Final Report

Project WFD46

RIVPACS Pressure Data Analysis

February/2007

© SNIFFER 2007

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of SNIFFER.

The views expressed in this document are not necessarily those of SNIFFER. Its members, servants or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein.

Dissemination status

Unrestricted

Research contractor

This document was produced by:

John Davy-Bowker Ralph Clarke Mike Furse Cynthia Davies Tracy Corbin John Murphy Nick Kneebone

Centre for Ecology & Hydrology Winfrith Technology Centre Dorchester DT2 8ZD United Kingdom

SNIFFER's project manager

SNIFFER's project manager for this contract is:

Robin Guthrie, Scottish Environment Protection Agency

SNIFFER's project steering group members are:

Robin Guthrie, Scottish Environment Protection Agency John Murray-Bligh, Environment Agency Peter Hale, Environment & Heritage Service

SNIFFER First Floor, Greenside House 25 Greenside Place EDINBURGH EH1 3AA

www.sniffer.org.uk

EXECUTIVE SUMMARY

WFD46: RIVPACS Database & WFD Screening (February, 2007)

Project funders/partners: SNIFFER

Background to research

RIVPACS is a model that predicts the freshwater macroinvertebrate fauna expected to occur at a site in the absence of pollution. The four current RIVPACS models are based on 835 reference sites from streams and rivers through the United Kingdom. With the advent of the Water Framework Directive (WFD) the concept of the 'reference condition' has become explicit within the legislative framework of the European Union. Reference condition has been established as a quality standard against which assessments of biological degradation must be compared. It is therefore essential that Member States can demonstrate that the biological datasets used to define reference conditions meet the criteria of the WFD. The UK RIVPACS models were originally based on minimally impacted sites. These sites were sampled over various phases of RIVPACS development over some 20 years. There is therefore a requirement to reappraise the levels of anthropogenic pressure acting at the RIVPACS reference sites at the time of sampling and where necessary to identify particular sites that fail to meet these new standards.

The Environment Agency, the Scottish Environment Protection Agency and the Environment and Heritage Service are engaged in a European WFD intercalibration process that is currently underway within several Geographical Intercalibration Groups (GIGs). These Agencies therefore need to gain full access to the RIVPACS dataset and its associated pressure data to contribute to the process of setting common standards for reference sites at a European level. As the data underpinning the RIVPACS system is central to the setting of reference conditions for UK streams and rivers, the UK agencies also require the RIVPACS dataset to be available to the public so that their site assessments for WFD monitoring are open and transparent.

Objectives of research

- To conduct an analysis of pressure data for the RIVPACS reference sites and to identify any sites that fail to satisfy the new WFD definition of reference condition.
- To summarise anthropogenic pressures acting at RIVPACS classification groups and WFD System-A stream types.

A separate Database Documentation report describes the collation of pressure data, the structure of the RIVPACS database, agreements to release the dataset to the public domain and the Internet download page.

Key findings and recommendations

Anthropogenic pressure levels at all 835 RIVPACS reference sites have been summarised by WFD system-A stream types, separately for WFD Ecoregion 17 (Northern Ireland) and Ecoregion 18 (Great Britain). Pressure levels have also been summarised by RIVPACS classification groups and compared to appropriate biotic index values. Forty sites (4.8%) out of the current 835 UK RIVPACS reference sites were identified as potentially unsuitable across the four RIVPACS models (Great Britain 33 (5.4%), Northern Ireland 4 (3.6%), Scottish Highlands 3 (2.7%) and Scottish Islands 1 (1.8%) – one site being in both the Great Britain and Scottish

Highlands models). Of these, 29 sites were identified as having either excessive organic or nutrient pollution (or both) relative to other sites in their group, 8 had excessive metals concentrations and 3 had unacceptably low flows. No sites were judged to have unacceptably low pH. Steps should be taken to either remove these sites from future models or to statistically correct for their influence. No sites were judged to have unacceptable levels of morphological degradation, thermal pollution, sedimentation or communities adversely affected by non-native species.

The selection of potential new RIVPACS reference sites must now take account of the WFD definition of reference condition. Any potential new RIVPACS reference sites must be selected in consultation with the UK agencies and be based on a thorough appraisal of environmental stresses to ensure that none of these lie outside the appropriate range for that stream type.

Key words: RIVPACS database, pressure data analysis, Water Framework Directive

TABLE OF CONTENTS

EXECUTIVE SUMMARY

		A
1.	INTRODUCTION	1
2.	CHEMICAL PRESSURE	5
3.	FLOW	9
4.	HYDROMORPHOLOGY	11
4.1	River Habitat Survey	11
4.2	RIVPACS field sheets	11
5.	CORINE 2000 LAND USE	13
6.	THERMAL POLLUTION	15
7.	SEDIMENTATION STRESS	16
8.	NON-NATIVE SPECIES	16
9.	OVERALL PRESSURE ASSESSMENT	18
10.	GUIDELINES FOR FUTURE REFERENCE SITE SELECTION	19
11.	WATER FRAMEWORK DIRECTIVE INTERCALIBRATION	20
12.	RECOMMENDATIONS	20
13.	ACKNOWLEDGEMENTS	21
14.	REFERENCES	21

List of Tables

Table 1 Table 2 Table 3	WFD normative definitions (general) WFD normative definitions (river invertebrates) REFCOND pressure screening criteria for high status class	1 2 2
Table 4	Sites where a lower 10%ile or upper 90%ile chemical determinand is exceeded and an appropriate 3 season combined biotic index value (ASPT for all except Cu & Zn where NTaxa was used) is in the lowest 10% within the TWINSPAN group	7
Table 5	Sites where a lower 10%ile or upper 90%ile chemical determinand is exceeded and an appropriate 3 season combined biotic index value is in the lowest 10% within the TWINSPAN group together with details of the origin of the chemical data	8
Table 6	The number of RIVPACS sites with one or more outlying chemical pressures and an associated a typical biotic index value in each RIVPACS model	9
Table 7	RIVPACS sites to be excluded on grounds of flow	10
Table 8	Distribution of hydromorphologically modified and unmodified sites within TWINSPAN groups	13
Table 9	Frequency of occurrence of non-native freshwater macroinvertebrate species across the 835 RIVPACS sites	16
Table 10	RIVPACS sites identified as potentially unsuitable	18

List of Figures

Figure 1	Spring, summer and autumn combined O/E Number of Taxa verses HMI				
	score at RIVPACS sites with linked RHS	12			
Figure 2	CORINE 2000 level 1 land cover summarised by WFD System-A stream				
-	type for Great Britain	14			
Figure 3	CORINE 2000 level 1 land cover summarised by WFD System-A stream				
C	type for Northern Ireland	15			

APPENDICES

- Appendix I Chemical screening of RIVPACS sites
- Appendix II Chemical summary statistics by WFD system-A stream type
- Appendix III UK Biodiversity Research Advisory Group list of non-native freshwater macroinvertebrate species in the United Kingdom
- Appendix IV UK Technical Advisory Group on the Water Framework Directive list of nonnative freshwater macroinvertebrate species in rivers in the United Kingdom
- Appendix V Average CORINE level 3 land cover percentages within WFD System A stream types and CORINE label level key

1. INTRODUCTION

RIVPACS is a model that predicts the freshwater macroinvertebrate fauna expected to occur at a site in the absence of pollution. The four current RIVPACS models are based on 835 reference sites from streams and rivers through the United Kingdom. With the advent of the Water Framework Directive, (Council of the European Communities, 2000) hereafter referred to as the WFD, the concept of the 'reference condition' has become explicit within the legislative framework of the European Union. Reference condition has been established as a quality standard against which assessments of biological degradation must be compared. It is therefore essential that Member States can demonstrate that the biological datasets used to define their reference conditions meet the criteria of the WFD. The UK RIVPACS reference sites and predictive models were selected and developed prior to the WFD. The RIVPACS models were based on sites considered to be minimally impacted at the time of sampling. These were sampled over various phases of RIVPACS development over some 20 years. There is therefore a requirement to reappraise the levels of anthropogenic pressure acting at RIVPACS reference sites at the time that they were sampled.

It is crucial to realise that that although we refer to 'reference sites', and being in 'reference condition', the sites used in the RIVPACS predictive models only need to be acceptable terms of their anthropogenic pressure at the time they were sampled. The levels of anthropogenic pressure and the biological conditions of the reference sites after the time of sampling are of no relevance to their suitability within the RIVPACS models. Thus, although we recommend continuing with the established term 'reference sites', the term 'reference samples' might be more accurate.

The WFD 'normative definitions' of biological, physico-chemical and hydromorphological quality for high, good and moderate status classes are given in Table 1 while the specific definitions relating to river invertebrates are given in Table 2.

Status class	Description
High	There are no, or only very minor, anthropogenic alterations to the values of the physico-chemical and hydromorphological quality elements for the surface water body type from those normally associated with that type under undisturbed conditions.
	The values of the biological quality elements for the surface water body reflect those normally associated with that type under undisturbed conditions, and show no, or only very minor, evidence of distortion.
	These are the type-specific conditions and communities.
Good	The values of the biological quality elements for the surface water body type show low levels of distortion resulting from human activity, but deviate only slightly from those normally associated with the surface water body type under undisturbed conditions.
Moderate	The values of the biological quality elements for the surface water body type deviate moderately from those normally associated with the surface water body type under undisturbed conditions. The values show moderate signs of distortion resulting from human activity and are significantly more disturbed than under conditions of good status.

Table 1 - WFD normative definitions (general)

Status class	Description
High	The taxonomic composition and abundance correspond totally or nearly totally to undisturbed conditions. The ratio of disturbance sensitive taxa to insensitive taxa shows no signs of alteration from undisturbed levels. The level of diversity of invertebrate taxa shows no sign of alteration from undisturbed levels.
	The values of the biological quality elements for the surface water body reflect those normally associated with that type under undisturbed conditions, and show no, or only very minor, evidence of distortion.
	These are the type-specific conditions and communities.
Good	There are slight changes in the composition and abundance of invertebrate taxa from the type-specific communities
	The ratio of disturbance-sensitive taxa to insensitive taxa shows slight alteration from type-specific levels.
	The level of diversity of invertebrate taxa shows slight signs of alteration from type-specific levels.
Moderate	The composition and abundance of invertebrate taxa differ moderately from the type-specific communities.
	Major taxonomic groups of the type-specific community are absent.
	The ratio of disturbance-sensitive taxa to insensitive taxa, and the level of diversity, are substantially lower than the type-specific level and significantly lower than for good status.

Table 2 - WFD normative definitions (river invertebrates)

In addition to the WFD definitions of status classes, a working group set up as part of the EU Water Framework Directive common implementation strategy has also published further guidance on how Member States should define reference states and how class boundaries should be set (Wallin et al., 2005), hereafter referred to as the REFCOND guidance notes. The REFCOND guidance notes show Member States how much emphasis should be placed on biological quality elements and how much should be placed on physicochemical and hydromorphological elements. The REFCOND guidance notes state:

"...while pressure criteria might be a proxy measure for assessing risk or screening for sites or values, their role in defining good status is secondary. Ultimately, as mentioned above, it is the biological data assessed against the normative definitions in Annex V 2.1, which will definitively assign water bodies to status classes."

The REFCOND guidance notes also provide proposed pressure screening criteria for selecting potential reference condition sites. Table 3 reproduces these criteria (only those parts relevant to rivers). The criteria proposed elaborate the degree of anthropogenic pressure allowable for sites of high ecological status class.

General statement	•	High status or reference conditions is a state in the present or in the past corresponding to very low pressure, without the effects of major industrialization, urbanization and intensification of agriculture, and with only very minor modification of physicochemistry, hydromorphology and biology.
Diffuse source pollution	n	
Land-use intensification: Agriculture, forestry	•	Pre-intensive agriculture or impacts compatible with pressures pre-dating any recent land-use intensification. Pressures pre-dating any recent intensification in airborne inputs that could lead to water acidification.
Point source pollution		
Specific synthetic pollutants	•	Pressures resulting in concentrations close to zero or at least below the limits of detection of the most advanced analytical techniques in general use (a selection process for relevant pollutants in a river basin is presented as an example of best practice in section 6 of the guidance document from Working Group 2.1, IMPRESS).
Spec. non-synthetic pollutants	•	Natural background level/load (see reference above)
Other	•	No or very local discharges with only very minor ecological
emuents/discnarges		effects.
Morphological alteratio	ons	<u>5</u>
River morphology	•	stream and bank structures, river profiles, and lateral connectivity compatible with ecosystem adaptation and recovery to a level of biodiversity and ecological functioning equivalent to unmodified, natural water bodies
Water abstraction		· · · · · · · · · · · · · · · · · · ·
River water abstraction	•	Levels of abstraction resulting in only very minor reductions in flow levels or lake level changes having no more than very minor effects on the quality elements.
Flow regulation		
River flow regulation	•	Levels of regulation resulting in only very minor reductions in flow levels or lake level changes having no more than very minor effects on the quality elements.
<u>Riparian zone vegetati</u>	on	
	•	Having adjacent natural vegetation appropriate to the type and geographical location of the river.
Biological pressures		
Introductions of alien species	•	Introductions compatible with very minor impairment of the indigenous biota by introduction of fish, crustacea, mussels or any other kind of plants and animals. No impairment by invasive plant or animal species.
Fisheries and aquaculture	•	Fishing operations should allow for the maintenance of the structure, productivity, function and diversity of the ecosystem (including habitat and associated dependent and ecologically related species) on which the fishery depends

Table 3 - REFCOND pressure screening criteria for high status class

	 Stocking of non-indigenous fish should not significantly affect the structure and functioning of the ecosystem.
	No impact from fish farming.
Biomanipulation	No biomanipulation.
Other pressures	
Recreation uses	 No intensive use of reference sites for recreation purposes (no intensive camping, swimming, boating, etc.)

The REFCOND guidance notes also state:

'A prerequisite for the use of pressure screening criteria is that the relationship between pressure and ecological impact is well established and that the impacts correspond to the normative definitions in the Directive (Annex V: 1.2).'

This point is important in that it helps to determine which pressure criteria need to be considered when screening sites to see if they are of reference quality.

While the specific details of how sites should be assigned to status classes are undecided, the WFD and the REFCOND guidance notes show the relative emphasis that should be placed on biological and physico-chemical and hydromorphological elements and broadly which physico-chemical and hydromorphological variables should be considered. However it is not possible as yet to obtain status class threshold values for particular physico-chemical and hydromorphological variables. The screening of the RIVPACS reference sites carried out in this project has therefore, by necessity, been based on identifying sites that are atypical of the group to which they belong in terms of both one or more pressures and their observed biota.

Defining the levels of anthropogenic pressure acting at the RIVPACS reference sites at the time they were sampled has been difficult. Nevertheless, this project has used a variety of readily available electronic datasets to interpret the levels of anthropogenic stress acting at each RIVPACS reference site. This project has also sought to gather data on the current levels of stress acting at the RIVPACS reference sites. This may assist the UK Agencies in deciding whether the RIVPACS sites might also be suitable reference sites for other quality elements such as macrophytes, diatoms or fish.

This report describes the analysis of pressure data and the overall assessment of all of the RIVPACS sites in terms of both their biological communities and their levels of anthropogenic pressure (both currently and at the time the RIVPACS samples were collected). This leads to the identification of reference sites that had (or have) unacceptably high levels of anthropogenic pressure (in terms of the WFD of reference state). While the WFD and REFCOND guidance notes do not identify specific physico-chemical, hydrological or hydromorphological variables, this project (WFD46) has gathered data on specific variables that can be grouped under the following headings:

- Organic pollution
- Nutrient pollution
- Acidification
- Synthetic toxic pollutants
- Toxic metals
- Hydrological stress
- Morphological degradation
- Thermal pollution

- Sedimentation stress
- Non-native species
- Land cover

In addition to summarising the available data on the above types of pressures for each reference site, this report also summarises pressure data by RIVPACS classification end groups and by the WFD physical stream typology as applied to the UK (WFD system-A). Those river types (in terms of RIVPACS end groups) where sites are considered to have had unacceptable levels of anthropogenic stress are also identified.

The origin of the data used to screen the RIVPACS sites is presented separately in the RIVPACS database documentation report.

2. CHEMICAL PRESSURE

Screening of the RIVPACS reference sites to highlight sites with abnormal chemical parameters should involve identification of sites that have abnormal chemical values for their respective stream type. The TWINSPAN classifications of sites into groups underpinning each of the four RIVPACS models were considered to be the most useful means of distinguishing biologically meaningful stream types and were therefore used as the basis for partitioning the reference sites into types. To identify sites with abnormal chemical stress values we first needed to make estimates of the normal range of values for the chemical stress variables in each site group. The four current RIVPACS models (Great Britain, Northern Ireland, Scottish Highlands and Scottish Islands) comprise TWINSPAN classifications with 35, 11, 10 and 5 end groups respectively. However, in order to increase the confidence in our type specific estimates of mean chemical stress variables, we needed to work at a higher level within each TWINSPAN classification. We therefore made reference condition estimates of type-specific chemical stress levels at the 9-group level in Great Britain, the 3-group level in Northern Ireland, the 2-group level in the Scottish Highlands and for all sites as one group in the Scottish Islands. For each of these groups of sites we calculated thirteen descriptive statistics for each chemical stress variable:

- Mean
- Median
- 10 percentile
- 25 percentile (Q₁)
- 75 percentile (Q₃)
- 90 percentile
- Upper outlier limit
- Lower outlier limit
- Minimum
- Maximum
- Number of sites in the group
- Number of sites in the group with data for the chemical stress variable
- Percentage of sites in the group with data for the chemical stress variable

These descriptive statistics describe the mean (or median) chemical stress levels at reference sites in each group and also identify the normal range of variability expected to occur for each chemical variable in each group. Sites in each end group where a chemical stress variable was outside the 10 or 90% ile limit (depending on the particular chemical variable) could then be distinguished. Because many of the chemical stress variables we attempted to gather could only be obtained for a small number of sites (e.g.

most of the metals, and all of the organic chemicals and pesticides), and because in several cases we had collated complementary variables (e.g. dissolved oxygen as % saturation and dissolved Oxygen as mg/l), we have only calculated descriptive statistics for eleven chemical stress determinands:

- pH (-log H⁺)
- Oxygen (%sat)
- BOD ATU (mg/l O₂)
- Soluble Reactive Phosphorus (mg/I P)
- Nitrate (mg/l N)
- Nitrite (mg/l N)
- Free & Saline Ammonia (mg/l N)
- Total Oxidised Nitrogen (mg/l N)
- Suspended Solids (mg/l 105°C)
- Copper (dissolved) (mg/l)
- Zinc (dissolved/total) (mg/l)

The descriptive statistics for the chemical variables above are given in Appendix I together with box and whisker plots showing outlier sites (and their RIVPACS site codes). The descriptive statistics in Appendix I serve to identify which RIVPACS sites in each of their respective TWINSPAN groups have mean chemical values that lie outside the normal range suggested by the rest of the sites in that group. The 'normal' range of a variable within a site group is defined here as the range either below $Q_1-1.5(Q_3-Q_1)$ or above $Q_3+1.5(Q_3-Q_1)$ depending on whether the variable decreases or increases with increasing stress. Q_1 and Q_3 are lower and upper quartile values and this 'normal' range is shown by the solid vertical lines (whiskers) in each box plot given in Appendix I.

However, simply because a given site has an abnormally high (or low) mean value for a given chemical stress variable does not necessarily mean that site is biologically impaired relative to the other sites in the same stream type. We therefore investigated each site identified in Appendix I as having abnormally high (or low) values for a particular chemical stress variable and examined their biotic index values to see if the abnormal chemical stress was accompanied by biological impairment. We set a threshold of potential biological impairment to where the 3 season combined observed ASPT for a site was in the lowest 10% of ASPTs in that site group (or Number of Taxa in the case of copper and zinc stress). Sites identified as having both potential chemical stress and potential biological impairment are highlighted in bold in Appendix I and are reproduced in Table 4.

We then further investigated the reliability of the chemical data that had been linked to each of the reference sites in Table 4. We found that for 16 of the sites the chemical data came from the original IFE VAX archive files and could therefore be regarded as both temporally and spatially reliable (Table 5). For the remaining 22 sites we identified the origin of the chemical data and investigated each source in more detail to assess the temporal relevancy of the chemical data to the RIVPACS sampling site and sampling date (Table 5). Twelve of the remaining 22 sites had chemical data that was collected within approximately 1 year of the RIVPACS sampling date. This left ten sites where the chemical data was collected at a period of greater than one year after the RIVPACS samples were collected. We investigated these sites further using chemical data that was available through the Environment Agency web pages to assess whether any appreciable changes in chemical quality had taken place between the oldest data we could obtain on the web and the data we had used to assess the RIVPACS sites. We could only find additional data for four of these ten sites, but in all four cases the

	TWINSPAN Group	TWINSPAN end group	RIVPACS site	River	Site	BOD ATU	Oxygen (%sat)	SRP	Nitrate	Nitrite	Ammonia	TON	Suspended Solids	Dissolved Cu	Diss ^D /total ^T Zn
	1	2	4885*	Unnamed	Westerdale		Х								
	1	3	5001	Otter	Fairhouse Farm	Х		Х		Х	Х		Х		
	1	3	TA07	Elliot Water	Elliot	Х		Х			Х				
	2	5	5845	Unnamed	Dinmore Manor								Х		
	2	5	6845	Unnamed	Alton Common	Х				Х	X				
	2	8	2001	Blithe	Cookshill						X				
	2	8		Rase Claubill Brook	Bully Hills	v					×				
	2	0 1/	3500	South Type	Bardon Mill	^					^		Y		
	3	14	4909	Tweed	Peebles Gauge			х	х				~		
ល	4	17	2719	Ribble/Gavle Beck	Mitton Bridge			X	X	Х	Х	Х			
AC	4	17	4107	Stinchar	Pinmore Bridge								Х		
Ę	5	19	5009	Otter	Newton Poppleford			Х							
Ř	5	20	8289	Clun	Jay									Х	
с С	6	21	2211	Dove	Monk's Bridge									Х	ъ
0	6	21	3309	Swale	Morton-on-Swale				V			V			X
ano	6	22	2507	Gien Turne (North Turne	Banthorpe Lodge				X		v	X			vD
ini	0	22	3313 NIM07	Mayor	Wayor Bridgo		v				~				~
Ма	7	22	1407		Waver Bliuge Ware Weir		^	x					X		
~	7	27	1907	Perry	Milford			~					~	х	
	7	27	2305	Colne	Earl's Colne	Х		Х	Х					~	
	7	27	2307	Colne	Fordstreet Bridge			X	X						
	7	27	6103	Thet	East Harling						Х				
	7	28	1909	Perry	Mytton									Х	
	8	29	2103	Smite	Colston Bassett			Х							
	8	29	6001	Blythe	Cheswick Green	V				V	V			Х	
	8	30	2815	Weaver Ditton Stroom	Beam Bridge	X				X	X				vD
	a	34	2509	Glen	South of Twenty						x				~
Link	1	1	SEPA E08	Tay/Dochart/Fillan/Cononish	Taymount Mains						Λ	Х	Х		
Hign-	1	ż	4885*	Unnamed	Westerdale		Х					~	~		
lanus	2	5	SEPA W38	Carradale Water	B842 Bridge								Х		
Islands	1	5	SEPA N09	Yell: Easter Burn of Bouster	Bouster		Х								
N la utila a com	1	3	20201101	Owenrigh River	Carnanbane										Χ'
INORTHORN	2	6	NI 24	Crew Burn	Carrols Bridge	Х		Х	X	v	Х	V			
ireland	2	7	NI 32	Mullagh River	Mau				Х	Х		Х	V		
	3	11	20303403	BlackWater	VOV								X		

Table 4 - Sites where a lower 10%ile or upper 90%ile chemical determinand is exceeded and an appropriate 3 season combined biotic index value (ASPT for all except Cu & Zn where NTaxa was used) is in the lowest 10% within the TWINSPAN group

*site part of the mainland GB RIVPACS model and the Scottish Highlands RIVPACS model

7

	TWINSPAN Group	TWINSPAN end group	RIVPACS site	River	Site	Chemical data arising (at least in part) from IFE VAX files and therefore regarded as spatially and temporally reliable)	Origin of chemical data at sites where there were no data from IFE VAX files	Year of summer RIVPACS sampling	Year of chemical sampling for determinands exceeding 10/90 %ile	Temporal relevance (within 1 yr = 'Good', else 'Poor')
	1	2	4885*	Unnamed	Westerdale	Y	-	_	-	-
	1	3	5001	Otter	Fairhouse Farm	Y	.	_	_	-
	1	3	TA07	Elliot Water	Elliot	_	SEPA NCW database	1992	1992	Good
	2	5	5845	Unnamed	Dinmore Manor	-	GQA 2002 database	1991	2002	Poor
	2	5	6845	Unnamed	Alton Common	_	IFE data & GQA 2002	1991	1988-1990	Good
	2	8	2001	Blithe	Cookshill	Y		_		_
	2	8			Bully Hills	-	IFE data	1990	1988-1990	Good
	2	8	1 H06		u/s Burghtield	-	IFE data	1990	1988-1990	Good
	3	14	3509	South Tyne	Bardon Mill	-	GQA 2002	1978	2002	Poor
Ś	3	14	4909	Ribble/Cavle Reek	Mitton Bridge		—	_	_	-
ö	4	17	2/19	Stinchar	Dinmoro Bridgo		—	_	-	-
ΡA	5	10	5000	Otter	Newton		_	_	_	_
≧	5	20	8289	Clup	lav	-	GOA 2002	1088	2002	Poor
ск С	6	20	2211	Dove	Monk's Bridge	_	GOA 2002	1978	2002	Poor
Ц	õ	21	3309	Swale	Morton-on-Swale	_	GOA 2002	1978	2002	Poor
p	õ	22	2507	Glen	Banthorpe Lodge	Y	-	-	-	-
lan	õ	22	3515	Tyne/North Tyne	Wylam	Ý	_	_	_	_
ain	6	22	NW07	Waver	Waver Bridge	_	IFF data	1990	1988-1990	Good
Ĕ	7	27	1407	Lee	Ware Weir	Y	_	_	_	_
_	7	27	1907	Perry	Milford	_	GQA 2002	1978	2002	Poor
	7	27	2305	Colne	Earl's Colne	Y	_	_		_
	7	27	2307	Colne	Fordstreet Bridge	Ý	_	_	_	_
	7	27	6103	Thet	East Harling	Y	_	_	_	_
	7	28	1909	Perry	Mytton	_	GQA 2002	1978	2002	Poor
	8	29	2103	Smite	Colston Bassett	_	GQA 1995	1979	1993-1995	Poor
	8	29	6001	Blythe	Cheswick Green	_	GQA 2002	1982	2002	Poor
	8	30	2815	Weaver	Beam Bridge	Y	_	_	-	-
	8	30	SN01	Ditton Stream	Ditton	_	GQA 2002	1990	2002	Poor
	9	34	2509	Glen	South of Twenty	Y	—	_	_	-
High-	1	1	SEPA E08	Tay/Dochart/Fillan/Cononish	Taymount Mains	-	SEPA NCW database	2001	2001-2002	Good
lands	1	2	4885*	Unnamed	Westerdale	Y	_	_	_	-
lando	2	5	SEPA W38	Carradale Water	B842 Bridge	_	SEPA NCW database	2001	2001-2003	Good
Island	1	5	SEPA N09	Yell: Easter Burn of Bouster	Bouster	-	SEPA NCW database	2001	2001-2004	Good
Northan	1	3	20201101	Owenrigh River	Carnanbane	-	EHS 1986-1995	1990	1986-1995	Good
Northern	2	6	NI 24	Crew Burn	Carrols Bridge	-	EHS 1996-2005	2000	2001-2004	Good
ireland	2	7	NI 32	Mullagh River	Mullagh Bridge	-	EHS 1996-2005	2000	2000-2004	Good
	3	11	20303403	Blackwater	MOV		EHS 1986-1995	1990	1986-1995	Good

 Table 5 - Sites where a lower 10%ile or upper 90%ile chemical determinand is exceeded and an appropriate 3 season combined biotic index value is in the lowest 10% within the TWINSPAN group together with details of the origin of the chemical data

*site part of the mainland GB RIVPACS model and the Scottish Highlands RIVPACS model

additional data indicated that these sites had long running chemical pollution problems. We therefore conclude that all the sites identified in Table 4 and 5 were probably chemically impaired.

Using the data in Table 5 we can now identify the number of sites in each of the four RIVPACS models where sites have abnormal values for one or more chemical stress variables and there is some evidence of associated biological impairment (Table 6). The RIVPACS Great Britain model has the highest percentage of sites that are potentially stressed by chemical pollutants (4.8%), while the percentage of sites potentially stressed by chemical pollutants is lower in the other three models.

Table 6 - The number of RIVPACS sites with one or more outlying chemical pressures and an associated a typical biotic index value in each RIVPACS model

RIVPACS model	Number	Number of sites with chemical	% of sites with chemical
	of sites	pressure and an associated a-	pressure and an associated
		typical biotic index value	a-typical biotic index value
Great Britain	614	30	4.8
Scot. Highlands	108	3	2.8
Scot. Islands	55	1	1.8
Northern Ireland 110		4	3.6
	Total	37*	

*site 4885 is used in both the Great Britain and Scottish Highlands models

The sites that have been identified as having probable chemical and biological impairment are fairly evenly distributed between the TWINSPAN end groups of all four RIVPACS models (Table 6) and there do not appear to be any end groups that are disproportionately populated by chemically stressed sites.

Summary statistics for the eleven commonly recorded chemical determinands have also been calculated for sites within each WFD system-A stream type (Appendix II). As part of this project we have also collated current levels of chemical pressures at the RIVPACS reference sites. While these data have not been included in this pressure analysis report, they may be of use to the UK agencies should they need to consider the collection of reference site samples for other biological quality elements such as macrophytes, diatoms or fish. These data are stored in the RIVPACS database in the tables prefixed 'Chemistry current...' and are set out in an identical structure to the data contemporary with the RIVPACS sample collection dates. In assessing the contemporary and current data it is important to realise that in some cases, because little data were available, the same data are used in both sets of tables.

3. FLOW

Our screening of the RIVPACS sites for flow related stress relies heavily on an existing investigation of quality of the RIVPACS sites in terms of flow (Clarke et al., 2003). Their study developed a new algorithm for the calculation of RIVPACS expected family level LIFE scores. The Lotic-invertebrate Index for Flow Evaluation (LIFE) is a biotic index developed to assess the biological impact of low flow (low discharge) on macroinvertebrate communities (Extence et al., 1999). Within England and Wales, the Environment Agency intend to use observed/RIVPACS expected LIFE scores as part of their Resource Assessment and Management (RAM) Framework for abstraction licensing and in their Catchment Abstraction Management Strategies (CAMS). O/E LIFE is therefore a well established measure of the biological impact of low flow.

Clarke et al. (2003) linked RIVPACS sites from the 614 site GB model to gauging stations using the CEH national river network GIS derived from the CEH-corrected Ordnance Survey 1:50000 blue line river layer. 443 RIVPACS sites had both summer flow data in the year of RIVPACS sampling and mean summer flow data from at least four other years. For each site, the mean summer flow across all available years was calculated together with the mean summer flow in the year of RIVPACS sampling. These data were then standardised as Percent Flow by expressing the flow in the RIVPACS sampling year as a percentage of the average flow in all years. Clarke et al. found that there were 31 sites whose mean summer flow across all years, of which eight sites had mean summer flows less that 40% of the overall average. Clarke et al. also assessed the relative flow in the summer of the RIVPACS sampling year as the Percent Rank Flow across all year's summer flows. Twenty of the 443 sites were found to have been sampled in years when the summer flows were amongst the lowest 10% of mean summer flow flows across all available years since 1970.

Clarke et al. (2003) then examined the relationship between O/E LIFE ratios and both Percent Flow and Percent Rank Flow finding that there was some suggestion that sites sampled in years of relatively low summer flow tended to have marginally lower values of LIFE O/E. While these correlations were statistically significant (p<0.01) they were very weak (r=0.15-0.17) indicating that there was no relationship of any practical concern amongst the reference sites between LIFE O/E and the relative flow in the year of RIVPACS sampling.

Correlations between LIFE O/E and relative flow in the RIVPACS sampling year were also investigated within different types of streams defined by the RIVPACS TWINSPAN end groups at the 9-group level (to ensure a large enough sample size within each stream type). Only one group had a significant relationship between LIFE O/E and the relative flow (Percent Rank Flow) in the RIVPACS sampling year. This was TWINSPAN group 29-32 comprising lowland sites mainly in south and southeast England and including many of the southern chalk streams. However, one of the sites in this end group had flow data obtained from 27km downstream and was therefore judged to be inappropriate and another site had a 30-year highest mean summer flow and a very high LIFE O/E. Overall it was concluded that amongst the RIVPACS reference sites there were no groups of sites (i.e. types of sites) that had several sites with both relatively low summer flow prior to sampling and low LIFE O/E and that there was therefore no major systematic problem in using RIVPACS to set expected LIFE scores for any type of river.

Although no major systematic problems were found in the RIVPACS dataset in terms of flow and its effects on the samples, there were three individual sites that were identified as having atypical flows and LIFE O/E (Table 7). These three sites are in group 33, an end group containing mostly lowland slow flowing rivers in the south, east and south east of England. Because this end group is quite large (31 sites) the effects of removing these sites would be quite small in terms of how the end group contributes to predictions of expected Number of Taxa and ASPT.

Code	River	Site	LIFE O/E	Percent Flow	Percent Rank Flow
6259	Granta	Hildersham	0.867	17	14
6811	Stour	Longham	0.782	68	15
9113	Hull/West Beck	Corpslanding	0.798	41	19

Table 7 - RIVPACS sites to be excluded on grounds of flow

4. HYDROMORPHOLOGY

Using River Habitat Survey datasets supplied by the Environment Agency, we were able to link 269 of the RIVPACS sites (32%) to River Habitat Surveys (based on proximity within 500m and a matching river name). These comprised sites in England (155), Scotland (52), Wales (21) and Northern Ireland (41) and enabled Habitat Modification Index (HMI) scores to be associated with these RIVPACS sites. Because only 32% of the RIVPACS sites could be linked to RHS surveys, and because hydromorphology is a relatively stable environmental stress (over time), we decided to accept RHS surveys from any RHS survey date relative to the RIVPACS sampling date.

In screening the RIVPACS sites for potential hydromorphological stress we first needed to establish whether the hydromorphological modifications described by HMI scores were related to the biological quality of the RIVPACS samples. This requirement is given in the REFCOND guidance notes where it is stated that that for a pressure to be used in reference site screening then a '...relationship between the pressure and ecological impact should be well established...' For hydromorphological pressure there is little or no existing information to suggest that such a relationship exists so we investigated this using the 269 RIVPACS sites with linked RHS surveys and HMI scores (section 4.1).

In addition to linking 269 RIVPACS sites to RHS surveys and HMI scores, we also reexamined RIVPACS field survey sheets that were filled in at the time the RIVPACS samples were collected (all drawn from the 614 site RIVPACS Great Britain model). This was done partly to increase the number of RIVPACS sites at which we could make a hydromorphological assessment and also to gather data where we were more confident about the spatial relevance of the hydromorphological features with respect to the RIVPACS sampling location than we had been for the RHS data. Field sheets were examined for 447 sites (53.5% of all UK RIVPACS sites) and details of hydromorphological modifications present at the RIVPACS sites were compiled (section 4.2).

4.1 River Habitat Survey

HMI scores of the 269 RIVPACS sites that have been linked to RHS surveys ranged from 0 to 74 (HMI classes 1 to 5) and therefore represented a wide range of hydromorphological modification. We investigated the relationship between the HMI scores and the biological quality of the RIVPACS reference sites (in terms of spring, summer and autumn combined O/E Number of Taxa) and found that for both the 220 RIVPACS sites in Great Britain and the 41 RIVPACS sites in Northern Ireland, the relationship between SprSumAut O/E NTaxa and HMI was very weak (Figure 1). High HMI scores were therefore not significantly associated with a lower than expected number of taxa within the 269 sites tested.

4.2 **RIVPACS** field sheets

While the use of RHS data to assess the hydromorphological condition of the RIVPACS sites had the advantage of being based on a well-established hydromorphological methodology, our re-examination of field survey sheets for 447 RIVPACS sites enabled the hydromorphological condition of these sites to be established with a higher degree of spatial and temporal relevance. From each RIVPACS field survey sheet we collated information from the sampler's sketch map and their notes on the presence of weirs, significant bank modifications to one or both banks (significant meaning hard engineering such as concrete, sheet piling, etc), channel straightening, and dredging (within the last year). Where any of the above features were recorded we regarded the

Figure 1 – Spring, summer and autumn combined O/E Number of Taxa verses HMI score at RIVPACS sites with linked RHS

SprSumAut O/E NTaxa & HMI (220 GB sites)

site as being hydromorphologically modified. We then tested the relationship between our simple 'index' of hydromorphological modification ('modified' or 'unmodified') and the spring, summer and autumn combined sample O/E for Number of Taxa. We found that overall, across all end-groups, there was no significant difference between modified sites and unmodified sites in terms of their 3-season O/E NTaxa (t=-0.45, P=0.651, d.f.=76). We then examined the proportions of modified and unmodified sites in the TWINSPAN 9-level groups (Table 8) and found that TWINSPAN groups 6 and 9 had the highest proportions of modified sites (17.9% and 33.3% respectively).

Table	8	-	Distribution	of	hydromorphologically	modified	and	unmodified	sites
within	Т٧	NI	NSPAN group	ps					

TWINSPAN	Number of	Number of	Number of		
Group	sites assessed	modified sites	unmodified sites	% modified	
1	47	2	45	4.3	
2	33	3	30	9.1	
3	64	5	59	7.8	
4	58	5	53	8.6	
5	38	5	33	13.2	
6	67	12	55	17.9	
7	57	6	51	10.5	
8	38	4	34	10.5	
9	45	15	30	33.3	

Because groups 6 and 9 had the most balanced proportions of modified and unmodified sites we tested each of these separately to see if there was a significant difference in 3-season O/E NTaxa between modified and unmodified sites, again finding no significant differences (group 6 t=0.72, p=0.482, df=16; group 9 t=0.16, p=0.873, df=36).

Finally we also used a 2-way unbalanced ANOVA to assess the relationship between 3 season combined observed NTaxa (rather that O/E) and site modification, simultaneously allowing for differences at the TWINSPAN 4-group level (thereby involving the maximum number of sites and increasing the power to detect differences). We found that while there was a highly significant difference between the 4 TWINSPAN groups in terms of the mean NTaxa (F=13.32, p=<0.001, df=3 and 439), there was no significant difference between the modified and unmodified sites across all end-groups (F=0, p=0.96, df=1 and 439) and that there was no significant interaction (F=0.43, p=0.732, df=3 and 439) indicating that differences in NTaxa between modified and unmodified sites do not change significantly between end-groups.

We therefore concluded that based on both the 269 linked RHS survey HMI scores and 447 RIVPACS field sheet based assessments of hydromorphological modification there was no clear relationship between hydromorphological modification and the three season combined number of macroinvertebrate taxa recorded at the RIVPACS sites. We conclude that there is no evidence that this degree of impairment has had a significant impact on the macroinvertebrate fauna.

5. CORINE 2000 LAND USE

CORINE (CoORdination of Information oN the Environment) land cover data (at CORINE label level 3 – see Appendix V) gathered in the year 2000 was summarised for the catchments draining into each of the RIVPACS reference sites. This as done using ArcMap9 GIS software and a Digital Terrain Model (DTM version IHDTM Sept 04). Firstly a flow accumulation grid was constructed using the DTM to visualise the courses of streams and rivers. Secondly, using the DTM, catchments were then generated for each RIVPACS reference site. This was done one-by-one to ensure that each catchment

was sensible when judged against the flow accumulation grid. The coordinates of RIVPACS sites that failed to generate sensible catchments were adjusted accordingly. Thirdly, the RIVPACS catchments were then used to 'cookie-cut' CORINE land cover data at 50m x 50m resolution. These data were then summarised as the percentage land cover in the catchment draining into each RIVPACS site. Average CORINE 2000 land cover for the RIVPACS sites is summarised by WFD System-A streams at the CORINE level 1 (5 broad categories) in Figures 2 and 3, and at CORINE level 3 (44 detailed categories) in Appendix V.

Our principle interest in the analysis of land cover was to determine the average percentage cover of artificial surfaces (urban, industrial ground etc). In both Great Britain and Northern Ireland the average percentage cover of CORINE label level 1 (defined in

Appendix V) artificial surfaces in catchments draining into the RIVPACS sites was low (1.983% and 0.593% respectively). The percentages of individual CORINE label level 3 artificial land use types in the RIVPACS catchments were also judged to be acceptable and not at levels that might suggest that individual sites were unacceptably stressed.

6. THERMAL POLLUTION

Information on possible thermal pollution was gathered from the survey notes on the RIVPACS field sheets that were filled in at the time the RIVPACS samples were collected. We examined 447 RIVPACS field sheets for evidence of thermal stress and found that no sites had any entries in the field survey notes to indicate that thermal pollution was present.

7. SEDIMENTATION STRESS

Although all RIVPACS sites have a standard assessments of substratum composition associated with all three separate season samples, sedimentation stress is difficult to distinguish from the very large natural variability in substratum composition that occurs naturally across the whole RIVPACS dataset. This difficulty of assessing sedimentation stress is further compounded by the fact that substratum composition is regarded as a predictor variable of macroinvertebrate community composition in all of the RIVPACS models. We therefore decided to assess sedimentation stress by again looking at the field survey sheets that had been collated for the RIVPACS sites. Each of these were filled in by experienced biologists at the time the RIVPACS samples were collected and we are confident that abnormally high levels of sedimentation would have been recorded on these sheets if it was present. We found that out of the 447 field survey sheets assessed only two made mention of possible sedimentation stress, site 0107 (the River Camel at Brockton) and site 4205 (the River Annan at Newton Bridge). We then examined the 3 season combined observed number of taxa at these sites in relation to the 3 season combined observed number of taxa in their respective end groups as a whole (at the 9-group TWINSPAN level). We found that for site 0107 the 3 season combined observed NTaxa ranked 30th highest out of 87 in the group and for site 4205 the 3 season combined observed NTaxa ranked 46th out of 83. Despite mention of possible sedimentation stress at both of these sites, the number of taxa was firmly within the natural range of variability for these types of rivers and we conclude that no sites should be regarded as having significant sedimentation stress.

8. NON-NATIVE SPECIES

Our assessment of the potential stress caused by non-native species is confined to the potential pressure exerted by non-native macroinvertebrate species. We made use of two lists of non-native freshwater macroinvertebrates in our assessment of pressure at the RIVPACS sites – a list produced by the UK Biodiversity Research Advisory Group (UK BRAG, 2004) reproduced in Appendix III, and a list produced by the UK Technical Advisory Group on the Water Framework Directive (UK TAG, 2003) reproduced in Appendix IV. We assessed the frequency of occurrence of all of the species described in Appendix III and IV across the RIVPACS dataset (Table 9).

Scientific name	English name	Freq. of occurrence
Achtheres percarum	Freshwater copepod	0
Anguillicola crassus	Swim bladder nematode	0
Asellus communis	Freshwater malacostracan	0
Astacus astacus	Noble crayfish	0
Astacus leptodactylus	Narrow-clawed (Turkish) crayfish	0
Branchiura sowerbyi	Freshwater oligochaete	5
Corbicula fluminea	Freshwater mollusc	0
Corophium curvispinum	Freshwater malacostracan	1
Crangonyx pseudogracilis	Freshwater amphipod	125
Craspedacusta sowerbyi	Freshwater coelenterate	0
Dikerogammarus villosus	Freshwater amphipod	0

Table 9 – Frequency of occurrence of non-native freshwater macroinvertebrate species across the 835 RIVPACS sites

Dreissena polymorpha	Zebra mussel	2
Dugesia tigrina	Freshwater triclad	35
Ergasilus briani	Freshwater copepod	0
Ergasilus sieboldi	Freshwater copepod	0
Eriocheir sinensis	Chinese mitten crab	0
Ferissia wautieri	Freshwater mollusc	0
Lernaea cyprinacea	Freshwater copepod	0
Limnodrilus cervix	Freshwater oligochaete	10
Lymnaea catascopium	Freshwater gastropod	0
Marstoniopsis scholtzi	Freshwater mollusc	0
Menetus dilatatus	Freshwater mollusc	0
Musculium transversum	Freshwater mollusc	0
Mytilopsis leucophaeata	Freshwater bivalve	0
Neoergasilus japonicus	Freshwater copepod	0
Orconectes limosus	Spiny-cheeked/striped crayfish	0
Pacifastacus leniusculus	North American signal crayfish	0
Phagocata woodworthi	Freshwater triclad	0
Physa acuta	Freshwater mollusc	13*
Physa gyrina	Freshwater mollusc	0
Physa heterostropha	Freshwater mollusc	1
Piscicola geometra	Fish leech	186
Planaria torva	Freshwater triclad	14
Potamopyrgus antipodarum	Jenkin's spire shell	529
Procambarus clarkii	Red swamp crayfish	0
Tracheliastes polycolpus	Freshwater copepod	0

*Physa acuta group includes Physa acuta and Physa heterostropha

Of the 37 non-native species listed in Table 9, ten are definitely present within the RIVPACS dataset (*Branchiura sowerbyi*, *Corophium curvispinum*, *Crangonyx pseudogracilis*, *Dreissena polymorpha*, *Dugesia tigrina*, *Limnodrilus cervix*, *Physa heterostropha*, *Piscicola geometra*, *Planaria torva*, *Potamopyrgus antipodarum*). *Physa acuta* group includes the introduced species *Physa acuta* and *Physa heterostropha* so we are unable to assess whether *Physa acuta* is actually present at the 13 sites RIVPACS sites where *Physa acuta* group are recorded (without re-examination of archived specimens). Several of these species occur at many of the RIVPACS sites (*Crangonyx pseudogracilis*, *Piscicola geometra*, *Potamopyrgus antipodarum*, *Dugesia tigrina*, *Planaria torva*) and we regard these are completely naturalised taxa. Of the remaining species only the zebra mussel (*Dreissena polymorpha*) is cause for concern.

Dreissena polymorpha is one of three species highlighted by the UK TAG as being potentially damaging to aquatic ecosystems (together with the Chinese mitten crab (*Eriocheir sinensis*) and the North American signal crayfish (*Pacifastacus leniusculus*). Of these three species, only *Dreissena polymorpha* is found in the UK RIVPACS reference site data set (at site 6293 – The Wissey at Five Mile House, and site 6917 – the Thames at Reading). We compared the 3 season combined observed number of taxa at these two sites with the other sites in their TWINSPAN group (at the TWINSPAN 9-group level). Both sites are in TWINSPAN group 9 and we found that both sites were

within to top 20th highest sites in terms of their 3 season combined observed number of taxa (site 6293 is 17th out of 58 sites in group 9 and site 6917 is 20th). It is therefore clear that while *Dreissena polymorpha* is recorded at these sites, both sites had fully intact reference macroinvertebrate communities and we do not therefore consider that these sites were stressed by *Dreissena polymorpha* at the time they were sampled.

We also examined the frequency of occurrence of *Gammarus pulex* in Northern Ireland (where it is non-native and thought to be displacing the native *Gammarus duebeni*). We found that while *Gammarus duebeni* was present in 96 of the 110 Northern Ireland reference sites, *Gammarus pulex* was present at only 22. We have not regarded the presence of *Gammarus pulex* in sites in Northern Ireland as a pressure with sufficient intensity for sites to be considered non-reference.

9. OVERALL PRESSURE ASSESSMENT

This study has enabled an overall assessment to be made of the degree to which the RIVPACS reference site dataset complies with the WFD and REFCOND concept of reference condition for macroinvertebrates. A summary of the RIVPACS sites identified as being potentially unsuitable is given in Table 10.

Model Site c	ode River		Site	Unsuitability
GB 1407	Lee		Ware Weir	Organic/Nutrients
GB 1907	Perry		Milford	Metals
GB 1909	Perry		Mytton	Metals
GB 2001	Blithe		Cookshill	Organic
GB 2103	Smite		Colston Bassett	Nutrients
GB 2211	Dove		Monk's Bridge	Metals
GB 2305	Colne		Earl's Colne	Organic/Nutrients
GB 2307	Colne		Fordstreet Bridge	Nutrients
GB 2507	Glen		Banthorpe Lodge	Nutrients
GB 2509	Glen		South of Twenty	Organic
GB 2719	Ribble/Gayle	e Beck	Mitton Bridge	Organic/Nutrients
GB 2815	Weaver		Beam Bridge	Organic/Nutrients
GB 3309	Swale		Morton-on-Swale	Metals
GB 3509	South Tyne		Bardon Mill	Organic
GB 3515	Tyne/North 1	Гупе	Wylam	Organic/Metals
GB 4107	Stinchar	-	Pinmore Bridge	Organic
GB 4909	Tweed		Peebles Gauge	Nutrients
GB 5001	Otter		Fairhouse Farm	Organic/Nutrients
GB 5009	Otter		Newton Poppleford	Nutrients
GB 5845	Unnamed		Dinmore Manor	Organic
GB 6001	Blythe		Cheswick Green	Metals
GB 6103	Thet		East Harling	Organic
GB 6259	Granta		Hildersham	Low flow
GB 6811	Stour		Longham	Low flow
GB 6845	Unnamed		Alton Common	Organic/Nutrients
GB 8289	Clun		Jay	Metals
GB 9113	Hull/West Be	eck	Corpslanding	Low flow
GB AN06	Rase		Bully Hills	Organic
GB NW07	Waver		Waver Bridge	Organic
GB SN01	Ditton Strear	n	Ditton	Metals
GB TA07	Elliot Water		Elliot	Organic/Nutrients
GB TH06	Clayhill Broo	ok	u/s Burghfield STW	Organic
GB, Highlands 4885	Unnamed		Westerdale	Organic
Highlands SEPA	E08 Tay/Dochart	/Fillan/Cononish	Taymount Mains	Organic/Nutrients
Highlands SEPA	W38 Carradale W	/ater	B842 Bridge	Organic
Islands SEPA	N09 Yell: Easter	Burn of Bouster	Bouster	Organic
N. Ireland 20201	101 Owenrigh Ri	ver	Carnanbane	Metals
N. Ireland 203034	403 Blackwater		Moy	Organic
N. Ireland NI_24	Crew Burn		Carrols Bridge	Organic/Nutrients
N. Ireland NI 32	Mullagh Rive	er	Mullagh Bridge	Nutrients

Table 10 – RIVPACS sites identified as potentially unsuitable

Overall 40 (4.8%) of RIVPACS sites were identified as potentially unsuitable across the 835 sites in the four RIVPACS models (Great Britain 33 sites (5.4%), Northern Ireland 4 sites (3.6%), Scottish Highlands 3 sites (2.7%) and Scottish Islands 1 site (1.8%), one site being in both the Great Britain and Scottish Highlands models). Twenty-nine sites were identified as having either excessive organic or nutrient pollution (or both) relative to other sites in their group, 8 have excessive metals concentrations and 3 had unacceptably low flows. No sites were judged to have unacceptably low pH, or unacceptable levels of morphological degradation, thermal pollution, sedimentation or communities adversely affected by non-native species. While a thorough assessment of pressure arising from synthetic toxic pollutants and toxic metals was not possible due to insufficient data, the levels of these stressors at sites where data were available indicate that levels were low and often below the limits of detection of the analytical techniques available at the time the samples were analysed.

The presence of 40 potentially unsuitable sites within the UK RIVPACS models may mean that the targets set by these models could be too low for some test sites. There are several possible solutions:

- (1) Remove these sites and develop new RIVPACS models
- (2) Retain the current RIVPACS models but exclude these potentially impaired sites from estimates of expected faunas and biotic indices
- (3) Retain the current RIVPACS models but statistically adjust/correct the expected biotic index values according to the estimated/perceived levels of stress acting at the reference sites at the time they were sampled.

Implementation any of the three options above will lead to slightly more stringent reference condition targets for test sites.

10. GUIDELINES FOR FUTURE REFERENCE SITE SELECTION

This project has also enabled guidance to be formulated for future RIVPACS development projects where new sites need to be selected. Any potential new RIVPACS reference sites must now take account of the WFD definition of reference state and must involve a comprehensive assessment of all those forms of stress detailed above (organic pollution, nutrient pollution, acidification, synthetic toxic pollutants, toxic metals, hydrological stress, morphological degradation, thermal pollution, sedimentation stress, and non-native species). Any potential new RIVPACS reference sites must therefore be selected in consultation with the UK agencies and be based on a thorough appraisal of environmental stresses to ensure that none of these lie outside the appropriate range for that type of stream. This should include requests for comprehensive chemical data that is both temporally and spatially relevant. In addition, at all new sites field survey sheets (of the general type used in RIVPACS phases I, II and II) should be filled in so that site-specific pressures such as hydromorphological modifications and sedimentation can be properly assessed.

In the case of site selection for stream types that are not currently represented in great numbers in RIVPACS (e.g. small headwater streams) the data compiled in this project may not adequately represent that stream type but will still serve as a guide to the types of stress that should be considered.

11. WATER FRAMEWORK DIRECTIVE INTERCALIBRATION

The data collated for this project also assists the UK agencies in contributing to the European WFD intercalibration process that is currently underway within several Geographical Intercalibration Groups (GIGs). Appendix II contains summary statistics for a range of commonly measured chemical determinands in terms of WFD System-A stream types. Because the UK agencies now have access to comprehensive matched reference condition macroinvertebrate and chemical datasets these data also contribute EU-wide understanding towards common of reference conditions for а macroinvertebrates. It is clear from the summary statistics produce in this project that while it has long been recognised that biological targets should be site specific, it is also clear that chemical targets should be at least stream-type specific. These data clearly indicate that reference condition macroinvertebrate communities reside in streams and rivers with widely varying physico-chemical properties and a single standard threshold for a given stressor, for example nitrate, would not be appropriate for all types of streams. A further important finding from this project is that hydromorphological stress, although present at some sites, does not appear to significantly influence macroinvertebrate community richness in the UK RIVPACS reference site dataset. This does not mean to say that hydromorphological stress is unimportant at stream sites in general but it does show that the type and severity of hydromorphological degradation present at the RIVPACS reference sites is of little significance for macroinvertebrate communities.

12. **RECOMMENDATIONS**

- Of the 835 current RIVPACS reference sites across the United Kingdom, 40 were identified as potentially unsuitable due to organic pollution, nutrients, metals or low flow. Steps should be taken to either remove these sites (or their contribution to predictions) from future models or to statistically correct for their influence.
- The selection of potential new RIVPACS reference sites must now take account of the WFD definition of reference condition. Any potential new RIVPACS reference sites must be selected in consultation with the UK agencies and be based on a thorough appraisal of environmental stresses to ensure that none of these lie outside appropriate ranges for that stream type.

13. ACKNOWLEDGEMENTS

We would like to thank the Environment Agency, the Scottish Environment Protection Agency and the Environment and Heritage Service for their assistance in sending data on stresses. We would also like to acknowledge the assistance of the Centre for Ecology & Hydrology at Monk's Wood for supplying the 44-class CORINE 2000 national land cover map and the Centre for Ecology & Hydrology at Wallingford for the flow data extracted from the National Water Archive (NWA). We would also like to thank the various stakeholders in the RIVPACS dataset for their assistance and we also acknowledge the Ordnance Survey.

14. **REFERENCES**

Clarke R.T., Armitage, P.D., Hornby, D., Scarlett, P. & Davy-Bowker, J. (2003) Investigation of the relationship between the LIFE index and RIVPACS - putting LIFE into RIVPACS. Environment Agency, Bristol.

Council of the European Communities, 2000. Directive 2000/60/EC, Establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxembourg.

Extence, C.A., Balbi, D.M. & Chadd, R.P. (1999) River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. *Regulated Rivers: Research & Management* 15: 543-574

UK Biodiversity Research Advisory Group, 2004. Understanding the impacts of introduced species: highlighting the status and threats posed by non-native species.

UK Technical Advisory Group on the Water Framework Directive, 2003. Guidance on the assessment of alien species pressures (Final Working Draft, 27 May 2003)

Wallin, M., Wiederholm, T. & R.K., Johnson (2005) Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. A report by the EU Water Framework Directive Common Implementation Strategy working group 3.2 (REFCOND), version 7 (final), 2003-03-05.

APPENDICES

- Appendix I Chemical screening of RIVPACS sites
- Appendix II Chemical summary statistics by WFD system-A stream type
- Appendix III UK Biodiversity Research Advisory Group list of non-native freshwater macroinvertebrate species in the United Kingdom
- Appendix IV UK Technical Advisory Group on the Water Framework Directive list of nonnative freshwater macroinvertebrate species in rivers in the United Kingdom
- Appendix V Average CORINE level 3 land cover percentages within WFD System A stream types and CORINE label level key

Appendix I Chemical screening of RIVPACS sites

Contemporary mean pH (-log H^*) summarised by GB TWINSPAN end groups

 <u> </u>									
Upper outlier limit*1	N/A	N/A	N/A						
Maximum	8.26	8.36	8.57	8.26	8.24	8.28	8.39	8.21	8.32
90 percentile	7.96	8.22	7.72	7.98	8.05	8.17	8.11	8.08	8.21
75 percentile (Q3)	7.56	8.06	7.59	7.84	7.95	8.03	7.99	7.97	8.10
Median	7.05	7.73	7.19	7.50	7.56	7.80	7.92	7.83	8.01
25 percentile (Q1)	6.53	7.48	6.84	7.07	7.14	7.48	7.77	7.71	7.82
10 percentile	6.33	6.99	6.45	6.89	7.00	7.06	7.58	7.49	7.67
Minimum	5.28	6.25	5.81	6.18	6.46	6.60	7.18	6.99	7.42
Lower outlier limit*2	4.99	6.62	5.72	5.91	5.92	6.65	7.46	7.32	7.40
Sites with data	59	61	77	69	46	85	68	52	57
Sites in group	71	74	83	71	49	87	68	53	58
% with data	83.1	82.4	92.8	97.2	93.9	97.7	100.0	98.1	98.3
 Mean	7.05	7.68	7.18	7.45	7.51	7.72	7.87	7.81	7.96

Outlier site codes

^{*&}lt;sup>1</sup> Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

A threshold value of pH 6 has been assigned by expert judgement (dashed line). Only sites where the pH is less than the lower outlier limit for the group and <6 were considered to be unsuitable. No such sites were found.

Contemporary mean pH (-log H⁺) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

Outlier site codes

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

A threshold value of pH 6 has been assigned by expert judgement (dashed line). Only sites where the pH is less than the lower outlier limit for the group and <6 were considered to be unsuitable. No such sites were found.

Contemporary mean Oxygen (%sat) summarised by GB TWINSPAN end groups

 *1 Upper outlier limit = Q3+1.5(Q3-Q1), *2 Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in six groups have been identified as lying outside the lower outlier limit for Oxygen % saturation. Two of these (4885 and NW07) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Oxygen (%sat) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Three sites in the Scottish Highlands model and one in the Scottish Islands model have been identified as lying outside the lower outlier limit for Oxygen % saturation. While the Northern Ireland TWINSPAN group 3 has sites with low Oxygen % saturation, these are within the normal range for that group. Two of these sites (4885 in the Scottish Highlands and SEPA_N09 in the Scottish Islands) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.
Contemporary mean BOD ATU (mg/l $\mbox{O}_2\mbox{)}$ summarised by GB TWINSPAN end groups

 $*^{1}$ Upper outlier limit = Q3+1.5(Q3-Q1), $*^{2}$ Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in seven groups have been identified as lying outside the upper outlier limit for BOD ATU (mg/l O_2). Six of these sites (TA07, 5001, 6845, TH06, 2305 and 2815) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean BOD ATU (mg/l O_2) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Two sites in the Scottish Highlands group 1 and one site in the Northern Ireland group 2 have been identified as lying outside the upper outlier limit for BOD ATU (mg/l O_2). One of these sites (NI_24) has a 3 season combined observed ASPT value within the lowest 10% of its group.

Contemporary mean Soluble Reactive Phosphorus (mg/I P) summarised by GB TWINSPAN end groups

 $*^{1}$ Upper outlier limit = Q3+1.5(Q3-Q1), $*^{2}$ Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in eight groups have been identified as lying outside the upper outlier limit for Soluble Reactive Phosphorus (mg/I P). Nine of these sites (5001, TA07, 4909, 2719, 5009, 2305, 2307, 1407 and 2103) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Soluble Reactive Phosphorus (mg/l P) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in one Scottish Highlands group and all three Northern Ireland groups have been identified as lying outside the upper outlier limit for Soluble Reactive Phosphorus (mg/l P). One of these sites (NI_24) had a 3 season combined observed ASPT value within the lowest 10% of its group.

Contemporary mean Nitrate (mg/I N) summarised by GB TWINSPAN end groups

 $*^{1}$ Upper outlier limit = Q3+1.5(Q3-Q1), $*^{2}$ Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in eight groups have been identified as lying outside the upper outlier limit for Nitrate (mg/l N). Five of these sites (4909, 2719, 2507, 2305 and 2307) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Nitrate (mg/l N) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

One Scottish Highlands group and two Northern Ireland groups have sites identified as lying outside the upper outlier limit for Nitrate (mg/l N). One of these sites (NI_32) has a 3 season combined observed ASPT value within the lowest 10% of its group.

Contemporary mean Nitrite (mg/l N) summarised by GB TWINSPAN end groups

 $*^{1}$ Upper outlier limit = Q3+1.5(Q3-Q1), $*^{2}$ Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in eight groups have been identified as lying outside the upper outlier limit for Nitrite (mg/l N). Four of these sites (5001, 6845, 2719 and 2815) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Nitrite (mg/l N) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in two Northern Ireland groups have been identified as lying outside the upper outlier limit for Nitrite (mg/I N). However, only one of these sites (NI_32) has a 3 season combined observed ASPT value within the lowest 10% of its group.

Contemporary mean Free & Saline Ammonia (mg/l N) summarised by GB TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in nine groups have been identified as lying outside the upper outlier limit for Free & Saline Ammonia (mg/I N). Eleven of these sites (5001, TA07, TH06, 6845, 2001, AN06, 2719, 3515, 6103, 2815 and 2509) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Free & Saline Ammonia (mg/I N) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in both Scottish Highlands groups, the Scottish Islands model and all three Northern Ireland groups have been identified as lying outside the upper outlier limit for Free & Saline Ammonia (mg/I N). However, only one of these sites (NI_24) has a 3 season combined observed ASPT value within the lowest 10% of its group.

Contemporary mean Total Oxidised Nitrogen (mg/I N) summarised by GB TWINSPAN end groups

TWINSPAN group	GB1	GB 2	GB 3	GB 4	GB 5	GB 6	GB 7	GB 8	GB 9
Upper outlier limit*1	5.82	13.13	1.14	3.64	7.27	7.40	10.86	12.14	13.00
Maximum	9.58	13.37	2.06	8.17	12.27	10.22	11.75	12.34	12.34
90 percentile	4.35	9.73	0.69	2.66	5.52	4.67	7.80	9.64	9.35
75 percentile (Q3)	2.42	6.94	0.53	1.85	4.00	3.70	6.87	8.10	8.36
Median	0.54	4.03	0.22	0.99	2.66	2.30	5.87	6.54	7.27
25 percentile (Q1)	0.15	2.82	0.12	0.66	1.82	1.23	4.21	5.41	5.27
10 percentile	0.08	0.91	0.04	0.32	0.92	0.68	3.36	4.83	4.00
Minimum	0.02	0.19	0.02	0.17	0.26	0.33	1.47	1.74	2.37
Lower outlier limit* ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sites with data	48	60	71	69	46	85	68	52	57
Sites in group	71	74	83	71	49	87	68	53	58
% with data	67.6	81.1	85.5	97.2	93.9	97.7	100.0	98.1	98.3
Mean	1.43	4.96	0.35	1.47	3.28	2.66	5.64	6.76	6.94
Outlier site codes	TA07		NH09	2719	0703	2507	AN02	2505	
			TA01	NE03	TH05	TA06			
				8281	5855				
				5861					
				8213					

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in seven groups have been identified as lying outside the upper outlier limit for Total Oxidised Nitrogen (mg/l N). Two of these sites (2719 and 2507) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

3.5 0 3.0 Total Oxidised Ntrogen mean (m 2.5 2.0 1.5 0 0 1.0 O 0.5 0.0 Hi2 NI1 NI2 Hi1 ls1 NI3 Model & TWINSPAN End group ls 1 NI 3 TWINSPAN group Hi 1 Hi 2 NI1 NI 2 Upper outlier limit* 0.6 0.28 0.36 1.21 3.05 No Data Maximum 1.37 0.32 0.23 1.37 3.16 No Data 90 percentile 0.28 0.2 0.74 No Data 0.8 1.98 75 percentile (Q3) 0.27 0.13 0.18 0.59 1.74 No Data Median 0.09 0.06 0.08 0.48 1.16 No Data 25 percentile (Q1) 0.05 0.04 0.06 0.17 0.87 No Data 10 percentile 0.04 0.04 0.03 0.14 0.31 No Data Minimum 0.02 0.02 0.04 0.04 0.16 No Data Lower outlier limit*2 N/A N/A N/A N/A N/A N/A Sites with data No Data 28 15 22 17 23 69 34 Sites in group 39 55 43 No Data % with data 56.4 40.6 27.3 50 53.5 No Data Mean 0.25 0.1 0.11 0.46 1.23 No Data Outlier site codes NI_26 NI_32 SEPA_E10 TA05 SEPA_E03SEPA_E01 SEPA_E08

Contemporary mean Total Oxidised Nitrogen (mg/I N) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in both Scottish Highlands groups, and two Northern Ireland groups have been identified as lying outside the upper outlier limit for Total Oxidised Nitrogen (mg/l N). Two of these sites (SEPA_E08 and NI_32) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Suspended Solids (mg/l 105°C) summarised by GB TWINSPAN end groups

TWINSPAN group	GB1	GB 2	GB 3	GB 4	GB 5	GB 6	GB 7	GB 8	GB 9
Upper outlier limit*1	10.02	23.61	9.64	23.41	32.13	28.15	29.47	30.74	34.11
Maximum	17.00	27.15	16.42	29.21	38.75	45.58	38.56	34.67	45.00
90 percentile	9.89	18.99	7.24	21.37	18.07	22.41	28.41	28.99	22.63
75 percentile (Q3)	5.27	14.35	4.92	11.44	16.10	14.70	17.79	17.20	18.27
Median	3.39	9.73	2.69	5.73	9.60	8.97	13.40	10.42	13.34
25 percentile (Q1)	2.10	8.17	1.77	3.46	5.42	5.74	10.00	8.17	7.71
10 percentile	1.55	5.25	1.34	1.87	4.18	3.96	6.98	6.30	6.38
Minimum	1.00	3.58	0.20	1.00	2.04	1.67	2.04	2.65	2.47
Lower outlier limit*2	N/A								
Sites with data	50	52	75	67	39	84	60	42	43
Sites in group	71	74	83	71	49	87	68	53	58
% with data	70.4	70.3	90.4	94.4	79.6	96.6	88.2	79.2	74.1
Mean	4.62	11.74	3.71	8.72	11.36	11.34	15.47	13.55	14.19
Outlier site codes	5001	2601	3509	3605	5697	5717	5007	2107	6215
	5703	5845	5613	9485	0703	0205	2009	0805	
	5305	6848	5615	0505		5619	1407	1307	
	NH05	6849	3507	0503		5005	5621		
	3801	5101	5705	4107			2109		
							5607		

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in all nine groups have been identified as lying outside the upper outlier limit for Suspended Solids (mg/l 105°C). Five of these sites (5001, 5845, 3509, 4107 and 1407) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

Contemporary mean Suspended Solids (mg/l 105°C) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in both Scottish Highlands groups, the Scottish Islands model and two Northern Ireland groups have been identified as lying outside the upper outlier limit for Suspended Solids (mg/I 105°C). Three of these sites (SEPA_E08, SEPA_W38 and 20303403) have 3 season combined observed ASPT values within the lowest 10% of their respective groups.

 *1 Upper outlier limit = Q3+1.5(Q3-Q1), *2 Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in all nine groups have been identified as lying outside the upper outlier limit for dissolved Copper (μ g/l). Five of these sites (8289, 2211, 1909, 1907 and 6001) have 3 season combined observed Number of Taxa values within the lowest 10% of their respective groups.

Contemporary mean dissolved Copper (μ g/I) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

Outlier site codes

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

No sites in the Scottish Highlands, the Scottish Islands or Northern Ireland have been identified as lying outside the upper outlier limit for dissolved Copper ($\mu g/l$)

Contemporary mean dissolved Zinc (μ g/I) summarised by GB TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

2001

WE01

SW01

Sites in all nine groups have been identified as lying outside the upper outlier limit for dissolved Zinc (μ g/l). Three of these sites (3309, 3515 and SN01) have 3 season combined observed Number of Taxa values within the lowest 10% of their respective groups.

0505

0503

9581

1603

3309

3515

1705 2903 ST05 3311 ST07 5407

5401

Contemporary mean total Zinc (μ g/l) summarised by N. Ireland, Scottish Highlands and Scottish Island TWINSPAN end groups

*¹ Upper outlier limit = Q3+1.5(Q3-Q1), *² Lower outlier limit = Q1-1.5(Q3-Q1)

Sites in one Scottish Highlands group and two Northern Ireland groups have been identified as lying outside the upper outlier limit for total Zinc (μ g/I). One of these sites (20201101) has a 3 season combined observed Number of Taxa value within the lowest 10% of its group.

Appendix II Chemical summary statistics by WFD system-A stream type

Catchment size	Large			Medium					Sma	II		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	7.92	7.99	7.83	7.97	7.11	7.60	8.42	7.75	7.92	8.18	7.89	7.68
90 percentile	7.92	7.97	7.79	7.96	7.11	7.60	8.18	7.68	7.88	8.03	7.84	7.61
75 percentile	7.92	7.88	7.77	7.94	7.11	7.60	8.01	7.58	7.82	7.96	7.73	7.53
Mean	7.92	7.78	7.59	7.91	7.11	7.60	7.92	7.54	7.68	7.83	7.59	7.46
Median	7.92	7.78	7.71	7.91	7.11	7.60	7.91	7.48	7.66	7.83	7.60	7.49
25 percentile	7.92	7.66	7.38	7.88	7.11	7.60	7.80	7.44	7.56	7.71	7.38	7.34
10 percentile	7.92	7.58	7.30	7.86	7.11	7.60	7.68	7.44	7.50	7.64	7.36	7.29
Minimum	7.92	7.49	7.16	7.85	7.11	7.60	7.55	7.44	7.41	7.48	7.35	7.28
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Contemporary mean pH (-log \textbf{H}^{\star}) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Ecoregion 18: Great Britain

Catchment size		La	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Mec	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	8.24	8.25	8.39	8.18	8.23	8.14	8.15	8.27	7.53	8.28	8.36	7.51	8.21	8.57	8.32	7.88
90 percentile	8.14	8.15	8.14	7.79	8.11	7.63	7.99	8.14	7.52	7.89	8.16	7.39	7.90	8.26	8.00	7.55
75 percentile	8.08	8.00	8.06	7.38	8.02	7.26	7.64	7.95	7.51	7.52	8.02	7.35	7.73	8.01	7.73	7.18
Mean	7.94	7.86	7.93	7.29	7.80	7.07	7.40	7.67	7.48	7.16	7.81	6.78	7.15	7.69	7.49	6.84
Median	7.99	7.76	7.95	7.19	7.90	6.90	7.44	7.83	7.48	7.14	7.85	6.51	7.17	7.74	7.64	6.90
25 percentile	7.90	7.66	7.80	7.07	7.67	6.75	7.10	7.48	7.46	6.83	7.68	6.45	6.78	7.55	6.98	6.51
10 percentile	7.58	7.60	7.69	6.92	7.38	6.66	6.95	7.05	7.44	6.32	7.43	6.28	6.19	7.06	6.93	6.24
Minimum	7.51	7.56	7.43	6.84	6.60	6.56	6.46	6.46	7.43	6.00	6.31	5.45	5.28	6.43	6.80	5.09
Sites with data	27	3	10	17	115	8	23	54	2	78	108	11	65	41	8	74
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	100.0	100.0	100.0	94.4	99.1	88.9	100.0	94.7	66.7	87.6	85.0	50.0	82.3	83.7	100.0	83.1

WFD System A stream types with <10 RIVPACS reference sites are given in italics

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	I		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	88.32	100.22	122.79	99.08	89.00	88.95	103.74	97.52	96.52	106.55	99.10	116.10
90 percentile	88.32	98.05	110.37	98.08	89.00	88.95	100.19	94.66	95.19	102.08	99.07	106.35
75 percentile	88.32	94.87	100.90	96.58	89.00	88.95	97.13	90.38	93.36	100.34	98.18	100.11
Mean	88.32	89.71	95.55	94.14	89.00	88.95	91.78	84.60	90.70	94.93	95.89	96.31
Median	88.32	92.00	93.85	94.08	89.00	88.95	91.21	82.38	91.09	96.00	95.78	91.87
25 percentile	88.32	85.33	86.01	91.67	89.00	88.95	89.12	76.60	88.68	92.30	93.33	90.01
10 percentile	88.32	80.33	83.30	90.22	89.00	88.95	83.85	76.31	85.93	82.70	93.14	89.61
Minimum	88.32	67.76	77.46	89.25	89.00	88.95	69.02	76.13	82.92	80.68	92.90	89.18
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

.

Catchment size		Lai	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Мес	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	108.19	102.00	102.54	105.70	129.33	98.30	103.83	114.92	94.30	108.96	115.00	98.31	107.41	106.09	101.00	105.00
90 percentile	100.40	101.19	102.05	102.37	105.14	97.04	100.95	106.98	93.97	102.04	105.94	97.89	100.79	101.92	101.00	101.44
75 percentile	96.45	99.97	100.50	98.40	99.38	95.00	97.56	100.81	93.48	100.28	97.99	95.28	98.20	99.26	98.75	98.09
Mean	93.85	99.10	97.84	96.21	93.52	93.11	93.41	97.69	92.65	97.54	93.16	92.14	93.87	95.10	97.78	96.15
Median	93.29	97.94	97.80	95.25	94.21	93.57	93.60	97.83	92.65	97.50	92.30	94.00	95.18	96.77	97.57	96.20
25 percentile	91.18	97.65	94.93	93.47	87.16	92.33	88.91	94.32	91.83	95.47	88.54	92.21	89.84	89.61	96.20	94.09
10 percentile	89.22	97.48	94.75	92.43	81.59	88.91	87.04	90.34	91.33	91.79	82.50	90.76	88.01	87.09	95.29	91.88
Minimum	76.24	97.36	93.42	88.20	71.70	84.93	81.38	77.50	91.00	86.86	68.08	71.32	62.33	84.24	95.29	82.28
Sites with data	27	3	10	17	114	8	23	56	2	74	110	11	66	42	8	58
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	100.0	100.0	100.0	94.4	98.3	88.9	100.0	98.2	66.7	83.1	86.6	50.0	83.5	85.7	100.0	65.2

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	II		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	2.64	3.27	2.85	2.48	1.88	2.18	3.10	2.03	2.67	2.32	1.97	2.94
90 percentile	2.64	2.43	2.73	2.30	1.88	2.18	2.45	2.00	2.66	2.15	1.87	2.16
75 percentile	2.64	2.29	2.37	2.02	1.88	2.18	2.26	1.95	2.59	1.97	1.82	1.67
Mean	2.64	2.08	2.19	1.82	1.88	2.18	2.06	1.83	2.29	1.79	1.68	1.68
Median	2.64	2.02	2.06	1.57	1.88	2.18	2.01	1.88	2.39	1.80	1.64	1.47
25 percentile	2.64	1.78	1.94	1.48	1.88	2.18	1.78	1.75	2.02	1.52	1.59	1.43
10 percentile	2.64	1.67	1.87	1.43	1.88	2.18	1.64	1.61	1.87	1.45	1.50	1.37
Minimum	2.64	1.61	1.71	1.40	1.88	2.18	1.35	1.52	1.60	1.18	1.35	1.26
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Catchment size		La	rge				М	edium					S	mall		
Altitude category	Lo	w	Mec	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	3.38	1.79	3.25	1.71	5.75	3.15	2.88	2.29	1.57	2.59	4.50	1.06	3.97	2.50	1.38	2.93
90 percentile	3.09	1.74	2.65	1.68	2.87	2.19	2.26	1.95	1.54	2.00	2.63	1.04	2.00	1.94	1.25	1.60
75 percentile	2.69	1.67	2.20	1.64	2.19	1.19	2.01	1.69	1.49	1.63	2.14	0.94	1.73	1.50	1.20	1.34
Mean	2.23	1.55	1.97	1.27	1.98	1.40	1.74	1.48	1.40	1.31	1.90	0.87	1.53	1.31	1.10	1.18
Median	1.98	1.54	2.02	1.47	1.82	1.02	1.67	1.46	1.40	1.34	1.80	0.84	1.39	1.27	1.20	1.06
25 percentile	1.81	1.43	1.45	0.89	1.51	0.98	1.53	1.20	1.32	0.90	1.48	0.81	1.27	1.01	0.94	0.93
10 percentile	1.60	1.36	1.25	0.72	1.33	0.98	1.41	1.00	1.26	0.61	1.15	0.74	1.08	0.92	0.81	0.68
Minimum	1.50	1.32	1.24	0.53	0.83	0.98	0.87	0.87	1.23	0.48	0.63	0.70	0.58	0.54	0.81	0.47
Sites with data	27	3	10	16	114	6	22	55	2	71	110	9	67	42	8	53
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	100.0	100.0	100.0	88.9	98.3	66.7	95.7	96.5	66.7	79.8	86.6	40.9	84.8	85.7	100.0	59.6

Contemporary mean Soluble Reactive Phosphorus (mg/I P) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	II		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	0.10	0.20	0.51	0.21	0.02	0.03	0.64	0.05	0.31	0.12	0.05	0.11
90 percentile	0.10	0.14	0.34	0.18	0.02	0.03	0.10	0.05	0.23	0.10	0.05	0.07
75 percentile	0.10	0.13	0.20	0.14	0.02	0.03	0.08	0.05	0.18	0.06	0.05	0.05
Mean	0.10	0.09	0.15	0.10	0.02	0.03	0.09	0.04	0.12	0.05	0.04	0.04
Median	0.10	0.09	0.05	0.06	0.02	0.03	0.06	0.04	0.07	0.04	0.03	0.02
25 percentile	0.10	0.04	0.04	0.04	0.02	0.03	0.05	0.03	0.05	0.03	0.03	0.01
10 percentile	0.10	0.04	0.04	0.03	0.02	0.03	0.04	0.03	0.04	0.02	0.02	0.01
Minimum	0.10	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.04	0.02	0.01	0.01
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Catchment size		Lai	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Med	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	1.93	0.26	0.50	0.10	2.37	0.24	2.34	0.29	0.04	0.13	2.82	0.01	0.75	0.19	0.03	2.42
90 percentile	1.62	0.24	0.40	0.09	0.95	0.08	0.84	0.12	0.04	0.08	0.61	0.01	0.21	0.11	0.03	0.08
75 percentile	0.99	0.22	0.30	0.03	0.38	0.01	0.18	0.08	0.04	0.03	0.25	0.01	0.08	0.04	0.02	0.03
Mean	0.68	0.17	0.19	0.03	0.37	0.03	0.29	0.07	0.03	0.03	0.25	0.00	0.09	0.04	0.01	0.06
Median	0.35	0.17	0.11	0.02	0.23	0.01	0.07	0.05	0.03	0.02	0.11	0.00	0.04	0.02	0.02	0.01
25 percentile	0.18	0.13	0.07	0.01	0.11	0.00	0.03	0.03	0.02	0.01	0.05	0.00	0.01	0.02	0.00	0.00
10 percentile	0.12	0.10	0.04	0.01	0.05	0.00	0.02	0.02	0.02	0.00	0.03	0.00	0.01	0.01	0.00	0.00
Minimum	0.09	0.08	0.03	0.00	0.01	0.00	0.01	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sites with data	27	3	10	17	115	8	23	54	2	74	104	11	64	37	8	62
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	100.0	100.0	100.0	94.4	99.1	88.9	100.0	94.7	66.7	83.1	81.9	50.0	81.0	75.5	100.0	69.7

Contemporary mean Nitrate (mg/l) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	I		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	1.06	2.12	2.22	1.85	0.19	0.16	2.75	0.52	3.10	2.15	1.59	1.62
90 percentile	1.06	1.73	1.96	1.66	0.19	0.16	1.81	0.45	2.26	1.33	0.92	1.13
75 percentile	1.06	1.44	1.78	1.36	0.19	0.16	1.55	0.36	1.77	0.90	0.59	0.81
Mean	1.06	1.12	1.17	1.12	0.19	0.16	1.20	0.29	1.63	0.71	0.55	0.61
Median	1.06	1.10	0.83	0.87	0.19	0.16	1.28	0.24	1.60	0.70	0.47	0.44
25 percentile	1.06	0.84	0.68	0.75	0.19	0.16	0.70	0.17	1.36	0.20	0.34	0.32
10 percentile	1.06	0.31	0.61	0.69	0.19	0.16	0.41	0.17	1.02	0.16	0.16	0.21
Minimum	1.06	0.25	0.53	0.64	0.19	0.16	0.32	0.17	0.43	0.15	0.10	0.04
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Catchment size		Lai	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Med	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	11.30	4.37	6.55	1.86	12.89	0.24	6.43	11.53	1.00	4.26	16.10	0.22	10.17	4.89	0.55	4.26
90 percentile	9.10	4.27	5.60	1.53	9.22	0.21	4.40	4.10	0.96	2.09	7.96	0.22	6.14	3.67	0.30	1.84
75 percentile	7.69	4.12	4.31	1.10	7.12	0.17	3.82	3.03	0.90	1.31	6.38	0.17	4.19	2.76	0.20	0.79
Mean	6.17	3.46	3.11	0.89	5.81	0.13	2.63	2.04	0.81	0.90	4.75	0.10	2.73	1.96	0.20	0.63
Median	6.15	3.86	2.77	1.04	5.36	0.10	2.57	1.34	0.81	0.64	4.42	0.05	2.40	2.10	0.19	0.27
25 percentile	4.09	3.01	1.71	0.25	4.16	0.10	1.62	0.81	0.71	0.11	3.04	0.03	0.28	0.68	0.11	0.06
10 percentile	3.51	2.49	0.92	0.22	3.36	0.07	0.37	0.31	0.65	0.05	0.91	0.03	0.09	0.45	0.10	0.02
Minimum	3.36	2.15	0.57	0.19	0.99	0.05	0.26	0.22	0.61	0.03	0.02	0.03	0.01	0.05	0.09	0.01
Sites with data	25	3	10	9	95	7	20	52	2	65	75	8	58	38	8	61
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	92.6	100.0	100.0	50.0	81.9	77.8	87.0	91.2	66.7	73.0	59.1	36.4	73.4	77.6	100.0	68.5

Contemporary mean Nitrite (mg/l) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Looregion n. n.		nonuna										
Catchment size	Large			Medium					Sma	II		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	0.03	0.07	0.07	0.05	0.00	0.00	0.10	0.02	0.06	0.04	0.02	0.04
90 percentile	0.03	0.04	0.05	0.05	0.00	0.00	0.03	0.02	0.06	0.02	0.02	0.02
75 percentile	0.03	0.04	0.04	0.03	0.00	0.00	0.02	0.02	0.05	0.01	0.01	0.01
Mean	0.03	0.03	0.03	0.02	0.00	0.00	0.02	0.01	0.03	0.01	0.01	0.01
Median	0.03	0.03	0.02	0.01	0.00	0.00	0.02	0.01	0.03	0.01	0.01	0.01
25 percentile	0.03	0.02	0.02	0.01	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.00
10 percentile	0.03	0.01	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Minimum	0.03	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Catchment size		Lai	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Мес	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	0.14	0.04	0.12	0.01	0.17	0.01	0.16	0.16	0.00	0.03	0.13	0.01	0.12	0.05	0.01	0.03
90 percentile	0.12	0.04	0.08	0.01	0.09	0.01	0.04	0.02	0.00	0.02	0.08	0.01	0.03	0.02	0.01	0.01
75 percentile	0.07	0.04	0.04	0.01	0.06	0.01	0.02	0.02	0.00	0.01	0.05	0.01	0.03	0.01	0.01	0.01
Mean	0.06	0.03	0.04	0.01	0.05	0.01	0.03	0.02	0.00	0.01	0.04	0.00	0.02	0.01	0.01	0.01
Median	0.04	0.03	0.03	0.01	0.04	0.01	0.02	0.01	0.00	0.01	0.03	0.00	0.02	0.01	0.01	0.00
25 percentile	0.04	0.02	0.02	0.00	0.03	0.00	0.02	0.01	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00
10 percentile	0.03	0.02	0.01	0.00	0.02	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Minimum	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Sites with data	26	3	9	17	103	6	22	52	1	74	92	9	60	35	8	61
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	96.3	100.0	90.0	94.4	88.8	66.7	95.7	91.2	33.3	83.1	72.4	40.9	75.9	71.4	100.0	68.5

Contemporary mean Free & Saline Ammonia (mg/l) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	I		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	0.17	0.32	0.23	0.19	0.06	0.06	0.41	0.19	0.23	0.11	0.08	0.16
90 percentile	0.17	0.17	0.17	0.17	0.06	0.06	0.15	0.17	0.20	0.11	0.07	0.10
75 percentile	0.17	0.16	0.12	0.13	0.06	0.06	0.12	0.12	0.18	0.08	0.07	0.06
Mean	0.17	0.14	0.12	0.10	0.06	0.06	0.11	0.10	0.14	0.07	0.06	0.07
Median	0.17	0.13	0.11	0.07	0.06	0.06	0.09	0.08	0.12	0.07	0.06	0.06
25 percentile	0.17	0.09	0.09	0.06	0.06	0.06	0.08	0.06	0.09	0.06	0.05	0.05
10 percentile	0.17	0.07	0.08	0.05	0.06	0.06	0.07	0.05	0.08	0.05	0.05	0.04
Minimum	0.17	0.04	0.07	0.04	0.06	0.06	0.04	0.05	0.08	0.05	0.05	0.04
Sites with data	1	22	8	3	1	1	32	4	8	13	8	8
Sites in type	1	22	8	3	1	1	32	4	8	13	8	8
% with data	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Catchment size		La	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Med	ium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	0.43	0.10	0.48	0.11	1.29	0.20	0.65	0.20	0.06	0.13	1.59	0.13	0.57	0.21	0.15	0.15
90 percentile	0.29	0.10	0.30	0.07	0.34	0.18	0.24	0.13	0.05	0.07	0.37	0.13	0.13	0.14	0.12	0.07
75 percentile	0.17	0.10	0.17	0.07	0.17	0.15	0.13	0.09	0.05	0.06	0.20	0.02	0.08	0.06	0.11	0.04
Mean	0.14	0.09	0.12	0.05	0.16	0.11	0.12	0.07	0.05	0.04	0.17	0.04	0.07	0.06	0.06	0.03
Median	0.11	0.09	0.04	0.06	0.10	0.11	0.08	0.05	0.05	0.03	0.11	0.02	0.04	0.04	0.03	0.02
25 percentile	0.09	0.09	0.03	0.03	0.05	0.05	0.05	0.04	0.04	0.02	0.07	0.01	0.03	0.03	0.03	0.02
10 percentile	0.07	0.08	0.03	0.03	0.04	0.04	0.03	0.03	0.04	0.01	0.04	0.01	0.01	0.02	0.01	0.01
Minimum	0.05	0.08	0.03	0.02	0.01	0.02	0.02	0.02	0.03	0.01	0.01	0.01	0.00	0.01	0.01	0.00
Sites with data	27	3	10	17	114	8	23	56	2	74	111	11	69	42	8	63
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	100.0	100.0	100.0	94.4	98.3	88.9	100.0	98.2	66.7	83.1	87.4	50.0	87.3	85.7	100.0	70.8

Contemporary mean Total Oxidised Nitrogen (mg/l) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	1		
Altitude category	Low	L	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	No Data	1.04	No Data	0.88	0.20	0.16	2.01	0.54	3.16	2.16	0.59	0.79
90 percentile	No Data	1.03	No Data	0.86	0.20	0.16	1.81	0.50	2.74	1.53	0.57	0.71
75 percentile	No Data	1.01	No Data	0.82	0.20	0.16	1.47	0.44	2.10	0.86	0.53	0.59
Mean	No Data	0.77	No Data	0.76	0.20	0.16	1.27	0.35	1.77	0.71	0.39	0.41
Median	No Data	0.98	No Data	0.76	0.20	0.16	1.31	0.35	1.74	0.44	0.48	0.40
25 percentile	No Data	0.63	No Data	0.70	0.20	0.16	1.05	0.26	1.41	0.17	0.29	0.22
10 percentile	No Data	0.42	No Data	0.67	0.20	0.16	0.62	0.21	0.83	0.16	0.18	0.11
Minimum	No Data	0.28	No Data	0.64	0.20	0.16	0.55	0.17	0.43	0.16	0.10	0.04
Sites with data	No Data	3	No Data	2	1	1	13	2	4	6	3	4
Sites in type	No Data	22	No Data	3	1	1	32	4	8	13	8	8
% with data	No Data	13.6	No Data	66.7	100.0	100.0	40.6	50.0	50.0	46.2	37.5	50.0

Catchment size		La	rge				М	edium					S	mall		
Altitude category	Lo	w	Мес	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	9.43	4.37	5.61	1.35	12.34	8.36	7.38	8.17	0.44	2.90	13.37	0.22	10.17	4.91	0.56	3.02
90 percentile	9.22	4.27	4.43	1.25	8.95	4.28	5.13	3.96	0.44	2.01	9.93	0.22	8.53	4.04	0.29	1.90
75 percentile	7.96	4.11	3.62	0.89	7.13	0.19	3.83	2.77	0.44	1.32	7.43	0.16	5.83	2.67	0.15	0.71
Mean	6.33	3.51	2.71	0.60	5.97	1.50	2.59	1.90	0.44	0.83	5.67	0.11	3.41	1.97	0.16	0.61
Median	6.38	3.85	2.53	0.48	6.02	0.13	2.16	1.33	0.44	0.67	5.41	0.08	2.66	2.15	0.13	0.36
25 percentile	4.48	3.08	1.73	0.27	4.31	0.10	1.62	0.57	0.44	0.19	3.73	0.05	0.36	0.73	0.08	0.10
10 percentile	3.73	2.62	0.93	0.17	3.25	0.10	0.39	0.30	0.44	0.06	1.91	0.04	0.15	0.48	0.04	0.04
Minimum	3.29	2.31	0.57	0.12	0.46	0.10	0.19	0.18	0.44	0.03	0.20	0.04	0.02	0.05	0.04	0.02
Sites with data	27	3	10	18	114	6	23	54	1	71	100	7	63	38	8	59
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	100.0	100.0	100.0	100.0	98.3	66.7	100.0	94.7	33.3	79.8	78.7	31.8	79.7	77.6	100.0	66.3

Contemporary mean Suspended Solids (mg/l 105°C) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	I		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	40.30	31.37	11.93	9.36	3.80	No Data	13.28	3.21	11.17	17.50	6.79	11.56
90 percentile	40.30	15.31	10.78	9.36	3.80	No Data	11.08	3.17	11.06	9.26	4.96	9.75
75 percentile	40.30	10.45	7.44	9.36	3.80	No Data	8.58	3.11	10.87	6.78	3.25	7.04
Mean	40.30	9.68	6.70	9.36	3.80	No Data	6.67	3.06	9.75	5.62	3.10	5.40
Median	40.30	8.79	5.68	9.36	3.80	No Data	6.84	3.00	10.17	3.83	2.45	4.11
25 percentile	40.30	5.48	4.99	9.36	3.80	No Data	3.53	2.98	8.90	2.77	2.24	2.47
10 percentile	40.30	4.97	4.53	9.36	3.80	No Data	3.07	2.96	8.01	2.57	1.88	2.07
Minimum	40.30	2.99	3.55	9.36	3.80	No Data	2.10	2.95	7.39	1.83	1.46	1.81
Sites with data	1	20	8	1	1	No Data	25	3	6	12	7	4
Sites in type	1	22	8	3	1	No Data	32	4	8	13	8	8
% with data	100.0	90.9	100.0	33.3	100.0	No Data	78.1	75.0	75.0	92.3	87.5	50.0

Catchment size		La	rge				М	edium					S	mall		
Altitude category	Lo	w	Мес	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	45.00	17.23	45.58	31.81	39.89	5.16	32.33	22.80	6.00	24.33	35.00	3.77	25.06	29.44	4.92	25.23
90 percentile	27.17	16.82	38.20	5.08	25.20	4.19	14.92	18.40	5.90	7.75	24.60	3.67	17.20	16.25	4.92	7.34
75 percentile	22.36	16.21	31.98	3.09	17.21	3.38	13.45	14.92	5.75	5.73	14.34	2.64	12.69	9.19	4.01	4.37
Mean	19.00	14.14	23.90	4.64	13.93	2.89	11.20	10.17	5.50	4.46	12.13	2.41	9.27	7.52	2.90	4.07
Median	17.37	15.19	22.66	3.00	11.45	2.69	11.00	8.00	5.50	3.49	9.99	2.31	8.17	5.21	2.61	2.46
25 percentile	13.37	12.60	15.77	2.27	8.64	2.05	5.29	5.27	5.25	1.74	7.50	2.15	5.24	3.38	1.81	1.76
10 percentile	10.95	11.04	12.48	1.91	6.22	1.65	4.25	4.25	5.10	1.50	4.33	1.31	2.69	1.83	1.40	1.15
Minimum	7.03	10.00	6.92	1.10	2.47	1.57	2.75	2.75	5.00	0.20	1.35	1.19	1.83	1.46	1.00	0.72
Sites with data	26	3	9	17	96	7	23	53	2	73	88	11	54	35	8	55
Sites in type	27	3	10	18	116	9	23	57	3	89	127	22	79	49	8	89
% with data	96.3	100.0	90.0	94.4	82.8	77.8	100.0	93.0	66.7	82.0	69.3	50.0	68.4	71.4	100.0	61.8

Contemporary mean dissolved Copper (µg/I) summarised by WFD System A stream type

Ecoregion 17: Northern Ireland

Catchment size	Large			Medium					Sma	I		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	5.71	7.60	8.63	5.37	4.50	No Data	7.00	8.00	6.43	6.42	6.41	4.36
90 percentile	5.71	6.25	6.68	5.37	4.50	No Data	5.08	6.79	6.03	5.18	5.31	4.23
75 percentile	5.71	5.90	5.48	5.37	4.50	No Data	4.37	4.96	5.53	4.27	4.51	4.05
Mean	5.71	4.12	3.62	5.37	4.50	No Data	3.11	3.67	4.75	3.25	2.98	2.85
Median	5.71	4.67	2.27	5.37	4.50	No Data	2.36	1.93	4.92	3.67	1.75	2.84
25 percentile	5.71	1.91	1.81	5.37	4.50	No Data	1.75	1.51	3.97	1.75	1.27	1.65
10 percentile	5.71	1.43	1.36	5.37	4.50	No Data	1.44	1.26	3.30	0.97	1.20	1.49
Minimum	5.71	1.13	1.18	5.37	4.50	No Data	1.10	1.09	2.86	0.88	1.13	1.38
Sites with data	1	19	8	1	1	No Data	25	3	6	12	7	4
Sites in type	1	22	8	3	1	No Data	32	4	8	13	8	8
% with data	100.0	86.4	100.0	33.3	100.0	No Data	78.1	75.0	75.0	92.3	87.5	50.0

Catchment size		Lai	rge				Μ	edium					S	mall		
Altitude category	Lo	w	Мес	lium		Low			Medium			Low			Medium	
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	7.37	3.38	3.86	1.46	4.93	0.82	2.34	3.82	0.84	5.19	5.17	No Data	3.49	3.14	1.41	2.47
90 percentile	5.46	3.17	3.53	1.46	3.44	0.82	2.10	2.30	0.84	2.21	3.57	No Data	1.53	1.74	1.41	1.75
75 percentile	4.04	2.85	2.67	1.04	2.59	0.82	1.71	1.74	0.84	1.25	2.15	No Data	1.25	1.31	1.24	1.39
Mean	2.94	2.48	1.88	0.87	2.04	0.82	1.54	1.50	0.84	1.20	1.86	No Data	1.36	1.05	0.98	1.15
Median	2.08	2.32	1.37	0.81	1.64	0.82	1.58	1.29	0.84	0.92	1.48	No Data	1.25	0.86	0.94	1.25
25 percentile	1.50	2.03	0.94	0.63	1.25	0.82	1.25	1.15	0.84	0.71	1.25	No Data	1.25	0.63	0.76	0.83
10 percentile	1.27	1.85	0.89	0.50	1.25	0.82	0.95	0.79	0.84	0.50	1.25	No Data	1.17	0.56	0.57	0.46
Minimum	1.21	1.74	0.77	0.29	0.79	0.82	0.95	0.58	0.84	0.33	0.61	No Data	0.84	0.41	0.57	0.25
Sites with data	26	3	9	10	100	3	17	47	1	56	84	No Data	49	30	8	34
Sites in type	27	3	10	18	116	9	23	57	3	89	127	No Data	79	49	8	89
% with data	96.3	100.0	90.0	55.6	86.2	33.3	73.9	82.5	33.3	62.9	66.1	No Data	62.0	61.2	100.0	38.2

Ecoregion	17:	Northern	Ireland	(total Zi	nc)
-				•	

_coologion nin			(
Catchment size	Large			Medium					Sma	II		
Altitude category	Low	Lo	w		Medium			Low			Medium	
Geology category	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	14.03	17.39	17.73	14.09	8.20	No Data	14.25	4.43	41.15	13.26	12.26	14.14
90 percentile	14.03	14.65	15.30	14.09	8.20	No Data	10.49	4.23	29.05	11.81	11.25	12.52
75 percentile	14.03	13.52	12.62	14.09	8.20	No Data	6.75	3.92	14.22	6.07	8.54	10.09
Mean	14.03	9.74	8.56	14.09	8.20	No Data	5.89	3.71	12.90	5.66	6.60	8.29
Median	14.03	12.63	5.90	14.09	8.20	No Data	4.38	3.41	5.51	4.00	5.50	7.80
25 percentile	14.03	4.33	4.63	14.09	8.20	No Data	3.74	3.34	4.46	3.43	3.84	5.99
10 percentile	14.03	3.35	4.02	14.09	8.20	No Data	3.31	3.30	4.14	3.17	3.76	4.45
Minimum	14.03	3.11	3.71	14.09	8.20	No Data	3.09	3.28	4.00	3.00	3.68	3.43
Sites with data	1	19	8	1	1	No Data	25	3	6	12	7	4
Sites in type	1	22	8	3	1	No Data	32	4	8	13	8	8
% with data	100.0	86.4	100.0	33.3	100.0	No Data	78.1	75.0	75.0	92.3	87.5	50.0

Ecoregion 18: Great Britain (dissolved Zinc)

Catchment size	Large				Medium						Small					
Altitude category	Low		Medium		Low			Medium			Low			Medium		
Geology category	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
Maximum	146.00	No Data	50.00	6.11	90.00	31.00	No Data	40.00	33.00	72.00	60.00	18.00	40.00	24.00	16.00	64.00
90 percentile	34.40	No Data	42.00	5.98	37.50	25.00	No Data	35.20	32.40	14.50	42.00	18.00	19.30	21.60	13.77	32.20
75 percentile	28.00	No Data	30.00	5.92	20.25	21.00	No Data	18.00	31.50	6.87	20.00	18.00	17.00	18.00	10.43	17.82
Mean	29.38	No Data	24.00	4.37	21.10	16.64	No Data	15.03	30.00	8.02	18.55	9.98	13.63	13.33	8.58	15.54
Median	18.00	No Data	17.00	4.57	14.50	19.00	No Data	9.00	30.00	5.00	10.00	6.30	11.13	12.00	4.87	11.17
25 percentile	15.00	No Data	12.00	2.99	10.00	10.15	No Data	6.00	28.50	3.16	7.55	3.80	7.09	8.00	4.87	3.69
10 percentile	10.60	No Data	11.40	2.72	8.92	4.26	No Data	6.00	27.60	1.71	4.96	3.80	4.82	5.60	4.87	3.08
Minimum	10.00	No Data	11.00	1.67	5.91	4.20	No Data	6.00	27.00	0.82	4.74	3.80	3.24	4.00	4.87	3.00
Sites with data	13	No Data	5	10	20	7	No Data	9	2	38	7	5	10	3	3	14
Sites in type	27	No Data	10	18	116	9	No Data	57	3	89	127	22	79	49	8	89
% with data	48.1	No Data	50.0	55.6	17.2	77.8	No Data	15.8	66.7	42.7	5.5	22.7	12.7	6.1	37.5	15.7

Appendix III UK Biodiversity Research Advisory Group list of non-native freshwater macroinvertebrate species in the United Kingdom

UK Biodiversity Research Advisory Group list of non-native freshwater macroinvertebrate species in the United Kingdom

Scientific name	English name						
Achtheres percarum	Freshwater copepod						
Asellus communis	Freshwater isopod						
Astacus astacus	Noble crayfish						
Astacus leptodactylus	Narrow-clawed crayfish						
Branchiura sowerbyi	Freshwater oligochaete						
Corbicula fluminea	Asian Clam						
Corophium curvispinum	Freshwater amphipod						
Crangonyx pseudogracilis	Freshwater amphipod						
Craspedacusta sowerbyi	Freshwater coelenterate						
Dikerogammarus villosus	Dikerogammarus						
Dreissena polymorpha	Zebra mussel						
Dugesia tigrina	Freshwater triclad						
Ergasilus briani	Freshwater copepod						
Ergasilus sieboldi	Freshwater copepod						
Eriocheir sinensis	Chinese Mitten Crab						
Ferrissia wautieri	Freshwater limpet						
Lernaea cyprinacea	Freshwater copepod						
Limnodrilus cervix	Freshwater oligochaete						
Lymnaea catascopium	Freshwater gastropod						
Marstoniopsis scholtzi	Freshwater gastropod						
Menetus dilatatus	Freshwater gastropod						
Musculium transversum	Freshwater bivalve						
Mytilopsis leucophaeata	Freshwater bivalve						
Neoergasilus japonicus	Parasitic copepod						
Orconectes limosus	Spiny-cheeked/striped crayfish						
Pacifastacus leniusculus	Signal crayfish						
Phagocata woodworthi	Freshwater triclad						
Physella acuta	Freshwater gastropod						
Physella gyrina	Freshwater gastropod						
Physa heterostropha	Freshwater gastropod						
Piscicola geometra	Fish leech						
Planaria torva	Freshwater triclad						
Potamopyrgus antipodarum	Jenkin's spire-snail						
Procambarus clarkii	Red swamp crayfish						
Tracheliastes polycolpus	Parasitic copepod						
Appendix IV UK Technical Advisory Group on the Water Framework Directive list of nonnative freshwater macroinvertebrate species in rivers in the United Kingdom UK Technical Advisory Group on the Water Framework Directive list of non-native freshwater macroinvertebrate species occurring in rivers in the United Kingdom (species in bold are regarded as having a high impact)

Scientific name	English name
Pacifastacus leniusculus	North American signal crayfish
Procambarus clarkii	Red swamp crayfish
Lernaea cyprinacea	Freshwater copepod
Crangonyx pseudogracilis	Freshwater amphipod
Eriocheir sinensis	Chinese mitten crab
Dreissena polymorpha	Zebra mussel
Anguillicola crassus	Swim bladder nematode
Potamopyrgus antipodarum	Jenkin's spire shell
Astacus leptodactylus	Narrow-clawed (Turkish) crayfish
Astacus astacus	Noble crayfish
Craspedacusta sowerbyi	Freshwater coelenterate
Dugesia tigrina	Freshwater triclad
Phagocata woodworthi	Freshwater triclad
Planaria torva	Freshwater triclad
Corbicula fluminea	Freshwater mollusc
Ferissia wautieri	Freshwater mollusc
Marstoniopsis scholtzi	Freshwater mollusc
Menetus dilatatus	Freshwater mollusc
Musculium transversum	Freshwater mollusc
Physa acuta	Freshwater mollusc
Physa gyrina	Freshwater mollusc
Physa heterostropha	Freshwater mollusc
Branchiura sowerbyi	Freshwater oligochaete
Limnodrilus cervix	Freshwater oligochaete
Achtheres percarum	Freshwater copepod
Ergasilus briani	Freshwater copepod
Ergasilus sieboldi	Freshwater copepod
Neoergasilus japonicus	Freshwater copepod
Tracheliastes polycolpus	Freshwater copepod
Asellus communis	Freshwater malacostracan
Corophium curvispinum	Freshwater malacostracan

Appendix V Average CORINE level 3 land cover percentages within WFD System A stream types and CORINE label level key

Average CORINE level 3 land cover percentages within WFD System A stream types (Ecoregion 18: Great Britain)

	Catchment size	Large			Medium					Small							
	Altitude cat.	Lo	w	Medium Low Medium			Low			Medium							
CORINE code & Level 3 name	Geology cat.	Cal	Sil	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
 111 Continuous urban fabric 112 Discontinuous urban fabric 121 Industrial or commercial units 122 Road and rail networks and a 	s associated land	3.8 0.4	1.4 0.2	1.5 0.2	0.3	2.2 0.2	0.3	1.8	0.5		0.3 0.1	1.8 0.1		1.3	0.1		0.1
123 Port areas124 Airports131 Mineral extraction sites132 Dump sites		0.4 0.2	0.1 0.1	0.2		0.2 0.1	0.1	0.2 0.2	0.4		0.1	0.2			0.1		0.1 0.1
 133 Construction sites 141 Green urban areas 142 Sport and leisure facilities 		0.1 1.2	0.1 0.6	0.5	0.3	0.1 0.1 1.1	0.2	0.6	0.3		0.1	0.8		0.4 0.3	0.1		
211 Non-irrigated arable land212 Permanently irrigated land213 Rice fields		54.6	14.4	11.8	3.8	51.4	10.4	11.9	7.9		1.7	37.4		15.0	1.0		
221 Vineyards 222 Fruit trees and berry plantation 223 Olive groves	ons			0.1	10.1	0.2					00 /			0.3			
231 Pastures 241 Annual crops associated with	n permanent crops	18.3	50.1	45.9	12.4	23.9	7.8	47.4	39.0	10.8	20.1	30.0	5.1	27.0	29.7	0.1	14.5
242 Complex cultivation patterns 243 Agriculture, with significant n 244 Agro-forestry areas	atural vegetation	4.5 1.8	5.0 3.9	3.2 1.7	1.5 2.0	5.4 3.6	0.4 0.5	4.0 3.0	1.5 1.5		0.8 1.0	5.7 3.0		2.0 1.9	0.4 2.1		0.3 0.9
311 Broad-leaved forest 312 Coniferous forest 313 Mixed forest		3.0 1.9 0.3	3.8 4.1 0.1	1.1 3.5 0.4	0.8 10.7	4.6 2.9 0.2	0.1 15.7	8.5 9.1 0.2	1.2 3.9 0.2	0.2 1.5	1.4 9.8 0.1	3.4 4.4 0.7	0.1 3.3	9.7 8.3 0.7	0.3 5.4 0.1	1.4	1.0 9.1
321 Natural grasslands 322 Moors and heathland 323 Sclerophyllous vegetation		4.7 3.4	12.0 3.4	22.3 4.7	14.5 33.9	1.8 1.7	4.9 18.3	6.1 4.7	27.3 11.3	23.9 28.2	20.5 29.4	2.4 7.1	5.1 31.0	11.3 19.7	35.2 20.6	41.4 20.9	24.7 36.6
324 Transitional woodland-shrub331 Beaches, dunes, sands		0.2	0.5	0.7	1.4	0.3	2.6	1.2	0.5	0.2	1.2	0.8	1.6	0.3	0.9	1.1	1.9
 332 Bare rocks 333 Sparsely vegetated areas 334 Burnt areas 335 Glaciers and perpetual snow 				0.1	1.0 15.1				0.3	0.1 0.3	1.0 6.8			0.1 0.2	1.0 0.3	1.2	2.0 4.9
411 Inland marshes 412 Peat bogs 421 Salt marshes 422 Salines		0.7		1.7	0.1 1.0	0.1	37.7	1.0	4.1	33.6	4.0	1.8	51.6	0.1 0.9	2.3	33.2	3.3
 423 Intertidal flats 511 Water courses 512 Water bodies 521 Coastal lagoons 522 Estuaries 		0.2	0.2	0.4	1.2	0.1	1.1	0.2	0.2	1.3	1.6	0.2	2.2	0.3	0.2	0.6	0.5
523 Sea and ocean																	

Average CORINE 2000 level 3 land cover percentages within WFD System A stream types (Ecoregion 17: Northern Ireland)

	Catchment size	Large	Medium				Small						
	Altitude cat.	Low	Low Medium			Low Med							
CORINE code & Level 3 name	Geology cat.	Cal	Cal	Sil	Cal	Org	Sil	Cal	Org	Sil	Cal	Org	Sil
111 Continuous urban fabric					0.1								
112 Discontinuous urban fabric		0.3	0.4	0.6	0.8			0.2		0.4			
121 Industrial or commercial units					0.1			0.1					
122 Road and rall networks and associated land													
123 Poil aleas													
124 Alipoits 131 Mineral extraction sites	124 Auports		0.2		0.1			0.6		0.1	0 1		
132 Dump sites			0.2		0.1			0.0		0.1	0.1		
133 Construction sites													
141 Green urban areas													
142 Sport and leisure facilities			0.1		0.1			0.1					0.2
211 Non-irrigated arable land		0.1	0.1		0.1					0.1	0.2		0.2
212 Permanently irrigated land													
213 Rice fields													
221 Vineyards													
222 Fruit trees and berry plantation	ons												
223 Olive groves		70.0	61.0	F2 0	60.0	2.0	4.4	CE C	16.4	72.0	20.2	10.6	20.4
201 Pasiures 241 Annual crops associated with	nermanent crons	70.0	61.9	55.9	60.9	2.9	4.1	0.00	10.4	13.0	30.5	10.0	29.1
242 Complex cultivation natterns			03	07	0.2			0.1			04		0.6
243 Agriculture with significant n	atural vegetation	55	37	27	2.8	70		6.1	66	63	23	25	0.0
244 Agro-forestry areas			•						0.0	0.0			•
311 Broad-leaved forest	311 Broad-leaved forest		0.1	0.1				0.3		0.1	0.3		0.3
312 Coniferous forest		4.9	6.9	11.4	1.0	27.5		6.2	10.6	5.0	19.3	6.7	6.7
313 Mixed forest		0.8											
321 Natural grasslands		7.0	12.1	10.3	28.2	42.3		9.9	17.7	5.3	22.4	31.0	37.3
322 Moors and heathland	322 Moors and heathland		4.4	5.5	4.9	16.2	95.9	4.5	2.4	1.9	7.9	44.5	15.6
323 Sclerophyllous vegetation	323 Sclerophyllous vegetation												
324 Transitional woodland-shrub		1.5	1.3	1.7		4.1		1.0	1.0	0.7	2.8	2.5	3.1
331 Beaches, dunes, sands													
332 Bare locks													
334 Burnt areas													
335 Glaciers and perpetual snow													
411 Inland marshes													
412 Peat bogs		7.9	7.8	11.9	0.9			5.2	43.2	6.1	13.8	2.2	6.2
421 Salt marshes													
422 Salines													
423 Intertidal flats													
511 Water courses													
512 Water bodies	512 Water bodies 0.2		0.4	0.9					2.1	0.2	0.1		0.2
521 Coastal lagoons													
522 Estuaries													
533 Sea and ocean													

≣

CORINE Land Cover 2000 label level key

Code Level 3	Label Level1	Label Level2	Label Level3	RGB Color
111	Artificial surfaces	Urban fabric	Continuous urban fabric	230-000-077
112	Artificial surfaces	Urban fabric	Discontinuous urban fabric	255-000-000
121	Artificial surfaces	Industrial, commercial and transport units	Industrial or commercial units	204-077-242
122	Artificial surfaces	Industrial, commercial and transport units	Road and rail networks and associated land	204-000-000
123	Artificial surfaces	Industrial, commercial and transport units	Port areas	230-204-204
124	Artificial surfaces	Industrial, commercial and transport units	Airports	230-204-230
131	Artificial surfaces	Mine, dump and construction sites	Mineral extraction sites	166-000-204
132	Artificial surfaces	Mine, dump and construction sites	Dump sites	166-077-000
133	Artificial surfaces	Mine, dump and construction sites	Construction sites	255-077-255
141	Artificial surfaces	Artificial, non-agricultural vegetated areas	Green urban areas	255-166-255
142	Artificial surfaces	Artificial, non-agricultural vegetated areas	Sport and leisure facilities	255-230-255
211	Agricultural areas	Arable land	Non-irrigated arable land	255-255-168
212	Agricultural areas	Arable land	Permanently irrigated land	255-255-000
213	Agricultural areas	Arable land	Rice fields	230-230-000
221	Agricultural areas	Permanent crops	Vineyards	230-128-000
222	Agricultural areas	Permanent crops	Fruit trees and berry plantations	242-166-077
223	Agricultural areas	Permanent crops	Olive groves	230-166-000
231	Agricultural areas	Pastures	Pastures	230-230-077
241	Agricultural areas	Heterogeneous agricultural areas	Annual crops associated with permanent crops	255-230-166
242	Agricultural areas	Heterogeneous agricultural areas	Complex cultivation patterns	255-230-077
243	Agricultural areas	Heterogeneous agricultural areas	Land principally occupied by agriculture, with significant areas of natural veg.	230-204-077
244	Agricultural areas	Heterogeneous agricultural areas	Agro-forestry areas	242-204-166
311	Forest and semi natural areas	Forests	Broad-leaved forest	128-255-000
312	Forest and semi natural areas	Forests	Coniferous forest	000-166-000
313	Forest and semi natural areas	Forests	Mixed forest	077-255-000
321	Forest and semi natural areas	Scrub and/or herbaceous vegetation associations	Natural grasslands	204-242-077
322	Forest and semi natural areas	Scrub and/or herbaceous vegetation associations	Moors and heathland	166-255-128
323	Forest and semi natural areas	Scrub and/or herbaceous vegetation associations	Sclerophyllous vegetation	166-230-077
324	Forest and semi natural areas	Scrub and/or herbaceous vegetation associations	Transitional woodland-shrub	166-242-000
331	Forest and semi natural areas	Open spaces with little or no vegetation	Beaches, dunes, sands	230-230-230
332	Forest and semi natural areas	Open spaces with little or no vegetation	Bare rocks	204-204-204
333	Forest and semi natural areas	Open spaces with little or no vegetation	Sparsely vegetated areas	204-255-204
334	Forest and semi natural areas	Open spaces with little or no vegetation	Burnt areas	000-000-000
335	Forest and semi natural areas	Open spaces with little or no vegetation	Glaciers and perpetual snow	166-230-204
411	Wetlands	Inland wetlands	Inland marshes	166-166-255
412	Wetlands	Inland wetlands	Peat bogs	077-077-255
421	Wetlands	Maritime wetlands	Salt marshes	204-204-255
422	Wetlands	Maritime wetlands	Salines	230-230-255
423	Wetlands	Maritime wetlands	Intertidal flats	166-166-230
511	Water bodies	Inland waters	Water courses	000-204-242
512	Water bodies	Inland waters	Water bodies	128-242-230
521	Water bodies	Marine waters	Coastal lagoons	000-255-166
522	Water bodies	Marine waters	Estuaries	166-255-230
523	Water bodies	Marine waters	Sea and ocean	230-242-255

February, 2007

≣