Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

Communicating Process Architectures 2007 1
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and P&teich

I0S Press, 2007

(© 2007 The authors and IOS Press. All rights reserved.

A Process Oriented Approach
to USB Driver Development

Carl G. RITSON and Frederick R.M. BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

{cgr,frmb}@kent .ac.uk

Abstract. Operating-systems are the core software component of madgm com-
puter systems, ranging from small specialised embeddeeirsgghrough to large dis-
tributed operating-systems. The demands placed upon sysgEms are increasingly
complex, in particular the need to handle concurrency: patincreasingly parallel
(multi-core) hardware; support increasing numbers of asdrsystem processes; and
to take advantage of increasingly distributed and decksdrhsystems. The languages
and designs that existing operating-systems employ peditite support for concur-
rency, leading to unmanageable programming complexitielsudtimately errors in
the resulting systems; hard to detect, hard to remove, andsilimpossible to prove
correct.

Implemented iroccam-T1t, a CSP derived language that provides guarantees of free-
dom from race-hazards and aliasing error, thedX\bperating-system represents a
novel approach to operating-systems, utilising concuyamall levels to simplify de-
sign and implementation. This paper presents the USB (ts@Vserial bus) device-
driver infrastructure used in the R system, demonstrating that a highly concurrent
process-orientated approach to device-driver design mpiementation is feasible,
efficient and results in systems that are reliable, secutesealable.

Keywor ds. occam-pi, operating-systems, RMoX, concurrency, CSP, é8thedded-
systems, PC104

I ntroduction

The RMoX operating-system, previously presented at this conter¢h], represents an inter-
esting and well-founded approach to operating-systemsldement. Concurrency is utilised
at the lowest level, with the operating-system as a wholeprm®d of many interacting par-
allel processes. Compared with existing systems, thayaredlly sequential, RMX offers

an opportunity to easily take advantage of the increasingliti-core hardware available —
it is scalable. Development ioccam-1t[2,3], based on CSP [4] and incorporating ideas of
mobility from therecalculus [5], gives guarantees about freedom from raeesdeand alias-
ing error — problems that quickly become unmanageable istiexj systems programmed
using sequential languages (which have little or no regara&dncurrency), and especially
when concurrency is added as an afterthought.

Section 1 provides an overview of the RM system, its motivation, structure and oper-
ation. Section 2 provides a brief overview of the USB haravsiandard, followed by details
of our driver implementation in section 3. An example shaydine usage of the USB driver
is given in section 4, followed by initial conclusions andsaleration for future and related
work in section 5.

https://core.ac.uk/display/64234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

1. TheRMoX Operating System

The RMoX operating-system is a highly concurrent and dynamic safévwsystem that pro-
vides an operating-system functionality. Its primary gaale:

e reliability: that we should have some guarantees about the operatidre cfystem
components, possibly involving formal methods.

e scalability. that the system as a whole should scale to meet the avayaiihardware
and demands of users; from embedded devices, through \&tidiet and servers, to
massively parallel supercomputers.

e efficiencythat the system operates using a minimum of resources.

The majority of existing operating-systems fail to meetsthgoals, due largely to the
nature of the programming languages used to build them —a&jlgiC. Reliability within a
system utilising concurrency requires that we have a saldetstanding of that concurrency,
including techniques for formal reasoning. This is simpdy the case for systems built with
athreads-and-lockapproach to concurrency, as most operating-systems tiyrcese. The
problem is exasperated by the use of 3rd-party code, sucke\aseddrivers provided by
specific hardware vendors — the OS cannot guarantee thabeaug “plugged in” interacts
in a way that the OS expects. Getting this right is up to thellare vendor’s device-driver
authors, who are unlikely to have access to every possibiéguwation of hardware and
other device-drivers which the OS uses, in order to test tven drivers.

Scalability is a highly desirable characteristic for an Qfost existing operating-
systems are designed with specific hardware in mind, andcas there is a wealth of OSs for
a range of hardware. From operating-systems specific to @aeldedevices, through general-
purpose operating-systems found on workstations and rsemye to highly concurrent and
job-based systems for massively-parallel supercomputémfortunately, most operating-
systems fail to scale beyond or below the hardware for whiely tvere originally intended.
Part of the scalability problems can be attributed to comnay — the mechanisms that
existing systems use to manage concurrency are themseha®ntly unscalable.

A further issue which RMX addresses is one of efficiency, or as seen by the user, perfor
mance Context-switchingn the majority of operating-systems is a notoriously heesght
process, measured in thousands of machine cycles. Rapiext@witching is typically re-
quired to give ‘smooth’ system performance, but at sometpthia overheads associated with
it become performance damaging. As such, existing systents great lengths to optimise
these code paths through the OS kernel, avoiding the owdstegaconcurrency (specifically
context-switches) wherever possible. The resulting codg Ine efficient, but it is hard to get
right, and almost impossible to prove correct given the reatii the languages and concur-
rency mechanisms used. Furthermore, the OS cannot ggnguallantee that loaded code is
well behaved — either user processes or 3rd-party drivérs.résults in a need for complex
hardware-assisted memory protection techniques.

In contrast, the RMX OS canmake guarantees about the behaviour of foreign code —
we insist that such code conforms. Fortunately,dbeam-1tcompiler does this for us — it
is one-time effort for the compiler writer. Clearly thereeassues relating trust, but those
are orthogonal to the issues here, and are well addresseldeanliberature (related to secu-
rity and cryptography). Having assurances that code rgnwithin the OS is well-behaved
allows us to do away with many overheads. Most notably, timecad-switch (including com-
munication) can be measured in tens of machine cycles, ®afanagnitude smaller than
what currently exists. With such small overheads, we cartaseurrency as a powerful tool
to simplify system design. Furthermore, the resultingeystare scalable — we can run with
as few or as many processes are required.

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 3

1.1. Structure

The structure of the RMIX operating-system is shown in figure 1, with detail for the
“driver.core” shown. The network is essentially a clieatwer style architecture, giving a
guarantee of deadlock freedom [6].

O] = kernel - O—= shared channel-end 1
? . ®—= unshared channel-end
. s T
uptime O fs.core
| ramdisk | |IDE disk | 3
O—1 : ~ drivercore % e # O |
S ¥ f ¥ ? 3
’keybpard ‘ ’ VGA ‘ :
e AT L S
o—1 »| network.core
console T

Figurel. RMoX operating-system process network.

There are three core services provided by theoRMystem: device-drivers, file-systems
and networking. These simply provide management for thepsabesses (or sub-process
networks) that they are responsible for. When a request fes@urce is made, typically via
the ‘kernel’ process, the relevant ‘core’ process routes taquest to the correct underlying
device. Using mobile channels, this allodisect links to be established between low-level
components providing a particular functionality, with hipvel components using them.
Protocols for the various types of resource (e.qg. file, netwocket, block device-driver) are
largely standardised — e.g. a file-system driver (insidetise”) can interact with any device
driver that provides a block-device interface. Since suciqeols are well defined, in terms
of interactions between processes, building pipelinesatgsses which layer functionality
IS no issue. Some consideration must be given to shuttirggettiewn correctly (i.e. without
inducing deadlock); fortunately that process is well usttsod [7].

As the system evolves, links established between diffgraris of the system can result
in a fairly complex process network. However, if we can gasega that individual compo-
nents interact with their environments in a ‘safe’ way (watper-process analysis performed
automatically by the compiler), then we can guarantee theratv‘'safe’ behaviour of the
system — a feature of the compositional semantics of CSP@iremred into th@ccam-Tt
language. This type of formalism is already exploited indkierall system design — specif-
ically that a client-server network is deadlock free; alllwae to do is ensure theadividual
processes conform to this.

The remainder of this paper focuses on the USB device-darkaritecture in RMX.
Supporting this hardware presents some significant desigilenges in existing operating-
systems, as it requires a dynamic approach that layery eadilSB devices may be plugged-
in and unplugged arbitrarily, and this should not breakeysbperation. The lack of sup-
port for concurrency in existing systems can make USB deveént hard, particularly when
it comes to guaranteeing that different 3rd-party drivateract correctly (almost impossi-
ble in existing systems). R&K’s USB architecture shows how concurrency can be used to
our benefit: breaking down the software architecture imtgoge, understandable, concurrent
components; producing a design that is scalable, and armgsitation that is reliable and
efficient.

4 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

2. TheUniversal Serial Bus

The Universal Serial BugUSB) [8,9] first appeared in 1996 and has undergone many re-
visions since. In recent years it has become the interfaashoice for low, medium and
high speed peripherals, replacing many legacy interfacgs,RS232, PS/2 and IEEE1284.
The range of USB devices available is vast, from keyboardsnaite, through flash and
other storage devices, to sound cards and video captuensysiany classes of device are
standardised in documents associated with the USB, thekelenhuman-interface devices,
mass-storage devices, audio input/output devices, antepsi For these reasons adding USB
support to the RMX operating system increases its potential for device suggnificantly.

It also provides an opportunity to explore modelling of dyna hardware configurations
within RMoX.

2.1. USB Hardware

The USB itself is a 4-wire (2 signal, 2 power) half-duplexeritice, supporting devices at
three speeds: 1.5 Mbps (low), 12 Mbps (full) and 480 MbpsHhhighere is a single bus
master, the host controller (HC), which controls all bus ommication. Communication is

strictly controlled — a device cannot initiate a data transintil it has been offered the
appropriate bandwidth by the HC. The topology of a USB bustre@, with the HC at the

root. The HC provides a root hub with one or more ports to whkievices can be connected.
Additional ports can be added to the bus by connecting a huiceléo one of the existing

bus ports. Connected hubs are managed by the USB drivestinfcdure, which maintains a
consistent view of the topology at all times. Figure 2 showsgpécal arrangement of USB

hardware.

I keyboard
port
host root

controller hub EZ: B = mouse I USB-key
port
port |«— " RS232 i/f ~——=(legacy serial device)

hub

port
port |« = camera

Figure 2. Example USB hardware tree.

Unlike more traditional system busses, such as PCI [10]tdpelogy the USB is ex-
pected to change at run-time. For this and the reasons abowess to bus devices is via
communication primitives provided by the USB driver intrasture, rather than CPU 1/O
commands or registers mapped into system memory. Althdusfiould be noted that this
difference does not preclude the use of DMA (direct memogess) data transfers to and
from bus devices.

2.2. USB Interfaces

Each device attached to the bus is divided into interfach&whave zero or more endpoints,
used to transfer data to and from the device. Interfaces haegiece functions, for example a
keyboard with built-in track-pad would typically have omédrface for the keyboard, and one
for the track-pad. Interfaces are grouped into configunatiof which only one may be active
at a time. Configurations exist to allow the fundamental fiomality of the device to change.
For example, an ISDN adapter with two channels may providedwnfigurations: one con-

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 5

figuration with two interfaces, allowing the ISDN channeaisbie used independently; and
another with a single interface controlling both channelsria togetherghannel bonding
Individual interfacesmay also be independently configured with different funcaidy
by use of an “alternate” setting. This is typically used tamte the transfer characteristics of
the interface’s endpoints. For example, a packet-basddalmterface, such as a USB audio
device, may have alternate settings with different padketss Depending on the bus load or
other conditions, the driver can select the most apprappatket size using an “alternate”
setting.
Figure 3 illustrates the hierarchy of configurations, iftees and endpoints, with an
active configuration, interface and endpoint, shown dowerl¢fi-hand side of the diagram.

device
configuration 1 ‘ configuration 2 ‘
interface 0 interface 0 interface 1
‘ alternate 1 ’ alternate 1 alternate 1

alternate 2

endpoint ‘ ’endpoint Hendpoint ‘ e‘ndpoint ‘eﬁdpoint ‘

Figure 3. USB configuration, interface and endpoint hierarchy.

2.3. USB Interface Endpoints

Endpoints are the sinks and sources for communicationseobuts. Bus transactions are ad-
dressed first to the device, then to an endpoint within it. Aveare structure known asgpe
is used to model the connection between the host and an endpaiintaining the state in-
formation (not entirely dissimilar to the structure andestaaintained by a TCP connection).
With a few exceptions (detailed later), communication ocgsthpipes is logically the same
as that oroccam channels: unidirectional, synchronous and point-to-pdinthe lower bus
protocol level, acknowledgements, sequence numbers afddBBcks exist which reinforce
these characteristics.

There are four different types of endpoint defined by the UBBdards, each of which
specifies how the communication ‘pipe’ should be used:

e Control, uses a structured message protocol and can exchange ddateeirdirection.
A setup packet containing the request is transferred frarhtrst to the device, fol-
lowed by zero or more bytes of data in a direction defined byéheest type. These
are used to enumerate and configure devices, and are alsbysshy USB device
classes to pass information, such as setting the state bbkey LEDs.

e Bulk, exchanges data unidirectionally on demand, no strucsuneposed on the data.
These are the most similar to a traditional Unix ‘pipe’. Theag used by storage
devices, printers and scanners.

e Interrupt, these act similarly tbulk except data is exchanged on a schedule. At a set
interval, the host offers bus time to the device and if it hatsdo transfer, or is ready,
then it accepts the bandwidth offered. Alternatively, tbeide delays using a negative
acknowledgement, and the transfer is tried again at the spedified interval. This

6 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

process continues for as long as the host desires. For exatiheltypical keyboard is
offered a transfer every 10ms, which it uses to notify keytesthanges.

e Isochronouslike interruptthese also use a schedule. The difference is that isochsonou
transfers are not retried if the device is not ready or a buereyccurs. Since
isochronous transfers are not retried, they are permittede larger packets than any
of the other types. Isochronous transfer are used wherendata constant (or known
maximum) rate and can tolerate temporary loss; audio areb\ade the typical uses.

2.4. Implementation Challenges

There are a variety of considerations when building a USBogeglriver ‘stack’. Firstly, the
dynamic nature of the hardware topology must be reflectedftaare. Traditional operating
systems use a series of linked data-structures to achisyevith embedded or global locks
to control concurrent access. The implementation musttadault-tolerant to some degree
— ifauser unplugs a device when in use, the software usinglévace should fail gracefully,
not deadlock or livelock.

As USB is being increasingly used to support legacy deviegs PS/2 keyboard adap-
tors, serial and parallel-port adapters), the deviceednnfrastructure needs to be able to
present suitable interfaces for higher-level operatingiesy components. These interfaces
will typically lie underneattexisting high-level device-drivers. For instance, theytk@ard’
driver (primarily responsible for mapping scan-codes ittiaracters and control-codes, and
maintaining the shift-state), will provide access to anydaard device on the system, be it
connected via the onboard PS/2 port or attached to a USB buab. I8Bw-level connectivity
details are generally uninteresting to applications — Whagpect to get keystrokes from a
‘keyboard’ device, regardless of how it is connected (oardpUSB or on-screen virtual key-
boards). Ultimately this results in a large quantity of mi connections within the RbX
“driver.core”, requiring careful design to avoid deadlock

In addition to handling devices and their connectivity, th8B driver is responsible
for managing power on the bus. This essentially involvealldiwing the configuration of
devices which would cause too much current to be drawn franbtis. Devices are expected
to draw up to 100 mA by default (in an unconfigured state), fmtitmore than 500 mA may
be drawn from any single port.

3. Software Architecture

All device-driver functionality in RMX is accessed through the central “driver.core” process
(figure 1), which directs incoming requests (internal antbmal) to the appropriate driver
within. To support the dynamic arrival and removal of desi@new “dnotify” device-driver
has been added. This is essentially separate from the U&ksinicture, and is responsible
for notifying registered listeners when new devices becawadable or old ones are removed.

The USB driver infrastructure is built from several part$.tde lowest level is dost
controller driver (HCD), that provides access to the USB controller hardwaigel(O ports
and/or memory-mapping). The implementation of one padictiCD is covered in sec-
tion 3.3. At the next level is the “usb.driver” (USBD) itselfhis process maintains a view
of the hardware topology using networks of sub-procesga®esenting the different USB
busses, acting as a client to HCD drivers and as a server heiigvel drivers. Figure 4
shows a typical example, using USB to provide the ‘consol& access to the keyboard.

The “usb.keyboard” process uses the USBD to access theydartkeyboard device,
and provides an interface for upstream “keyboard” prosesSach a “keyboard” process
might actively listen for newly arriving keyboard devicesrh “dnotify”, managing them all
together — as many existing systems do (e.g. pressing ‘maki-bn oneof the keyboards
causesll num-lock LEDs to toggle).

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 7

. B R PR R PP PR PP PP P ®
ant'fyA keyboard R (console process)
O— driver.core | 7 ' I ! \ O
.
HCD usb.driver usb.keyboard

4
hd L4 b4

Lo -

Figure4. USB device-driver top-level components.

3.1. USB Driver Structure

Processes outside the USB driver can gain access to the USRatevels: bus-level, device-
level and interface-level. The “usb.driver” contains witlit separate process networks for
each individual bus — typically identified by a single hoshtoller (HC). These process
networks are highly dynamic, reflecting the current hareéwapology. When a host con-
troller driver instance starts, it connects to the USB draved requests that a new bus be
created. Mobile channel bundles are returned from thisegtigon which the host controller
implements the low-level bus access protocol and the roet Horough this mechanism the
bus access hardware is abstracted. Figure 5 shows the proewegork for a newly created
bus, with three connected USB devices, one of which is a hartxI&rity, some of the internal
connections have been omitted.

(driver.corey=—m{ usb.driver '\>0_>—
‘ bus.interface

J bus.scheduler
(HCD)
N hub.manager 5
: "

bus.directory e~ (dnotify)

T ush.device (1) 4

. R ed) . (usb.keyboard)
usb.device (2) |
f- 5 bus.enumerator
.o
usb.hub _ —_—
RS hub.manager - « ush.device (3)

Figure5. USB device-driver bus-level components.

Within each bus sub-network are the following processes:

e “bus.interface” provides mediated access to the bus, fpaty the bus directory. It
services a channel bundle shared at the client-end, whicklisby the USB driver
and other processes which request bus-level access.

e “bus.directory” maintains a list of all devices active oe thus and client channel-ends
to them. Attempts to open devices and interfaces pass thrtheydirectory which
resolves them to channel requests on specific devices. Wdwired and interfaces are
added or removed from the directory, their information isgargated to the ‘dnotify’
driver which acts as a system wide directoryatifdevices (not just USB).

e “bus.enumerator” is responsible for assigning device eskls (1-127), and acts as a
mutex lock for bus enumeration. The lock functionality i€@gsary as only one de-
vice maybe enumerated on the bus at any given time. When egdieviirst connected

8 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

it does not listen to the bus. After its port is reset it bedistening to the bus and
responding to queries on the default address (0). The USRrdiien sends a “set
address” request to the default address.

e “bus.scheduler” is responsible for managing bus bandwadith checking the basic
validity of bus transactions. The USB standard dictates ¢béain types of traffic
may only occupy a limited percentage of the bus time (spedifices depend on the
bus revision). If there is sufficient bandwidth and the resjue deemed valid then it
is passed to the HCD for execution.

e “hub.manager”, of which there may be many instances, onedch hub and one
for the root hub, are responsible for detecting device corme, disconnection, and
initiating associated actions such as enumeration or deshiatdown.

From Figure 5, it is possible to see that a hierarchy existwd®n the “hub.manager”,
“usb.hub” and “usb.device” processes. The “usb.hub” ppea®nverts the abstract hub pro-
tocol used by the “hub.manager” process into accesses toultie device endpoints. The
root hub, not being an actual USB device, is implementedatthyréy the HCD in the abstract
protocol of the “hub.manager” and hence no “usb.hub” precesecessary.

During the enumeration of a port, the “hub.manager” profeds a “usb.device” pro-
cess, passing it the client-end of a channel bundle. Thenghdmindle used is client/server
plus notify, and contains three channels: one from cliergetiver, and two from server to
client. The client is either listening on the ‘notify’ chaglnor making a request using the
client/server channels. The server process normally stgoa the client/server channel pair;
if it wishes to ‘notify’ the client then it must do so in parall in order to maintain deadlock
freedom.

Client/server plus notify channel bundles, already mereti are used between hubs and
devices. When the “hub.manager” detects that a port has diseannected, it notifies the
devices attached to it. This is done by passing the senaokthe channel bundle to a newly
forked process, in order to prevent the hub blocking whilstdits for the device to accept
the disconnect notification. The forked process perforrasatbrementioned parallel service
of client/server and notify channels. A similar pattern lsoaused between the underlying
hub driver (“usb.hub” or “HCD”) and the “hub.manager” to iipbf changes in the hub state
(port change or hub disconnect).

3.2. USB Device Structure

Figure 6 shows the internal structure of the “usb.devic@&tpsses, and within these ‘inter-
face’ and ‘endpoint’ processes. With the exception of tHawlecontrol endpoint, these form
the structure described in 2.2 (figure 3), and model the fdbyadefined in the USB specifi-
cation directly as processes. When a device is configurattZem configuration selected),
it forks off interface processes to match those defined incthdiguration (read from the
device). The interfaces in turn fork endpoints to matchrtbeirent alternate setting. Chang-
ing an interface’s alternate setting causes the endparg torn down, and changing the
configuration of the device tears down all interfaces angeimds.

Devices, interfaces and endpoints maintain a channel butié client-end of which is
given out when they are “opened”. This channel-enddsshared, so that the process can
track the active client. If the device is disconnected, erititerface or endpointis torn down,
then it continues to respond to requests (with errors) dahélclient-end of this “public”
channel bundle is returned, after which it may shutdown (&hebse its resources). As the
USB topology is expected to change during normal systematipar(adding and removing
devices), so the process network must not only grow, butysafeink. Maintaining these
public channel-ends as exclusive (unshared) allows usadcagtee this safety.

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 9

(hub.manager) (hub.manager)
A = (bus.enumerator) (bus.enumeratory=—-. A o » (bus.directory)
o« & ,‘ SO PR S SR P, |
usb.device (2) : 5 ush.device (1) #-—
| % - ﬁg
usb.interface = ctl.endpoint ‘ usb.interface
b A : :
Y 1 I vy
int.endpoint : int.endpoint ctl.endpoint
e SOTARREREEEEE : ‘ 1) 4
(usb.hub) 3 blk.endpoint blk.endpoint
. [i
oo .
(usb.keyboard) (usb.mass.storage)

Figure 6. USB device-driver device-level components.

It is however, still possible to safely share resourcesefribed arises by issuing a sep-
arate channel bundle to each client that opens it. When atirodl-ends have been returned,
the resource may safely terminate. This pattern is usedadiotral endpoints, which due to
their structured data transfers can be safely used by mamntglat once. Additionally, the
default control endpoint must be accessible to all inter$aand their clients. Shared access
to devices, interfaces and other endpoints does not typicelke sense (given the nature of
devices), and hence is not implemented. If we do later deaoid&roduce sharing, it can be
added at a ‘higher-level’ within the process network.

Requests to open a device come in over the device-direatbeyface channel. If the
device is not already open then it returns that client chibeneé via the directory. Requests
to open interfaces are passed first to the associated desiad in turn queries the interface
over its internal channel. Interfaces may also be openauigir the device’s channel-end.
Using the first approach it is possible open an interfaceauitlirst opening its associated
device (which may already be open). This allows interfacefunction independently and
separates functions from devices — i.e. the keyboard donbruses the keyboard interface,
without communicating with the associated device. Endgoame only accessible through
their associated interface — this makes sense as a drivarftorction will typically be the
only process using the interface and its endpoints.

Care must be taken when implementing the main-loop of the@ntiprocesses, such
that the channel from the interface is serviced at a reasemaerval. This is mainly a con-
cern for interrupt endpoints, where requests to the busdowalt for a very long period of
time before completing. For all other endpoint types, basgactions are guaranteed to fin-
ish within a short period of time, hence synchronous reguast guaranteed to complete
promptly. The consequence of ignoring this detail would legt the system could appear
to livelock until some external event (e.g. key press, ori@evemoval) occurs, causing a
pending interrupt request to complete.

3.3. USB UHCI

A number of host controller standards exist, of which UHOh{versal Host Controller
Interfaceg is one. These allow a single USB host controller driver tovoigten such that it
supports a range of host controller hardware.dVhas drivers for the UHCI, OHCI and
EHCI standards. The UHCI [11] standard, released by Int&B®6, is the simplest and shall

10 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

be used as an example to explore how data is transferreceatficirom endpoints to the
bus. Figure 7, expands the HCD part of Figure 4, as implenddmntehe UHCI driver.

FOOLAUD e e R ¢ hub.manager

‘ o [e (high-level driver)

.ﬁ—> transfer

transfer.dispatch FO¢<:

p» transfer

interrupt.buffer

Y

irp.server UHeT USB 9 bus.scheduler

Figure7. Overview of the ‘uhci.driver’ host controller driver.

The “uhci.driver” is broken down into four main processemring transfers, which are
forked in response to demand as explained below):

e “root.hub” provides access to the hardware registers wingibement the ports of the
root hub, and receives relevant interrupt information fftwansfer.despatch”.

e ‘“interrupt.buffer” receives interrupts from the undengiinterrupt routing subsystem
(part of the PCI driver). When an interrupt is received, thedivare status register is
read, then cleared before the interrupt subsystem is taantunblock the interrupt
line the UHCI hardware is using. Status register flags arteted and passed to the
“transfer.despatch” process on request. The “interruffeld’ is similar in function to
an interrupt handler subroutine in a traditional OS kers@th as Linux.

e “transfer.despatch” manages all other registers of the Utd@ware not handled by
other processes. It also manages a set of linked data sgadtusystem memory
which are accessed by the UHCI hardware and is used to eniiatl control bus
transfers.

e ‘“irp.server” (I/O request packet server) implements the piGtocols which the
“bus.scheduler” process uses to schedule traffic. On receavtransfer request from
the “bus.scheduler” it forks off a transfer to handle thajLrest.

From the descriptions above it is clear that the UHCI haréwagisters are partitioned
between the cooperating processes. This ensures thatdheneo shared resource race-
hazards between processes within the driver. To furthefarge this, there are no shared
memory buffers; all memory usednsobileand ismovedbetween processes as appropriate.

As previously mentioned, the “irp.server” forks off a tréergprocess to handle each bus
transfer request. As part of each request received fronhiing Scheduler” is a client channel-
end. This is also passed to the transfer process during tk€ioe endpoint that initiated the
transfer holds the server-end of the channel bundle, antbsides a direct path between the
endpoint and the driver.

The transfer process builds a set of linked data structordsdcribe the packets which
will be exchanged on the bus. These data structures are diggstared with the despatch
process which links them into the hardware accessible datatsres it maintains. In the
same request, the transfer process also passes a cliemetieain on which the despatch
process can communicate with it. When the despatch proegsstd a hardware condition,
and associated data structure changes that suggest th@fstatransfer has changed, then
it contacts the associated transfer process passing bgasaaciated memory buffers. The
transfer process then examines the data structures. Nufttak data structures which must

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 11

be examined are accessible to the despatch process, hencartsfer process implements
this check.

Based on the state of the transfer data structures, thddrgmecess, when queried, tells
the despatch process to continue, suspend or remove isédralfithe transfer is complete or
has failed then the transfer process notifies the endpomthan turn can decide to issue a
new transfer or terminate the transfer process. This altbersetwork between the endpoint
and despatch process, and any allocated data structupgeysist across multiple transfers,
reducing communication and memory management overhe&is.isTlegal in bandwidth
scheduling terms as only interrupt and isochronous tramsfee allocated bus bandwidth,
based on their schedule, which cannot be changed once astégssbegun. When the trans-
fer is finally terminated the endpoint will notify the “busteduler” that the bandwidth is
once again free. However, it should be noted that for hardweasons, control and bulk
transfers do not use thpersistencdeature with the UHCI driver.

Memory buffers from the client are passed directly from emdpto transfer process,
and are used for DMA with the underlying hardware. This @eain efficienzero-copy
architecture, and has driven investigation into extentiiegoccam-pi runtime allocator to be
aware of memory alignment in DMA memory positioning reqments.

4. Using the USB Driver

As an example of using the USB driver, we consider a versighefusb.keyboard” process.
Instead of connecting directly to “usb.driver”, the USB kewrd driver registers the client-
end of a ‘CT.DNOTIFY.CALLBACK” channel-bundle with the “dnotify” driver, requesting tha
it be notified about USB keyboard connections. This invokatting up a data-structure with
details of the request and passing it along with the notiboathannel-end to the “dnotify”
driver, using the following code:

-- USB device classes (HID or boot-interface) and protocol (keyboard)
VAL INT INTERFACE.CLASS.CODE IS ((INT USB.CLASS.CODE.HID) << 8) \/ #01:
VAL INT INTERFACE.PROTOCOL IS 1:

CT.DNOTIFY.CALLBACK? cb.svr:

SHARED CT.DNOTIFY.CALLBACK! cb.cli:
MOBILE []DEVICE.DESC intf.desc:

INT notification.id:

SEQ
cb.cli, cb.svr := MOBILE CT.DNOTIFY.CALLBACK —- allocate callback bundle
intf.desc := MOBILE [1]DEVICE.DESC -- allocate descriptor array

intf.desc[0] [flags]

DEVICE.MATCH.TYPE \/

(DEVICE.MATCH.CLASS \/ DEVICE.MATCH.PROTOCOL)
DEVICE.TYPE.USB.INTERFACE
INTERFACE.CLASS.CODE

INTERFACE.PROTOCOL

intf.desc[0] [type]
intf.desc[0] [class]
intf.desc[0] [protocol] :

CLAIM dnotify!
SEQ
dnotify[in] ! add.notification; DNOTIFY.INSERTION; cb.cli; intf.desc
dnotify[out] ? CASE result; notification.id

The resulting network setup is shown in the left-hand sidégoire 8. The “usb.keyboard”
driver then enters its main-loop, waiting for requests fgther the driver-core, or “dnotify”.
When a USB keyboard is subsequently connected (or if one lneedy present), the notifi-
cation is sent and “usb.keyboard” responds by forking offieed process (“keyboard.drv”).

12 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

This initially connects to the USBhterfacespecified in the notification (which will be for
the connected keyboard), as shown in the right-hand sidgwfefi8. The code for this is as
follows:

PROC keyboard.drv (VAL DEVICE.DESC device, SHARED CT.QUTPUT! keyboard,
SHARED CT.BLOCK! usb)
CT.USB.INTERFACE! intf:
INT result:
SEQ
—-— connect to interface
CLAIM usb!
SEQ
usb[in] ! ioctl; IOCTL.USB.OPEN.INTERFACE; device[address]
usb[out] ? CASE result; result
IF
result = ERR.SUCCESS
usb[device.io] ? CASE intf
TRUE
SKIP
get endpoints and start main loop

dnotify - dnotify -~
4 i n N

A

) L \\ L}) N
P, Wt P, L

usb.driver usb.keyboard usb.driver usb.keyboard

) .
: : { keyboard.drv ‘
L4

N (keyboard data)

’ interface F*

4
L)

Figure8. Setup of the ‘usb.keyboard’ device-driver

4.1. Using USB Interfaces

With a connection to the USB interface (in the variakietf’), the keyboard driver requests
connections to theontrol and interrupt endpoints of the USB interface. Discovering the
identifier of the interrupt endpoint first involves queryiting interface, simply:

MOBILE [1BYTE endpoints:
SEQ
intf[in] ! list.endpoints
intf [out] ? CASE endpoints; endpoints

The returned mobile array is expected to be of length 1, aontathe interrupt endpoint
identifier. The control endpoint is identified separatedytlgere is at most one per interface.
Connections to the endpoints are then established, neguifticonnectivity similar to that
shown in figure 6. The following code is used for this, omgtarror-handling for brevity:

CT.USB.EP.CTL! epO:
CT.USB.EP.INT! int.ep:

SEQ
intf[in] ! open.endpoint; O -- request control endpoint
intf [out] 7 CASE ctl.ep; epO
intf[in] ! open.endpoint; endpoints[0] -- request interrupt endpoint

intf[out] 7 CASE int.ep; int.ep

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 13

In addition to listing and connecting to specific endpoittis,interface-level connection
is used for listing and switching between alternative ifiaiegs, retrieving information about
the device, and other USB specific control.

4.2. Using Interrupt and Control Endpoints

From this point, the USB keyboard driver uses the two endmmnnections to receive key-
board data and control the keyboard. The receiver loopdubminterrupt endpoint) is struc-
tured in the following way:

packet := MOBILE [8]BYTE
INITIAL BOOL done IS FALSE:
WHILE NOT done

SEQ
int.eplin] ! dev.to.host; packet -- request 8 byte input
int.eplout] ? CASE complete; result; packet -- response
IF
result > 0O -- received data
process.packet (packet, keyboard!) -- send keys to terminal
result = 0 -- no data
SKIP
TRUE
done := TRUE -- interrupt pipe error (exit)

The control endpoint is used to set the keyboard LEDs anddagrate, in addition to other
USB control. The following code example is used to set thékayd LEDs:

VAL BYTE type IS USB.REQ.TYPE.HOST.TO.DEV \/
(USB.REQ.TYPE.CLASS \/ USB.REQ.TYPE.INTERFACE) :
MOBILE []BYTE data:

INT result:
SEQ
data := MOBILE [1]BYTE
data[0] := leds -- each bit represents an LED

epO[in] ! type; HID.REQ.SET.REPORT; (INT16 HID.REPORT.OUTPUT) << 8;
INT16 (deviceladdress] /\ #FF); data

epO[out] ? result; data -- get response
IF
result >= 0
SKIP —-- success
TRUE

report error

As can be seen, using control endpoints is moderately cisabes, but this is to be expected
given the vast range of USB devices available. However, g¢mevice 1/0O through the
interrupt endpoint is largely straightforward.

Concurrency is a significant advantage in this environmadgywing a single device-
driver to maintain communication with multiple endpoinissltaneously, without signif-
icant coding complexity. This particularly applies to sitions where a single driver uses
multiple USB devices, which may operate and fail indepetige®ne example would be a
software RAID (redundant storage) driver, operating ovanynUSB mass storage devices,
and presenting a single block-level interface in thedX\evice layer. Expressing such be-
haviours in non-concurrent languages in existing opegasiystems is complex and error-
prone, primarily due to the lack of an explicit lightweiglincurrency mechanism.

14 C.G. Ritson and F.R.M. Barnes / Process-orientated USB
5. Conclusions and Future Work

In conclusion, we have designed and developed a robust cidetf process-orientated USB
driver. Significantly, the process networks we have dewadopare an almogiicture per-
fectresemblance to the hierarchy presented in the USB standadishe network which
exists between physical devices. Furthermore, as a featdihe development language and
process-orientated approach, our driver components heelated independently. This allows
us, as developers, freedom from almost all scheduling cascEor example “hub.manager”
processes can make synchronous device calls, withoutngatis¢ entire system to cease
functioning.

RMoX itself still has far to go. The hardware platform for whiclkevare developing
is a PC104+embedded PG— a standardised way of building embedded PC systems, with
stackable PCI and ISA bus interconnects [12]. This makesoa gutial target for several
reasons. Firstly, the requirements placed on embeddedmsgsire substantially less than
what might be expected for a more general-purpose (deskfmrating-system — typically
acting as hardware management platforms for a specificagialn (e.g. industrial control
systems, ATM cash machines, information kiosk). There asydver, a strong requirement
for reliability in such systems. Secondly, the nature of 104+ target makes the RIM
components developed immediately reusable when targeésktop PCs in the future. Ad-
ditionally, USB is being increasingly used for device coctiwaty within embedded PC104
systems, due to its versatility. Assuming a future &Wdriven ATM cash machine, adding
a survellience camera would simply involve plugging in th&BJcamera, installing the ap-
propriate video device-driver and setting up the applacatevel software (for real-time net-
work transmission and/or storage on local devices) — thidgccbe done without altering the
existing system code at all, it simply runs in parallel withlihe builds are routinely tested on
desktop PCs and in emulators as standard, exercisirgg#iabilityof RMoX. We also have
a functional PCI network interface driver, and hope to ekxpent with distributed RMX
systems (across several nodes in a cluster) in the not tandisiture.

In addition to the RMX operating-system components is development work on the
tool-chain and infrastructure. Developing RM has highlighted a need for some specific
language and run-time features, such as the aforementialfeezhtion of aligned DMA-
capable memory. A newccam-ttcompiler is currently being developed [13] which will al-
low the easy incorporation of such language features. Tib@lso a need to stabilise existing
occam-Tt language features, such as nested and recursive mobiléygata and port-level
I/0.

5.1. Related Work

The most significant piece of related research is Microsefidarch’s Singularity operating
system [14], which takes a similarly concurrent approacB$odesign. Their system is pro-
grammed in a variant of thebject-orientatedC# language, which has extensions for efficient
communication between processes — very similar in priecgid practice t@ccam-1ts
mobilespace [15]. The times reported for context-switgland communication in Singular-
ity are some 20 times slower than what we have indXMthough their justification for it is
incorrect in places (e.g. assumiagcam processes can only wait on a single channel — not
considering theALT’ construct). Some of the difference is correctly attriltite RMoX’s
current lack of support for multi-core/multi-processorah@mes. Fortunately, we know how
to build these CSP-style schedulers for multi-processarhinas, with comparatively low
overheads, using techniques suchbatch-schedulingl6], and are currently investigating
this.

More generally, there is a wide range of related research awelnapproaches to
operating-system design. Most of these, even if indiregilye some focus to the language

C.G. Ritson and F.R.M. Barnes / Process-orientated USB 15

and programming paradigm used for implementation — somgtbther than théhreads-
and-locksprocedural approach of C. For example, the Haskell operatystem [17] uses
a functional paradigm; and the Plan9 operating-system (i$8f a concurrent variant of C
(“Alef”). However, we maintain the view that th@ncurrent process-orientategproach of
occam-Tt is more suitable — as demonstrated by the general scajahild efficiency of
RMoX, and the ease of conceptual understanding in the USB dniregarchy — software
organisation reflects hardware organisation.

A lot of ongoing research is aimed at making current langsagel paradigms more
efficient and concrete in their handling of concurrency.AWARRMoX, we are starting with
something that is already highly concurrent with extreniely overheads for managing that
concurrency — due in part to years of experience and matfroty CSP,occam and the
Transputer [19].

Acknowledgements

We would like to thank the anonymous reviewers who providadable feedback and sug-
gestions for improvement. This work was funded by EPSRCtdt8iD061822/1.

References

[1] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. 8 a Raw Metaloccam Experiment. In J.F. Broenink
and G.H. Hilderink, editorsCommunicating Process Architectures 200&TUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269-288, Amstertlae Netherlands, September 2003. I0S
Press. ISBN: 1-58603-381-6.

[2] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurren®hD thesis,
University of Kent, June 2003.

[3] P.H. Welch and F.R.M. Barnes. Communicating mobile psses: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editdbsYears of CSPvolume 3525 ol ecture Notes in Computer
Sciencepages 175-210. Springer Verlag, April 2005.

[4] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[5] R. Milner. Communicating and Mobile Systems: the Pi-Calcul@ambridge University Press, 1999.
ISBN-10: 0521658691, ISBN-13: 9780521658690.

[6] P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-eewaradigms for Deadlock-Free High-
Performance Systems. In R. Grebe, J. Hektor, S.C. HiltolR.Mane, and P.H. Welch, editoi®ans-
puter Applications and Systems '93, Proceedings of the Y@&8® Transputer Congresgolume 2, pages
981-1004, Aachen, Germany, September 1993. |I0S PressiiNattis. ISBN 90-5199-140-1. See also:
http://www.cs.kent.ac.uk/pubs/1993/279.

[7] P.H. Welch. Graceful Termination — Graceful ResettimgApplying Transputer-Based Parallel Machines,
Proceedings of OUG 1(ages 310-317, Enschede, Netherlands, April 1989. Occsan Group, 10S
Press, Netherlands. ISBN 90 5199 007 3.

[8] Compagq, Intel, Microsoft, and NEC. Universal Serial Bégecification - Revision 1.1, September 1998.
[9] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, GlEand Philips. Universal Serial Bus Specification
- Revision 2.0, April 2000. URLhttp://www.usb.org/developers/docs/usb_20_05122006.zip.

[10] PCI Special Interests Group. PCI Local Bus SpecificatiRevision 2.2, December 1998.

[11] Intel. Universal Host Controller Interface (UHCI) Dga Guide, March 1996. URLlittp: //download.
intel.com/technology/usb/UHCI11D.pdf.

[12] PC/104 Embedded Consortium. PC/104-Plus Specificag2001. URLhttp://pcl04.org/.

[13] F.R.M. Barnes. Compiling CSP. In P.H. Welch, J. Keredgnd F.R.M. Barnes, editor€ommunicat-
ing Process Architectures 2008olume 64 ofConcurrent Systems Engineering Serigages 377-388,
Amsterdam, The Netherlands, September 2006. IOS Pressl: IEB8603-671-8.

[14] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hud.R. Larus, and S. Levi. Language support
for Fast and Reliable Message-based Communication in &inguOS. InProceedings of EuroSys 2006
Leuven, Belgium, April 2006. URLhttp://www.cs.kuleuven.ac.be/conference/EuroSys2006/
papers/pl77-fahndrich.pdf.

16 C.G. Ritson and F.R.M. Barnes / Process-orientated USB

[15] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic &lition and Zero Aliasing: aoccam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller,jiteis, Communicating Process Architec-

tures 2001volume 59 ofConcurrent Systems Engineerjmgges 243—-264, Amsterdam, The Netherlands,
September 2001. WoTUG, 10S Press. ISBN: 1-58603-202-X.

[16] K. Debattista, K. Vella, and J. Cordina. Cache-Affingheduling for Fine Grain Multithreading. In
James Pascoe, Peter Welch, Roger Loader, and Vaidy Sundsgaonrs,Communicating Process Archi-
tectures 2002WoTUG-25, Concurrent Systems Engineering, pages 135+D&Press, Amsterdam, The
Netherlands, September 2002. ISBN: 1-58603-268-2.

[17] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, andéwmdolmach. A principled approach to oper-
ating system construction in haskell. IIBFP '05: Proceedings of the tenth ACM SIGPLAN internatibna

conference on Functional programmingages 116-128, New York, NY, USA, September 2005. ACM
Press.

[18] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandreaa, Knompson, Howard Trickey, and Phil Win-
terbottom. Plan 9 from bell labs, 1995. Available framtp: //www.cs.bell-labs.com/planddist/.

[19] M.D. May, P.W. Thompson, and P.H. WeldKetworks, Routers and Transputerslume 32 offransputer
andoccam Engineering SeriedOS Press, 1993.

