
Channel communications on the Cell Broadband Engine

Damian J. Dimmich
Computing Laboratory

University of Kent
Canterbury, CT2 7NZ

djd20@kent.ac.uk

1. INTRODUCTION
The Cell Broadband Engine[3] (Cell BE) is a processor that can

be found in systems such as Sony’s Playstation III or IBM’s blade
servers. The Cell BE consists of a PowerPC[5] core and up to eight
SPUs[1], vector processing units, on a single die.

The Transterpreter[4] is a virtual machine for occam-pi [6] which
runs on a wide range of devices ranging from small sensor nodes
to high-performance clusters. occam-pi provides a consistent set
of rich, robust and mathematically backed concurrency primitives
which scale well, not only with program complexity, but also with
device size. While the Transterpreter already runs on the Cell BE[2],
some features of the occam-pi language where not fully supported.
This paper describes how one aspect of the language is imple-
mented for the Cell BE.

2. A BIT MORE ON THE CELL BE
Figure 1 approximates the layout Cell BE processor die. The

most interesting feature of the Cell BE and what provides most
of its performance are the SPU processors. An SPU is a dedicated
vector processor with 256kb of local store, and the ability to copy to
and from their local store to system memory using a separate mem-
ory management unit (MMU). All nine processors and the system
memory are interconnected via a high speed bus.

SPU8 SPU7 SPU6 SPU5

SPU1 SPU2 SPU3 SPU4

Element Interconnect Bus (EIB)

PowerPC System
Memory

Figure 1: The Cell BE processor.

The MMU allows the processor to transfer a number of queue-
able 16kb chunks of data between the SPU’s local store and system
memory. The memory transfers are able to overlap with compu-
tation, so while fetching new data to be processed, or sending re-
sults, computation on the SPU can continue uninterrupted. Since
the amount of local store available on the SPU is limited, it is im-
portant to ensure that a constant flow of data is available to each

processor so that no processing cycles are wasted by waiting for
new data to be fetched.

The result of this novel architecture is a processor that is sup-
posed to be able to deliver around 200 million single precision
FLOPS on a single chip. While this level of performance is only
attainable by a few algorithms that are well suited to this type of
processor, it is still an impressive theoretical peak. The difficulty
in leveraging this performance is that a programmer must be able
to manage nine memory spaces in parallel while trying to avoid
race conditions, deadlock and other problems commonly associ-
ated with concurrency.

3. BACKGROUND ON OCCAM-PI
The occam-pi programming language has a notion of channels

which are used to synchronise and send data between processes.
In order to allow channels to work across processors on the Cell
BE, the underlying runtime needs to be aware of how the hard-
ware works and of where a given process is running. Additionally
the runtime should transparently overlap data copying to and from
system memory and computation.

In order to uphold the semantics of an occam-pi channel, a
channel communication must be blocking, unidirectional and not
buffered. The implementation of a channel between processors is
achieved by a set of helper functions in C that atomically get and
set a value in memory that is shared for a given channel. The mem-
ory location for this is referred to as the channel word. The channel
word, as well as a memory location for storing the data are allo-
cated on startup and kept in system memory.

The Transterpreter runtime has a co-operative scheduler with a
FIFO queue, meaning all processes running on it time-share a pro-
cessor by voluntarily relinquishing control at set points. Each time
a process relinquishes control it is sent to the back of the queue.
A process can relinquish control by either performing a channel
communication or by performing a RESCHEDULE() call, which de-
schedules the current process and adds it to the back of the queue,
allowing other processes to run.

4. AN ALGORITHM FOR THE CELL BE
Channel communications across processors on the Cell BE are

implemented by compiling in a ”magical” set of occam-pi pro-
cesses into the runtime. These processes provide an interface to the
programmer which hides the underlying work that needs to be done
in order for a channel communication to take place between pro-
cesses running on separate processors. The interface exposes one
read and one write channel for every other processor in the system
allowing a programmer to write programs that can communicate
with all processors.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The channel implementation described here relies on the start-
ing processor to allocate channel words and data segments for each
channel on startup. All communication occurs via system mem-
ory, where data to be sent between processors is first copied by the
sending processor from its local store into system memory, and then
copied by the reading processor into its local store. Any communi-
cation to and from the PowerPC results only in a read or write to
system memory as the PowerPC manages system memory directly,
and not through an MMU like the SPU.

−− checks for new data from ’pid’
−− and forwards it on down the ’in!’ channel.
PROC in.chan(CHAN INT in!, VAL INT pid)

INT tmp:
INITIAL INT check IS 0:
WHILE TRUE

SEQ
−− Check if data is available
TVM.read.check(pid, check)
IF

check = 1
SEQ
−− Fetch the data, send it on, and
−− reset the channelword to ’empty’
TVM.read.chan(pid, tmp)
in ! tmp
TVM.read.finish(pid)

−− There is no data, reschedule
TRUE

RESCHEDULE()
:

Listing 1: The reading process.

Listing 1 shows how the reading end of a channel is implemented
for interprocessor communication using helper functions written in
C (prefixed with TVM.). The TVM.read.check function checks the
channel word in system memory for a pointer to the channels data.
If the channel word contains a null pointer, no data is available
for reading and the process issues the RESCHEDULE() command,
relinquishing the processor for other processes in the queue.

If the channel word contains a non-null value, the data the chan-
nel word is pointing to is read into the temporary variable tmp, and
then sent down the in channel. Once the in channel has been read
the process continues and sets the channel word back to null by
calling TVM.read.finish signifying that the read is complete.

−− out.chan reads the ’out?’ channel and
−− copies it to the channel word of ’pid’
PROC out.chan (CHAN INT out?, VAL INT pid)

INT tmp:
WHILE TRUE
−− ?? means that the read from out only
−− completes at the end of the SEQ block.
out ?? tmp

SEQ
−− Send the data
TVM.write.chan(pid, tmp)
INITIAL INT check IS 0:
WHILE check = 0

SEQ
RESCHEDULE()
−− Set check to 1 on write complete
TVM.write.check(pid, check)

:

Listing 2: The writing process.

Listing 2 shows the implementation of the writing end of a chan-
nel. At the start of the outer loop the process blocks (waits) on
the out channel until another process sends data to it. As soon

as data is received TVM.write.chan is called, which copies the
data in tmp to the channel word in main memory. After that it goes
into a loop which begins by rescheduling the process to allow other
processes to run. This allows some time for the other processor to
read the data. When the sending process is scheduled again, it calls
TVM.write.check to check if the receiving end has completed the
data copy and channel communication. A null value in the channel
word indicates that the read has completed. If the channel word is
null, the variable check is set to 1. This causes the inner loop to
end and return to the place where the out channel is read. Other-
wise it reschedules again to allow for some time other processes to
run before checking that the read has completed again.

The key to this process is the extended input - ?? - on the out

channel. This ensures that the read of the out channel only com-
pletes once code beneath the SEQ goes out of scope. The process
that is sending data to the out.chan process will block until the
communication with the other SPU has completed, making the com-
munication transparent.

Because of the way occam-pi channels are implemented, a pro-
cess that has committed to a channel write - ! - is unable to modify
the data it is sending, or back out of the send. This means it is not
possible for the language to directly support an ”extended output”
similar to the extended input. A system which approximates ”ex-
tended input” can be simulated by using assembly. This is used in
an optimised version of the out.in process where assembly is used
to check if another process is waiting to read on the other end of
the in channel. Only then does the optimised process start check-
ing system memory for data from another processor. This results
in a 30 percent speed up in interprocessor channel communication
because of the greatly reduced load on system memory.

5. FUTURE WORK
While channel communication is now supported by the Transter-

preter on the Cell BE, a number of other features of the occam-pi
language still need to be added. Support for Barriers across multi-
ple processors and automatic deadlock detection will be added and
algorithms to implement those need to be devised. Furthermore,
channel communication can be optimised by making use of addi-
tional hardware features available on the Cell BE.

Direct support for the Cell BE could be added to the occam-pi
compiler by making it aware of the processors architecture. This
would allow for arbitrary numbers of channels between processors.
This would help remove the current restriction of just one in and
one out channel between any two processors.

www.transterpreter.org

6. REFERENCES
[1] B. Flachs, et al. A Streaming Processing Unit for a CELL

Processor. ISSCC - Digest of technical papers, 2005.
[2] D. J. Dimmich, et al. A Cell Transterpreter. In P. Welch,

J. Kerridge, and F. Barnes, editors, CPA. IOS Press, 2006.
[3] D. Pham, et al. The Design and Implementation of a

First-Generation CELL Processor. pages 184–185. IEEE
ISSCC, February 2005.

[4] C. L. Jacobsen and M. C. Jadud. The Transterpreter: A
Transputer Interpreter. In CPA, pages 99–107, 2004.

[5] R. Kalla, et al. IBM Power5 chip: a dual-core multithreaded
processor. IEEE Micro, 24(2):40– 47, 2004.

[6] P. Welch and F. Barnes. Communicating mobile processes:
introducing occam-pi. In 25 Years of CSP, volume 3525 of
Lecture Notes in Computer Science, pages 175–210. Springer
Verlag, 2005.

http://www.transterpreter.org/

	Introduction
	A bit more on the Cell BE
	Background on occam-pi
	An algorithm for the Cell BE
	Future Work
	REFERENCES -9pt 

