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Abstract. Operating-systems are the core software component of many modern com-
puter systems, ranging from small specialised embedded systems through to large dis-
tributed operating-systems. The demands placed upon thesesystems are increasingly
complex, in particular the need to handle concurrency: to exploit increasingly parallel
(multi-core) hardware; support increasing numbers of userand system processes; and
to take advantage of increasingly distributed and decentralised systems. The languages
and designs that existing operating-systems employ provide little support for concur-
rency, leading to unmanageable programming complexities and ultimately errors in
the resulting systems; hard to detect, hard to remove, and almost impossible to prove
correct.

Implemented inoccam-π, a CSP derived language that provides guarantees of free-
dom from race-hazards and aliasing error, the RMoX operating-system represents a
novel approach to operating-systems, utilising concurrency at all levels to simplify de-
sign and implementation. This paper presents the USB (universal serial bus) device-
driver infrastructure used in the RMoX system, demonstrating that a highly concurrent
process-orientated approach to device-driver design and implementation is feasible,
efficient and results in systems that are reliable, secure and scalable.

Keywords. occam-pi, operating-systems, RMoX, concurrency,CSP, USB, embedded-
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Introduction

The RMoX operating-system, previously presented at this conference [1], represents an inter-
esting and well-founded approach to operating-systems development. Concurrency is utilised
at the lowest level, with the operating-system as a whole comprised of many interacting par-
allel processes. Compared with existing systems, that are typically sequential, RMoX offers
an opportunity to easily take advantage of the increasinglymulti-core hardware available —
it is scalable. Development inoccam-π [2,3], based on CSP [4] and incorporating ideas of
mobility from theπ-calculus [5], gives guarantees about freedom from race-hazard and alias-
ing error — problems that quickly become unmanageable in existing systems programmed
using sequential languages (which have little or no regard for concurrency), and especially
when concurrency is added as an afterthought.

Section 1 provides an overview of the RMoX system, its motivation, structure and oper-
ation. Section 2 provides a brief overview of the USB hardware standard, followed by details
of our driver implementation in section 3. An example showing the usage of the USB driver
is given in section 4, followed by initial conclusions and consideration for future and related
work in section 5.
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1. The RMoX Operating System

The RMoX operating-system is a highly concurrent and dynamic software system that pro-
vides an operating-system functionality. Its primary goals are:

• reliability: that we should have some guarantees about the operation of the system
components, possibly involving formal methods.

• scalability: that the system as a whole should scale to meet the availability of hardware
and demands of users; from embedded devices, through workstations and servers, to
massively parallel supercomputers.

• efficiency: that the system operates using a minimum of resources.

The majority of existing operating-systems fail to meet these goals, due largely to the
nature of the programming languages used to build them — typically C. Reliability within a
system utilising concurrency requires that we have a solid understanding of that concurrency,
including techniques for formal reasoning. This is simply not the case for systems built with
a threads-and-locksapproach to concurrency, as most operating-systems currently use. The
problem is exasperated by the use of 3rd-party code, such as device-drivers provided by
specific hardware vendors — the OS cannot guarantee that codebeing “plugged in” interacts
in a way that the OS expects. Getting this right is up to the hardware vendor’s device-driver
authors, who are unlikely to have access to every possible configuration of hardware and
other device-drivers which the OS uses, in order to test their own drivers.

Scalability is a highly desirable characteristic for an OS.Most existing operating-
systems are designed with specific hardware in mind, and as such, there is a wealth of OSs for
a range of hardware. From operating-systems specific to embedded devices, through general-
purpose operating-systems found on workstations and servers, up to highly concurrent and
job-based systems for massively-parallel supercomputers. Unfortunately, most operating-
systems fail to scale beyond or below the hardware for which they were originally intended.
Part of the scalability problems can be attributed to concurrency — the mechanisms that
existing systems use to manage concurrency are themselves inherently unscalable.

A further issue which RMoX addresses is one of efficiency, or as seen by the user, perfor-
mance.Context-switchingin the majority of operating-systems is a notoriously heavyweight
process, measured in thousands of machine cycles. Rapid context-switching is typically re-
quired to give ‘smooth’ system performance, but at some point, the overheads associated with
it become performance damaging. As such, existing systems go to great lengths to optimise
these code paths through the OS kernel, avoiding the overheads of concurrency (specifically
context-switches) wherever possible. The resulting code may be efficient, but it is hard to get
right, and almost impossible to prove correct given the nature of the languages and concur-
rency mechanisms used. Furthermore, the OS cannot generally guarantee that loaded code is
well behaved — either user processes or 3rd-party drivers. This results in a need for complex
hardware-assisted memory protection techniques.

In contrast, the RMoX OS canmake guarantees about the behaviour of foreign code —
we insist that such code conforms. Fortunately, theoccam-π compiler does this for us — it
is one-time effort for the compiler writer. Clearly there are issues relating totrust, but those
are orthogonal to the issues here, and are well addressed in other literature (related to secu-
rity and cryptography). Having assurances that code running within the OS is well-behaved
allows us to do away with many overheads. Most notably, the context-switch (including com-
munication) can be measured in tens of machine cycles, orders of magnitude smaller than
what currently exists. With such small overheads, we can useconcurrency as a powerful tool
to simplify system design. Furthermore, the resulting systems are scalable — we can run with
as few or as many processes are required.
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1.1. Structure

The structure of the RMoX operating-system is shown in figure 1, with detail for the
“driver.core” shown. The network is essentially a client-server style architecture, giving a
guarantee of deadlock freedom [6].

fs.core

driver.core

network.core

ramdisk IDE disk

keyboard VGA

console

uptime

kernel

unshared channel−end

shared channel−end

Figure 1. RMoX operating-system process network.

There are three core services provided by the RMoX system: device-drivers, file-systems
and networking. These simply provide management for the sub-processes (or sub-process
networks) that they are responsible for. When a request for aresource is made, typically via
the ‘kernel’ process, the relevant ‘core’ process routes that request to the correct underlying
device. Using mobile channels, this allowsdirect links to be established between low-level
components providing a particular functionality, with high-level components using them.
Protocols for the various types of resource (e.g. file, network socket, block device-driver) are
largely standardised — e.g. a file-system driver (inside “fs.core”) can interact with any device
driver that provides a block-device interface. Since such protocols are well defined, in terms
of interactions between processes, building pipelines of processes which layer functionality
is no issue. Some consideration must be given to shutting these down correctly (i.e. without
inducing deadlock); fortunately that process is well understood [7].

As the system evolves, links established between differentparts of the system can result
in a fairly complex process network. However, if we can guarantee that individual compo-
nents interact with their environments in a ‘safe’ way (witha per-process analysis performed
automatically by the compiler), then we can guarantee the overall ‘safe’ behaviour of the
system — a feature of the compositional semantics of CSP as engineered into theoccam-π
language. This type of formalism is already exploited in theoverall system design — specif-
ically that a client-server network is deadlock free; all wehave to do is ensure thatindividual
processes conform to this.

The remainder of this paper focuses on the USB device-driverarchitecture in RMoX.
Supporting this hardware presents some significant design challenges in existing operating-
systems, as it requires a dynamic approach that layers easily — USB devices may be plugged-
in and unplugged arbitrarily, and this should not break system operation. The lack of sup-
port for concurrency in existing systems can make USB development hard, particularly when
it comes to guaranteeing that different 3rd-party drivers interact correctly (almost impossi-
ble in existing systems). RMoX’s USB architecture shows how concurrency can be used to
our benefit: breaking down the software architecture into simple, understandable, concurrent
components; producing a design that is scalable, and an implementation that is reliable and
efficient.
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2. The Universal Serial Bus

The Universal Serial Bus(USB) [8,9] first appeared in 1996 and has undergone many re-
visions since. In recent years it has become the interface ofchoice for low, medium and
high speed peripherals, replacing many legacy interfaces,e.g. RS232, PS/2 and IEEE1284.
The range of USB devices available is vast, from keyboards and mice, through flash and
other storage devices, to sound cards and video capture systems. Many classes of device are
standardised in documents associated with the USB, these include human-interface devices,
mass-storage devices, audio input/output devices, and printers. For these reasons adding USB
support to the RMoX operating system increases its potential for device support significantly.
It also provides an opportunity to explore modelling of dynamic hardware configurations
within RMoX.

2.1. USB Hardware

The USB itself is a 4-wire (2 signal, 2 power) half-duplex interface, supporting devices at
three speeds: 1.5 Mbps (low), 12 Mbps (full) and 480 Mbps (high). There is a single bus
master, the host controller (HC), which controls all bus communication. Communication is
strictly controlled — a device cannot initiate a data transfer until it has been offered the
appropriate bandwidth by the HC. The topology of a USB bus is atree, with the HC at the
root. The HC provides a root hub with one or more ports to whichdevices can be connected.
Additional ports can be added to the bus by connecting a hub device to one of the existing
bus ports. Connected hubs are managed by the USB driver infrastructure, which maintains a
consistent view of the topology at all times. Figure 2 shows atypical arrangement of USB
hardware.

(legacy serial device)
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root
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port
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port

Figure 2. Example USB hardware tree.

Unlike more traditional system busses, such as PCI [10], thetopology the USB is ex-
pected to change at run-time. For this and the reasons above,access to bus devices is via
communication primitives provided by the USB driver infrastructure, rather than CPU I/O
commands or registers mapped into system memory. Although it should be noted that this
difference does not preclude the use of DMA (direct memory access) data transfers to and
from bus devices.

2.2. USB Interfaces

Each device attached to the bus is divided into interfaces, which have zero or more endpoints,
used to transfer data to and from the device. Interfaces model device functions, for example a
keyboard with built-in track-pad would typically have one interface for the keyboard, and one
for the track-pad. Interfaces are grouped into configurations, of which only one may be active
at a time. Configurations exist to allow the fundamental functionality of the device to change.
For example, an ISDN adapter with two channels may provide two configurations: one con-
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figuration with two interfaces, allowing the ISDN channels to be used independently; and
another with a single interface controlling both channels bound together (channel bonding).

Individual interfacesmay also be independently configured with different functionality
by use of an “alternate” setting. This is typically used to change the transfer characteristics of
the interface’s endpoints. For example, a packet-based device interface, such as a USB audio
device, may have alternate settings with different packet sizes. Depending on the bus load or
other conditions, the driver can select the most appropriate packet size using an “alternate”
setting.

Figure 3 illustrates the hierarchy of configurations, interfaces and endpoints, with an
active configuration, interface and endpoint, shown down the left-hand side of the diagram.

alternate 2

alternate 1alternate 1 alternate 1

interface 0

device

configuration 1

interface 0

configuration 2

interface 1

endpoint endpoint endpoint endpoint endpoint

Figure 3. USB configuration, interface and endpoint hierarchy.

2.3. USB Interface Endpoints

Endpoints are the sinks and sources for communications on the bus. Bus transactions are ad-
dressed first to the device, then to an endpoint within it. A software structure known as apipe
is used to model the connection between the host and an endpoint, maintaining the state in-
formation (not entirely dissimilar to the structure and state maintained by a TCP connection).
With a few exceptions (detailed later), communication on these pipes is logically the same
as that onoccam channels: unidirectional, synchronous and point-to-point. At the lower bus
protocol level, acknowledgements, sequence numbers and CRC checks exist which reinforce
these characteristics.

There are four different types of endpoint defined by the USB standards, each of which
specifies how the communication ‘pipe’ should be used:

• Control, uses a structured message protocol and can exchange data ineither direction.
A setup packet containing the request is transferred from the host to the device, fol-
lowed by zero or more bytes of data in a direction defined by therequest type. These
are used to enumerate and configure devices, and are also usedby many USB device
classes to pass information, such as setting the state of keyboard LEDs.

• Bulk, exchanges data unidirectionally on demand, no structure is imposed on the data.
These are the most similar to a traditional Unix ‘pipe’. Theyare used by storage
devices, printers and scanners.

• Interrupt, these act similarly tobulk except data is exchanged on a schedule. At a set
interval, the host offers bus time to the device and if it has data to transfer, or is ready,
then it accepts the bandwidth offered. Alternatively, the device delays using a negative
acknowledgement, and the transfer is tried again at the nextspecified interval. This
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process continues for as long as the host desires. For example, the typical keyboard is
offered a transfer every 10ms, which it uses to notify key-state changes.

• Isochronous, like interruptthese also use a schedule. The difference is that isochronous
transfers are not retried if the device is not ready or a bus error occurs. Since
isochronous transfers are not retried, they are permitted to use larger packets than any
of the other types. Isochronous transfer are used where datahas a constant (or known
maximum) rate and can tolerate temporary loss; audio and video are the typical uses.

2.4. Implementation Challenges

There are a variety of considerations when building a USB device-driver ‘stack’. Firstly, the
dynamic nature of the hardware topology must be reflected in software. Traditional operating
systems use a series of linked data-structures to achieve this, with embedded or global locks
to control concurrent access. The implementation must alsobe fault-tolerant to some degree
— if a user unplugs a device when in use, the software using that device should fail gracefully,
not deadlock or livelock.

As USB is being increasingly used to support legacy devices (e.g. PS/2 keyboard adap-
tors, serial and parallel-port adapters), the device-driver infrastructure needs to be able to
present suitable interfaces for higher-level operating system components. These interfaces
will typically lie underneathexisting high-level device-drivers. For instance, the ‘keyboard’
driver (primarily responsible for mapping scan-codes intocharacters and control-codes, and
maintaining the shift-state), will provide access to any keyboard device on the system, be it
connected via the onboard PS/2 port or attached to a USB bus. Such low-level connectivity
details are generally uninteresting to applications — which expect to get keystrokes from a
‘keyboard’ device, regardless of how it is connected (on-board, USB or on-screen virtual key-
boards). Ultimately this results in a large quantity of internal connections within the RMoX
“driver.core”, requiring careful design to avoid deadlock.

In addition to handling devices and their connectivity, theUSB driver is responsible
for managing power on the bus. This essentially involves disallowing the configuration of
devices which would cause too much current to be drawn from the bus. Devices are expected
to draw up to 100 mA by default (in an unconfigured state), but not more than 500 mA may
be drawn from any single port.

3. Software Architecture

All device-driver functionality in RMoX is accessed through the central “driver.core” process
(figure 1), which directs incoming requests (internal and external) to the appropriate driver
within. To support the dynamic arrival and removal of devices, a new “dnotify” device-driver
has been added. This is essentially separate from the USB infrastructure, and is responsible
for notifying registered listeners when new devices becomeavailable or old ones are removed.

The USB driver infrastructure is built from several parts. At the lowest level is ahost
controller driver (HCD), that provides access to the USB controller hardware (via I/O ports
and/or memory-mapping). The implementation of one particular HCD is covered in sec-
tion 3.3. At the next level is the “usb.driver” (USBD) itself. This process maintains a view
of the hardware topology using networks of sub-processes representing the different USB
busses, acting as a client to HCD drivers and as a server to higher-level drivers. Figure 4
shows a typical example, using USB to provide the ‘console’ with access to the keyboard.

The “usb.keyboard” process uses the USBD to access the particular keyboard device,
and provides an interface for upstream “keyboard” processes. Such a “keyboard” process
might actively listen for newly arriving keyboard devices from “dnotify”, managing them all
together — as many existing systems do (e.g. pressing ‘num-lock’ on oneof the keyboards
causesall num-lock LEDs to toggle).
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(console process)

driver.core

HCD usb.driver usb.keyboard

dnotify keyboard

Figure 4. USB device-driver top-level components.

3.1. USB Driver Structure

Processes outside the USB driver can gain access to the USB atthree levels: bus-level, device-
level and interface-level. The “usb.driver” contains within it separate process networks for
each individual bus — typically identified by a single host controller (HC). These process
networks are highly dynamic, reflecting the current hardware topology. When a host con-
troller driver instance starts, it connects to the USB driver and requests that a new bus be
created. Mobile channel bundles are returned from this request, on which the host controller
implements the low-level bus access protocol and the root hub. Through this mechanism the
bus access hardware is abstracted. Figure 5 shows the process network for a newly created
bus, with three connected USB devices, one of which is a hub. For clarity, some of the internal
connections have been omitted.

(driver.core)

(dnotify)

(usb.keyboard)

usb.driver

bus.scheduler

hub.manager

bus.interface

bus.directory

usb.device (1)

usb.device (2)

bus.enumerator

usb.hub

hub.manager usb.device (3)

(HCD)

Figure 5. USB device-driver bus-level components.

Within each bus sub-network are the following processes:

• “bus.interface” provides mediated access to the bus, specifically the bus directory. It
services a channel bundle shared at the client-end, which isheld by the USB driver
and other processes which request bus-level access.

• “bus.directory” maintains a list of all devices active on the bus and client channel-ends
to them. Attempts to open devices and interfaces pass through the directory which
resolves them to channel requests on specific devices. When devices and interfaces are
added or removed from the directory, their information is propagated to the ‘dnotify’
driver which acts as a system wide directory ofall devices (not just USB).

• “bus.enumerator” is responsible for assigning device addresses (1-127), and acts as a
mutex lock for bus enumeration. The lock functionality is necessary as only one de-
vice maybe enumerated on the bus at any given time. When a device is first connected
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it does not listen to the bus. After its port is reset it beginslistening to the bus and
responding to queries on the default address (0). The USB driver then sends a “set
address” request to the default address.

• “bus.scheduler” is responsible for managing bus bandwidthand checking the basic
validity of bus transactions. The USB standard dictates that certain types of traffic
may only occupy a limited percentage of the bus time (specificvalues depend on the
bus revision). If there is sufficient bandwidth and the request is deemed valid then it
is passed to the HCD for execution.

• “hub.manager”, of which there may be many instances, one foreach hub and one
for the root hub, are responsible for detecting device connection, disconnection, and
initiating associated actions such as enumeration or device shutdown.

From Figure 5, it is possible to see that a hierarchy exists between the “hub.manager”,
“usb.hub” and “usb.device” processes. The “usb.hub” process converts the abstract hub pro-
tocol used by the “hub.manager” process into accesses to thehub’s device endpoints. The
root hub, not being an actual USB device, is implemented directly by the HCD in the abstract
protocol of the “hub.manager” and hence no “usb.hub” process is necessary.

During the enumeration of a port, the “hub.manager” processforksa “usb.device” pro-
cess, passing it the client-end of a channel bundle. The channel bundle used is client/server
plus notify, and contains three channels: one from client toserver, and two from server to
client. The client is either listening on the ‘notify’ channel or making a request using the
client/server channels. The server process normally requests on the client/server channel pair;
if it wishes to ‘notify’ the client then it must do so in parallel, in order to maintain deadlock
freedom.

Client/server plus notify channel bundles, already mentioned, are used between hubs and
devices. When the “hub.manager” detects that a port has beendisconnected, it notifies the
devices attached to it. This is done by passing the server-end of the channel bundle to a newly
forked process, in order to prevent the hub blocking whilst it waits for the device to accept
the disconnect notification. The forked process performs the aforementioned parallel service
of client/server and notify channels. A similar pattern is also used between the underlying
hub driver (“usb.hub” or “HCD”) and the “hub.manager” to notify of changes in the hub state
(port change or hub disconnect).

3.2. USB Device Structure

Figure 6 shows the internal structure of the “usb.device” processes, and within these ‘inter-
face’ and ‘endpoint’ processes. With the exception of the default control endpoint, these form
the structure described in 2.2 (figure 3), and model the hierarchy defined in the USB specifi-
cation directly as processes. When a device is configured (non-zero configuration selected),
it forks off interface processes to match those defined in theconfiguration (read from the
device). The interfaces in turn fork endpoints to match their current alternate setting. Chang-
ing an interface’s alternate setting causes the endpoints to be torn down, and changing the
configuration of the device tears down all interfaces and endpoints.

Devices, interfaces and endpoints maintain a channel bundle, the client-end of which is
given out when they are “opened”. This channel-end isnot shared, so that the process can
track the active client. If the device is disconnected, or the interface or endpoint is torn down,
then it continues to respond to requests (with errors) untilthe client-end of this “public”
channel bundle is returned, after which it may shutdown (andrelease its resources). As the
USB topology is expected to change during normal system operation (adding and removing
devices), so the process network must not only grow, but safely shrink. Maintaining these
public channel-ends as exclusive (unshared) allows us to guarantee this safety.
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Figure 6. USB device-driver device-level components.

It is however, still possible to safely share resources if the need arises by issuing a sep-
arate channel bundle to each client that opens it. When all channel-ends have been returned,
the resource may safely terminate. This pattern is used for control endpoints, which due to
their structured data transfers can be safely used by many clients at once. Additionally, the
default control endpoint must be accessible to all interfaces and their clients. Shared access
to devices, interfaces and other endpoints does not typically make sense (given the nature of
devices), and hence is not implemented. If we do later decideto introduce sharing, it can be
added at a ‘higher-level’ within the process network.

Requests to open a device come in over the device-directory interface channel. If the
device is not already open then it returns that client channel-end via the directory. Requests
to open interfaces are passed first to the associated device,which in turn queries the interface
over its internal channel. Interfaces may also be opened through the device’s channel-end.
Using the first approach it is possible open an interface without first opening its associated
device (which may already be open). This allows interfaces to function independently and
separates functions from devices — i.e. the keyboard driveronly uses the keyboard interface,
without communicating with the associated device. Endpoints are only accessible through
their associated interface — this makes sense as a driver fora function will typically be the
only process using the interface and its endpoints.

Care must be taken when implementing the main-loop of the endpoint processes, such
that the channel from the interface is serviced at a reasonable interval. This is mainly a con-
cern for interrupt endpoints, where requests to the bus could wait for a very long period of
time before completing. For all other endpoint types, bus transactions are guaranteed to fin-
ish within a short period of time, hence synchronous requests are guaranteed to complete
promptly. The consequence of ignoring this detail would be that the system could appear
to livelock until some external event (e.g. key press, or device removal) occurs, causing a
pending interrupt request to complete.

3.3. USB UHCI

A number of host controller standards exist, of which UHCI (Universal Host Controller
Interface) is one. These allow a single USB host controller driver to bewritten such that it
supports a range of host controller hardware. RMoX has drivers for the UHCI, OHCI and
EHCI standards. The UHCI [11] standard, released by Intel in1996, is the simplest and shall
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be used as an example to explore how data is transferred efficiently from endpoints to the
bus. Figure 7, expands the HCD part of Figure 4, as implemented by the UHCI driver.

UHCI

(high−level driver)

transfer.dispatch

interrupt.buffer

transfer

transfer

irp.server

root.hub

endpoint

endpoint

hub.manager

bus.schedulerUSB

Figure 7. Overview of the ‘uhci.driver’ host controller driver.

The “uhci.driver” is broken down into four main processes (ignoring transfers, which are
forked in response to demand as explained below):

• “root.hub” provides access to the hardware registers whichimplement the ports of the
root hub, and receives relevant interrupt information from“transfer.despatch”.

• “interrupt.buffer” receives interrupts from the underlying interrupt routing subsystem
(part of the PCI driver). When an interrupt is received, the hardware status register is
read, then cleared before the interrupt subsystem is told itcan unblock the interrupt
line the UHCI hardware is using. Status register flags are buffered and passed to the
“transfer.despatch” process on request. The “interrupt.buffer” is similar in function to
an interrupt handler subroutine in a traditional OS kernel,such as Linux.

• “transfer.despatch” manages all other registers of the UHCI hardware not handled by
other processes. It also manages a set of linked data structures in system memory
which are accessed by the UHCI hardware and is used to initiate and control bus
transfers.

• “irp.server” (I/O request packet server) implements the HCprotocols which the
“bus.scheduler” process uses to schedule traffic. On receiving a transfer request from
the “bus.scheduler” it forks off a transfer to handle that request.

From the descriptions above it is clear that the UHCI hardware registers are partitioned
between the cooperating processes. This ensures that thereare no shared resource race-
hazards between processes within the driver. To further reinforce this, there are no shared
memory buffers; all memory used ismobileand ismovedbetween processes as appropriate.

As previously mentioned, the “irp.server” forks off a transfer process to handle each bus
transfer request. As part of each request received from the “bus.scheduler” is a client channel-
end. This is also passed to the transfer process during the fork. The endpoint that initiated the
transfer holds the server-end of the channel bundle, and so provides a direct path between the
endpoint and the driver.

The transfer process builds a set of linked data structures to describe the packets which
will be exchanged on the bus. These data structures are then registered with the despatch
process which links them into the hardware accessible data structures it maintains. In the
same request, the transfer process also passes a client channel-end on which the despatch
process can communicate with it. When the despatch process detects a hardware condition,
and associated data structure changes that suggest the state of a transfer has changed, then
it contacts the associated transfer process passing back any associated memory buffers. The
transfer process then examines the data structures. Not allof the data structures which must
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be examined are accessible to the despatch process, hence the transfer process implements
this check.

Based on the state of the transfer data structures, the transfer process, when queried, tells
the despatch process to continue, suspend or remove its transfer. If the transfer is complete or
has failed then the transfer process notifies the endpoint, which in turn can decide to issue a
new transfer or terminate the transfer process. This allowsthe network between the endpoint
and despatch process, and any allocated data structures, topersist across multiple transfers,
reducing communication and memory management overheads. This is legal in bandwidth
scheduling terms as only interrupt and isochronous transfers are allocated bus bandwidth,
based on their schedule, which cannot be changed once a request has begun. When the trans-
fer is finally terminated the endpoint will notify the “bus.scheduler” that the bandwidth is
once again free. However, it should be noted that for hardware reasons, control and bulk
transfers do not use thispersistencefeature with the UHCI driver.

Memory buffers from the client are passed directly from endpoint to transfer process,
and are used for DMA with the underlying hardware. This creates an efficientzero-copy
architecture, and has driven investigation into extendingthe occam-pi runtime allocator to be
aware of memory alignment in DMA memory positioning requirements.

4. Using the USB Driver

As an example of using the USB driver, we consider a version ofthe “usb.keyboard” process.
Instead of connecting directly to “usb.driver”, the USB keyboard driver registers the client-
end of a “CT.DNOTIFY.CALLBACK” channel-bundle with the “dnotify” driver, requesting that
it be notified about USB keyboard connections. This involvessetting up a data-structure with
details of the request and passing it along with the notification channel-end to the “dnotify”
driver, using the following code:

-- USB device classes (HID or boot-interface) and protocol (keyboard)

VAL INT INTERFACE.CLASS.CODE IS ((INT USB.CLASS.CODE.HID) << 8) \/ #01:

VAL INT INTERFACE.PROTOCOL IS 1:

CT.DNOTIFY.CALLBACK? cb.svr:

SHARED CT.DNOTIFY.CALLBACK! cb.cli:

MOBILE []DEVICE.DESC intf.desc:

INT notification.id:

SEQ

cb.cli, cb.svr := MOBILE CT.DNOTIFY.CALLBACK -- allocate callback bundle

intf.desc := MOBILE [1]DEVICE.DESC -- allocate descriptor array

intf.desc[0][flags] := DEVICE.MATCH.TYPE \/

(DEVICE.MATCH.CLASS \/ DEVICE.MATCH.PROTOCOL)

intf.desc[0][type] := DEVICE.TYPE.USB.INTERFACE

intf.desc[0][class] := INTERFACE.CLASS.CODE

intf.desc[0][protocol] := INTERFACE.PROTOCOL

CLAIM dnotify!

SEQ

dnotify[in] ! add.notification; DNOTIFY.INSERTION; cb.cli; intf.desc

dnotify[out] ? CASE result; notification.id

The resulting network setup is shown in the left-hand side offigure 8. The “usb.keyboard”
driver then enters its main-loop, waiting for requests fromeither the driver-core, or “dnotify”.
When a USB keyboard is subsequently connected (or if one was already present), the notifi-
cation is sent and “usb.keyboard” responds by forking off a driver process (“keyboard.drv”).
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This initially connects to the USBinterfacespecified in the notification (which will be for
the connected keyboard), as shown in the right-hand side of figure 8. The code for this is as
follows:

PROC keyboard.drv (VAL DEVICE.DESC device, SHARED CT.OUTPUT! keyboard,

SHARED CT.BLOCK! usb)

CT.USB.INTERFACE! intf:

INT result:

SEQ

-- connect to interface

CLAIM usb!

SEQ

usb[in] ! ioctl; IOCTL.USB.OPEN.INTERFACE; device[address]

usb[out] ? CASE result; result

IF

result = ERR.SUCCESS

usb[device.io] ? CASE intf

TRUE

SKIP

... get endpoints and start main loop

:

dnotify

usb.driver usb.keyboard

dnotify

usb.keyboardusb.driver

interface keyboard.drv

(keyboard data)

Figure 8. Setup of the ‘usb.keyboard’ device-driver

4.1. Using USB Interfaces

With a connection to the USB interface (in the variable ‘intf’), the keyboard driver requests
connections to thecontrol and interrupt endpoints of the USB interface. Discovering the
identifier of the interrupt endpoint first involves queryingthe interface, simply:

MOBILE []BYTE endpoints:

SEQ

intf[in] ! list.endpoints

intf[out] ? CASE endpoints; endpoints

The returned mobile array is expected to be of length 1, containing the interrupt endpoint
identifier. The control endpoint is identified separately, as there is at most one per interface.
Connections to the endpoints are then established, resulting in connectivity similar to that
shown in figure 6. The following code is used for this, omitting error-handling for brevity:

CT.USB.EP.CTL! ep0:

CT.USB.EP.INT! int.ep:

SEQ

intf[in] ! open.endpoint; 0 -- request control endpoint

intf[out] ? CASE ctl.ep; ep0

intf[in] ! open.endpoint; endpoints[0] -- request interrupt endpoint

intf[out] ? CASE int.ep; int.ep
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In addition to listing and connecting to specific endpoints,the interface-level connection
is used for listing and switching between alternative interfaces, retrieving information about
the device, and other USB specific control.

4.2. Using Interrupt and Control Endpoints

From this point, the USB keyboard driver uses the two endpoint connections to receive key-
board data and control the keyboard. The receiver loop (using the interrupt endpoint) is struc-
tured in the following way:

packet := MOBILE [8]BYTE

INITIAL BOOL done IS FALSE:

WHILE NOT done

SEQ

int.ep[in] ! dev.to.host; packet -- request 8 byte input

int.ep[out] ? CASE complete; result; packet -- response

IF

result > 0 -- received data

process.packet (packet, keyboard!) -- send keys to terminal

result = 0 -- no data

SKIP

TRUE

done := TRUE -- interrupt pipe error (exit)

The control endpoint is used to set the keyboard LEDs and keyboard rate, in addition to other
USB control. The following code example is used to set the keyboard LEDs:

VAL BYTE type IS USB.REQ.TYPE.HOST.TO.DEV \/

(USB.REQ.TYPE.CLASS \/ USB.REQ.TYPE.INTERFACE):

MOBILE []BYTE data:

INT result:

SEQ

data := MOBILE [1]BYTE

data[0] := leds -- each bit represents an LED

ep0[in] ! type; HID.REQ.SET.REPORT; (INT16 HID.REPORT.OUTPUT) << 8;

INT16 (device[address] /\ #FF); data

ep0[out] ? result; data -- get response

IF

result >= 0

SKIP -- success

TRUE

... report error

As can be seen, using control endpoints is moderately cumbersome, but this is to be expected
given the vast range of USB devices available. However, general device I/O through the
interrupt endpoint is largely straightforward.

Concurrency is a significant advantage in this environment,allowing a single device-
driver to maintain communication with multiple endpoints simultaneously, without signif-
icant coding complexity. This particularly applies to situations where a single driver uses
multiple USB devices, which may operate and fail independently. One example would be a
software RAID (redundant storage) driver, operating over many USB mass storage devices,
and presenting a single block-level interface in the RMoX device layer. Expressing such be-
haviours in non-concurrent languages in existing operating systems is complex and error-
prone, primarily due to the lack of an explicit lightweight concurrency mechanism.
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5. Conclusions and Future Work

In conclusion, we have designed and developed a robust and efficient process-orientated USB
driver. Significantly, the process networks we have developed bare an almostpicture per-
fect resemblance to the hierarchy presented in the USB standardsand the network which
exists between physical devices. Furthermore, as a featureof the development language and
process-orientated approach, our driver components are scheduled independently. This allows
us, as developers, freedom from almost all scheduling concerns. For example “hub.manager”
processes can make synchronous device calls, without causing the entire system to cease
functioning.

RMoX itself still has far to go. The hardware platform for which we are developing
is a PC104+embedded PC— a standardised way of building embedded PC systems, with
stackable PCI and ISA bus interconnects [12]. This makes a good initial target for several
reasons. Firstly, the requirements placed on embedded systems are substantially less than
what might be expected for a more general-purpose (desktop)operating-system — typically
acting as hardware management platforms for a specific application (e.g. industrial control
systems, ATM cash machines, information kiosk). There is, however, a strong requirement
for reliability in such systems. Secondly, the nature of thePC104+ target makes the RMoX
components developed immediately reusable when targetingdesktop PCs in the future. Ad-
ditionally, USB is being increasingly used for device connectivity within embedded PC104
systems, due to its versatility. Assuming a future RMoX driven ATM cash machine, adding
a survellience camera would simply involve plugging in the USB camera, installing the ap-
propriate video device-driver and setting up the application-level software (for real-time net-
work transmission and/or storage on local devices) — this could be done without altering the
existing system code at all, it simply runs in parallel with it. The builds are routinely tested on
desktop PCs and in emulators as standard, exercising thescalabilityof RMoX. We also have
a functional PCI network interface driver, and hope to experiment with distributed RMoX
systems (across several nodes in a cluster) in the not too distant future.

In addition to the RMoX operating-system components is development work on the
tool-chain and infrastructure. Developing RMoX has highlighted a need for some specific
language and run-time features, such as the aforementionedallocation of aligned DMA-
capable memory. A newoccam-π compiler is currently being developed [13] which will al-
low the easy incorporation of such language features. Thereis also a need to stabilise existing
occam-π language features, such as nested and recursive mobile datatypes, and port-level
I/O.

5.1. Related Work

The most significant piece of related research is Microsoft Research’s Singularity operating
system [14], which takes a similarly concurrent approach toOS design. Their system is pro-
grammed in a variant of theobject-orientatedC# language, which has extensions for efficient
communication between processes — very similar in principle and practice tooccam-π’s
mobilespace [15]. The times reported for context-switching and communication in Singular-
ity are some 20 times slower than what we have in RMoX, though their justification for it is
incorrect in places (e.g. assumingoccam processes can only wait on a single channel — not
considering the ‘ALT’ construct). Some of the difference is correctly attributed to RMoX’s
current lack of support for multi-core/multi-processor machines. Fortunately, we know how
to build these CSP-style schedulers for multi-processor machines, with comparatively low
overheads, using techniques such asbatch-scheduling[16], and are currently investigating
this.

More generally, there is a wide range of related research on novel approaches to
operating-system design. Most of these, even if indirectly, give some focus to the language
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and programming paradigm used for implementation — something other than thethreads-
and-locksprocedural approach of C. For example, the Haskell operating-system [17] uses
a functional paradigm; and the Plan9 operating-system [18]uses a concurrent variant of C
(“Alef”). However, we maintain the view that theconcurrent process-orientatedapproach of
occam-π is more suitable — as demonstrated by the general scalability and efficiency of
RMoX, and the ease of conceptual understanding in the USB driverhierarchy — software
organisation reflects hardware organisation.

A lot of ongoing research is aimed at making current languages and paradigms more
efficient and concrete in their handling of concurrency. With RMoX, we are starting with
something that is already highly concurrent with extremelylow overheads for managing that
concurrency — due in part to years of experience and maturityfrom CSP,occam and the
Transputer [19].
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