolean ‘match vector’ output to specify the sub-strings matched in any clock cycle. If 
we find all w  substrings appearing in an appropriate order across all w  finite state machines at the 
correct time, then we will have found our search string.  We can see an example of a set of 
substrings of a given search string when 4=w in Figure 2. 

 

 
Figure 2 - Interleaved substrings. 

By sorting our substrings on the basis of the order of completion of the match, we have a sequence 
in byte terms of w  consecutive substring matches.  However, we are processing our data on the 
basis of a w-byte input word.  The string may be aligned in one of w  different ways, with the last 
w  bytes occurring in one or two input data words – the occurrence of each of the last w  bytes of 
the search string relate to the instant when each of the related substring matches will occur.  We 
define here an alignment of c  as meaning that of the last w  bytes of the search string, c  of these 
will occur in one input word, followed by )( cw−  in the following input word, where: wc <≤0 .  

Byte stream x  is being monitored by finite state machine x .  Each of the finite state machines is 
searching for all w  substrings, and has a Boolean ‘match’ output for each substring y .  Thus we 

have a group of 2w  FSM outputs: wywxO yx <≤<≤ 0 and 0  where , relating to whether FSM x  

has detected substring y  in the current clock cycle. We are also interested in whether string 
matches occurred in the previous clock cycle, and yxO ' is a delayed (pipelined) copy of yxO  from 
the previous clock cycle. 

M(w) 

8w-bit input 
data word 

8w Finite State 
Machine - n 

Finite State 
Machine - n 

Finite State 
Machine n 

Finite State 
Machine - n 

8 

8 

8 

8 

w 

w 

w 

w 

w 8-bit busses w Finite State Machines, each 
searching for w substrings 

w2-bit combine 
operation 

Word size = 4 
Search string = “the-cat-sat-on-the-mat” 

Substring 0 = “  e   t   t   -   -   ” = “ett--” 

Substring 1 = “   -   -   -   t   m  ” = “---tm” 

Substring 2 = “t   c   s   o   h   a ” = “tcsoha” 

Substring 3 = “ h   a   a   n   e   t” = “haanet” 

 (The substrings are sorted by the order of completion, the reason for which will be explained 
below.) 
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Taking the case where 4=w  and 1=c  for the string in Figure 2, we have the alignment shown in 
Table 1. 

 
  Input word 
  n-5 n-4 n-3 n-2 n-1 n 

0  - - - t m *1 

1 t c s o h a *2 

2 h a a n e t *3 

In
pu

t B
yt

e 

3 e t t - - *0  

*S indicates when a match occurs for substring S. 

Table 1 - String match at alignment c=1. 

We define )(wMc  as being a Boolean operation specifying whether a match occurs at alignment c , 
in a system with a word size w .  In our example above, we have 1=c  and 4=w ; we can see from 
Table 1, that )4(1M  is as shown in Equation 1. 

322110031 ...')4( OOOOM =  

Equation 1 - Match occurs at alignment c=1, for word size w=4. 

This follows a very simple pattern, and we can produce a general formula for )(wM c .  Our 
complete string match is then defined as )(wM which determines whether the match occurs at any 
of the w possible alignments.  This is shown in Equation 2. 

( ) ( )⎟⎟
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−
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−

=

−

=

−+−

−

=

∧∨∨
∧

icwiici

w

i

w

c
c

w

c

icwiici

w

i
c

OOciwMwM

OOciwM

)()(

1

0

1

0

1

0

)()(

1

0

' else  then )(if)()(

)'( else )( then )(if)(

 

Equation 2 – The Combine operation. 

(Note that in Equation 2, we use ∧∨ and to represent the Boolean ‘inclusive-or summation’ and 
‘and product’ respectively.) 

The combine operation )(wM  is independent of the search string and can be implemented as a 

fixed logic function for a given value of w .  We also need ∑
−

=

1

1

w

x
x   D-type flip flops to generate the 

delayed versions of some of the inputs.  As an example, the combine operation required for a 
system with a word size of 4 bytes is shown in Equation 3. 

3023120131201302

3221100333221100

.'.'.'..'.'

...'...)4(

OOOOOOOO

OOOOOOOOM

+

++=
 

Equation 3 – Combine operation for a 4-byte word. 

This requires four 4-input ‘and’ gates, one 4-input ‘or’ gate and six D-type Flip-flops. 
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In terms of overall complexity, the move from a standard byte-wide Aho-Corasick multi-string 
matching system to the technique described here requires us to replace a single FSM with w  
instances of a new FSM for matching sub-strings and one instance of the combine operation 
described above.  The new FSM will have a similar number of states to the original, but will require 
a factor of w  increase in the number of match outputs.  Actual resource utilisation will depend on 
many parameters relating to the FSM implementation as will be shown later.  The resources 
required for the combine operation are trivial for small values of w  – but will grow rapidly in size 
with w  as it implements a 2w  input Boolean function. 

Implementation 
Each FSM has to be able to match multiple substrings, and this can be done using the Aho-Corasick 
multiple string matching algorithm.  As we are using a multiple string matching algorithm we can 
actually use each FSM to search for the substrings for several different search strings. 

The method used here for the FSM implementation is table based – the reason for taking this 
approach is that we are able to have a fixed core of logic for any FSM (of a given size) and we 
determine the operation performed by the FSM by specifying the contents of the FSM table.  The 
state transition table for such a FSM is very redundant, and this can be implemented using the type 
of FSM implementation described by (Sugawara et.al., 2004), as shown in Figure 3. 

 
Figure 3 - Finite State Machine Implementation from (Sugawara et.al., 2004). 

The algorithm by (Sugawara et.al., 2004) works on the basis that for a given input value i , a large 
proportion of transition table entries for current state s  will be the same as for the IDLE (or initial) 
state. The algorithm uses a default table that contains table entries for all input values of i  in the 
IDLE state.  All we need in addition to this are the entries from the full state transition table that 
differ to the entries in the default table – this difference table is typically very sparse. 

Table 2 gives an example of a simple FSM that searches for the single string “abcabc”.  The input is 
a numerical value that relates to the character shown in brackets.  The state represents the portion of 
the search string that has been matched.  The tables contain the next state for the FSM and in this 
example the match succeeds when the FSM is in state 6. 

 

+

I/P 

Next State 

State and Base Address 
for saving 

=? 

Next S

Reload 

Base
RAM 

Base
Next S

Tag 

RAM 

REG 
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Previous State and 
Base Address to reload

Base Address 

State 
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Original State Transition Table  Default Table  Difference Table 

  Current State        Current State 
  

‘’
 

‘a
’ 

‘a
b’

 
‘a

bc
’ 

‘a
bc

a’
 

‘a
bc

ab
’ 

‘a
bc

ab
c’

 

       

‘’
 

‘a
’ 

‘a
b’

 
‘a

bc
’ 

‘a
bc

a’
 

‘a
bc

ab
’ 

‘a
bc

ab
c’

 

  0 1 2 3 4 5 6        0 1 2 3 4 5 6 

0(a) 1 1 1 4 1 1 1  0(a) 1  0(a)    4    

1(b) 0 2 0 0 5 0 0  1(b) 0  1(b)  2   5   

2(c) 0 0 3 0 0 6 0  2(c) 0  2(c)   3   6  In
pu

t 

3(x) 0 0 0 0 0 0 0  
In

pu
t 

3(x) 0  

In
pu

t 

3(x)        

Table 2 – Simple FSM to match search string ‘abcabc’. 

To find the next state for any current state and input, we first look in the difference table.  If this 
does not have an entry then we use the value from the default table instead. 

This difference table is decomposed into a series of state vectors, and these are packed together 
(overlapping) into a one-dimensional packed array – carefully avoiding any collisions between 
active entries.  Each entry in the packed array is tagged with the current state it belongs to.  To 
retrieve an entry from the packed array we need to know the base address of the state vector for the 
current state in the packed array and then use the current input as an offset from that point.  If the 
entry fetched from the array has a tag that is equal to the current state, then we have found a valid 
difference table entry – if not, there is no entry for the current state and input in the packed array, so 
we use the value from the default array for the current input. 

We can see an example in Table 3 of the how the FSM in Table 2 is converted into this format. To 
improve performance, each entry (in both arrays) also contains the base address of the state vector 
in the packed array for the next state (NS). 

  
State Vectors  Packed Array  Default Array 
0  1  2  3  4  5  6  NS Base Tag  NS Base 

      4        4 2 3  1 0 

  2            2 0 1  0 0 

    3         3 0 2  0 0 

        5      5 2 4  0 0 

          6    6 0 5    

              - - -1    

                    

0  0  0  0  2  2  0 : Base Addresses for state vectors 

Table 3 – Packed and Default arrays, using the method described by (Sugawara et.al., 2004). 

The algorithm by (Sugawara et.al., 2004) gives a significant memory saving for large FSMs, as we 
avoid the use of the two dimensional arrays.  It is difficult to a give a figure for the resource 
utilisation based on string length or number of strings, as the memory required will be determined 
by how well the state vectors can be fitted together into the packed array. 
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Modifications to the FSM implementation 
For our work, the design in Figure 3 was setup to operate on one packet at a time, by providing a 
restore input corresponding to the IDLE state.  After testing the FSM design, it was found that 
performance was limited by the adder carry chain used in the implementation of the “+” operation 
that provides the index into the packed array. On investigation, it was found that it was possible to 
replace the “+” operator with a “bitwise XOR” operation. This is not as efficient as it will constrain 
any state vector to be within a single n2  sized block of memory for a data input bus size of n-bits – 
in practice however it is not found to cause much reduction in efficiency, as seen later.  The 
advantage is that it makes each bit in the address calculation independent which improves the 
hardware performance. 

The state from each FSM is fed into a state decoder table that generates a substring match vector 
specifying all of the substrings that complete matching in the current state.  The use of a table for 
this operation avoids needing to build specific logic for each string set.  As strings shorter than the 
word size can generate a match from a subset of the FSMs, we allow one or more of its substrings 
to be the ‘null string’ which will match in any state, thus we always require a match from all FSMs 
irrespective of search string length. 

Rule processing 
Rather than generating a specific piece of hardware for a given rule set, it was decided that we 
should identify an efficient size of ‘string matching engine’ and then instantiate a number of these 
to cover the set of strings.  We will not know in advance how many strings will fit into a FSM of 
any particular size, as this will depend on how compact the packed array can be made.  The best 
size of FSM will depend on a number of factors, but will relate in particular to the memory 
resources available in the hardware.  As we don’t know in advance how many strings we can fit into 
a given FSM, we need to take an iterative approach and try increasing numbers of strings to see 
how many will actually fit. 

Rule sets such as those defined by snort will allow us to have content matching that is case 
independent.  We can deal with this by allocating these strings to separate ‘string matching engines’ 
to the ones used for strings that are case dependent and pre-pending an input function that maps all 
upper case letter to lower case. 

Software 
Software was written to take a set of strings and to build an Aho-Corasick trie for performing the 
matching.  The design was optimised using standard techniques to enable the matching to be 
performed at a rate of one byte per clock cycle.  From this, a state transition table was produced and 
then compressed using the technique described by (Sugawara et.al., 2004) and outlined above. 

The first stage was to choose a sensible size for the FSM.  The software was modified so that 
instead of reading in all the search strings, it stops after a certain limit of search characters had been 
exceeded and the memory resources required for that amount of search characters reported. This 
was repeated for a range of maximum numbers of search characters – the search strings being taken 
from a randomised order set of case dependant rules from the hogwash (Larsen & Haile, 2001) 
“insane” rule set.  The operator for the packed array index was chosen as the ADD operator. 

The tests were performed for a range of input bus sizes, and the memory requirements for a single 
8-bit slice are given in Figure 4.  We see that the amount of memory required increases with the 
input bus width, as the number of substrings increases with the number of 8-bit slices. 
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Memory use
(for one 8-bit slice of an n -bit word)
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Figure 4 - Memory use. 

The traces in Figure 4 are roughly linear for a range of total characters from 200 to 2000.  The 
approximate memory requirements wB  in bits for word size w  and character count s  in this range 
are shown in Equation 4. Memory usage will of course vary with the particular set of strings 
chosen. 

5435.0,3333.0,5319.0,5110.0 6432168 +=+=+=+= sBsBsBsB  

Equation 4 – Approximate memory use for a range of 200 to 2000 search characters. 

When we get to a word size of 64-bits, the total amount of memory required does not increase as 
much as expected, as there are an increasing number of short identical substrings, including null 
strings.  Calculations here show the exact amount of memory required – in practice the memory will 
only be available in particular sizes, as shown later. 

Interestingly, the amount of memory required per search character increases with the total amount 
of characters in the search strings.  This is partly due to the memory requirements of the state 
decoder, but this effect is present even if we don’t take this into account.  We would expect to get 
some gain as we increase the number of search strings as we should have nodes within the trie 
shared between multiple search strings.  We can see this effect in Figure 5. 

FSM resources
(for one 8-bit slice of a 32-bit word)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Total characters in search strings

No
de

s

0

2

4

6

8

10

12

14

No
n-

de
fa

ul
t E

dg
es

nodes/char

edges/node

edges/char

 
Figure 5 - FSM resources. 
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The number of trie nodes per search character decreases with the total number of search characters 
as expected; however this effect is counteracted by the increase in the number of ‘non-default 
edges’.  The ‘non-default edges’ are transitions from one node to another that are recorded in the 
packed array and this relates to the FSM becoming more complex and there being more 
interconnectivity between nodes.  The overall effect is that the number of non-default edges per 
search character increases with the number of characters. The total memory requirements for the 
packed array are roughly proportional to the number of non-default edges, as each ‘non-default 
edge’ will require its own entry in the packed array. 

All three traces in Figure 5 are roughly linear up to a total of 1700 characters in the search strings.  
The approximate results in this range, for a total of s  characters are shown in Equation 5. 
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Equation 5 - Approximate resource usage for up to 1700 search characters. 

From Figure 5, it can be seen that when using this style of implementation it is not necessarily the 
best option to have large Aho-Corasick FSMs.  The resources used appear to be lower when only a 
small number of strings are searched for; this however will be dependent on the sizes of memory 
available for the various FSM tables. 

Determining an optimal FSM size 
The software was modified to re-run a number of tests for a fixed input word size of 32-bit, using 
variations of the algorithms.  The tests were run for an increasing number of search strings and the 
total memory resources required were calculated for implementation within a Xilinx Virtex-II 
FPGA (“Xilinx Virtex-II”, 2005) – this type of FPGA contains 18Kbit Block RAM primitives 
(BRAMs).  As an experiment, we also test the effect of preceding each FSM input with a custom 
built compression table to reduce the redundancy in the input data – as shown in Figure 6.  

 
Figure 6 - One 8-bit slice of matching system. 

The tests were run with either raw or compressed input data and with either ADD or XOR used for 
packed array indexing.  The results are shown in the left graph of Figure 7; the four traces are very 
close together, and an enlarged section is given (for clarity) in the right graph where the resource 
utilisation is the lowest. 

The use of compression did not have much effect when we use a large number of strings, however 
with a small number of strings the memory used increased because the extra memory needed for 
input compression was greater than the memory saved within the FSM tables.  The choice of ADD 
or XOR algorithms had very little effect. 
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Xilinx memory use
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Figure 7 - Xilinx memory use vs. the number of search characters. 

From the results shown in Figure 7, the best option appears to be a small FSM implementation 
dealing with a maximum of 200-300 search characters, and which uses 3 BRAM components.  The 
best results for each of the four algorithm combinations are shown in Table 4. 

 
FSM Input Packing Algorithm Search Strings Search Characters 

Raw ADD 22 275 

Raw XOR 24 295 

Compressed ADD 18 234 

Compressed XOR 18 234 

Table 4 - Maximum number of search strings for a 3 BRAM implementation. 

Hardware implementation 
A VHDL model was built of a 32-bit string matching engine that consisted of four 8-bit wide 
matching ‘slices’ and a unit to combine together the results – as shown in Figure 8.  On the basis of 
the results above, a decision was made not to use input compression and to use the XOR function 
for indexing into the packed array for the FSM. The VHDL model was tested by simulation, the 
design synthesised and built for a Xilinx XC2V250-6 FPGA to determine its performance and 
resource utilisation.  The design was also simulated “post place and route” to test the resulting 
FPGA design. 

The parameters of the FSM design were taken from the rule processing results of the previous 
section.  Each FSM has an 8-bit input, an 8-bit state variable and a 108-bit substring match output. 
(Note: The value of 108 was chosen as it is a multiple of one of the BRAM memory widths, which 
is 36-bits.)  Four instances of the FSMs were used with a fixed combine operation to generate a 
matching engine having a 32-bit data input and a 27-bit match output.  This is capable of matching 
up to 27 search strings in parallel, depending on the length of the strings.  The use of the match 
vector output enables us to indicate matches of multiple search strings occurring at the same time; 
this match vector output could be used to generate an indication of which strings occurred within a 
given input data packet (including the detection of multiple matches of different strings). 
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Figure 8 - Matching Engine. 

Performance and resource utilisation 
The VHDL model was first configured for using a bitwise XOR operator for the FSM table index 
operation and this gave a minimum clock cycle time of 6.7ns (149 MHz) – given the 32-bit input, 
this corresponds to a search rate of around 4.7 Gbps. 

The resources required for a Xilinx XC2V250-6 FPGA were as follows: 

• 12 Block RAM components (out of a total of 24) 

• 250 logic slices (out of a total of 1536) 

We can see from the above, that the size of any design will be limited by the Block RAM resources.  
The FPGA component used as the target of these experiments is however by current standards 
rather small.  Taking the top of the range Virtex4FX FPGA as a comparison, we should be able to 
fit 46 of these matching engines within the FPGA, using all of the BRAM resources and around 
20% of the logic slices.  This should enable us to perform a parallel search of around 900 search 
strings. 

For comparison, the VHDL model was rebuilt to use an ADD operator for the packed array 
indexing and this gave a minimum clock cycle time of 8.4 ns (119 MHz – giving a 3.6 Gbps search 
rate).  This confirms the earlier assertion that using the bitwise XOR operator for the packed array 
indexing would be faster than using ADD. 

Testing 
The design has been tested by simulation with a large set of artificial input data containing various 
combinations of the strings being searched for, including: isolated instances of search strings; 
combinations of search strings at various spacing and overlap; and some strings rearranged in all 24 
variations of the byte ordering in a group of 4 bytes.  These tests were repeated for all four byte 
alignments of the input data – giving a total of 288 test cases. The results of the tests were compared 
with the expected outcomes to ensure that the search strings only matched as and when was 
expected.  All tests passed correctly both for the original VHDL design and the post place and route 
simulations. 
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Byte position that match occurs Pattern 

“cybercop” “gOrave” “login: root” 
----cybercop==================== 12   
----ycebcrpo====================    
----ybcecorp====================    
----cybercybercop=============== 16   
----gOrave======================  9  
----login: root=================   14 
----logOrave====================  11  
----killogin: root==============   17 

Table 5 - A few of the test patterns used and the expected results. 

A few examples of patterns used to test matching and the expected results are shown in Table 5. 

Conclusion 
This paper describes the design and simulation of a parallel algorithm for the implementation of 
high speed string matching; this uses fine-grained parallelism and performs matching of a search 
string by splitting the string into a set of interleaved substrings and then matching all of the 
substrings simultaneously. 

We show that the FSM implementation technique described by (Sugawara et.al., 2004) can be 
modified by the use of bitwise XOR in place of ADD for the indexing operation to improve its 
performance.  We also see that this implementation can be optimised in terms of resource utilisation 
by the choice of FSM size. 

A VHDL model of a string matching engine based on the above ideas has been produced, 
synthesised and built for a Xilinx FPGA and tested via simulation.  The results show a search rate 
of around 4.7 Gbps for a 32-bit input word.  The design is table based and changes to the search 
strings can be made by generating new contents for the tables rather than having to generate a new 
logic design – this is particularly important for systems being updated in the field. 

Future Work 
One area where the resources in this design could be reduced is in the state decoder table – which 
accounts for 50% of the memory resources.  This gives a substring match vector for the current state 
of the FSM – thus showing which substrings match in a given state.  This table could be replaced 
with a piece of logic, but this would need to be rebuilt for every set of strings. 

Further work is needed to see if the memory requirements for the state decoder can be decreased, 
possibly taking advantage of the redundancy that exists within this table.  This could for example be 
replaced by a two stage decoder design. Finally it would also be interesting to see if any parts of the 
state decoder could be implemented as fixed logic. 
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Author’s Errata 
 
In the first row of data in Table 5, the value of 12 for the byte position where a match 
of the string “cybercop” occurs is incorrect – this value should be 11. 
 
This error does NOT appear in the extended version of this paper that was published 
in the special issue of “Journal in Computer Virology”. 
 


