
Flexible and Manageable Delegation of Authority in RBAC

Tuan-Anh Nguyen, Linying Su, George Inman, David Chadwick
Computing Laboratory, University of Kent, England
{tn32, ls97, G.Inman, D.W.Chadwick}@kent.ac.uk

Abstract

One of the most challenging problems in managing large
networks is the complexity of security administration. Role
based access control (RBAC) has become the predominant
model for advanced access control. Flexibility and man-
ageability are important requirements for any delegation
system which is one of the most important access control
management mechanisms in authorisation systems This pa-
per proposes a delegation model that satisfies these require-
ments.

1 Introduction

The role based access control model (RBAC) proposed
in [8] has become the predominant model for advanced ac-
cess control because it reduces the complexity and cost of
security administration in large networked applications.

Most large organisations have some business rules that
can be related to an access control policy. Delegation of au-
thority can be seen to be one of these rules and is described
as the process whereby user A authorises another user B to
act on A’s behalf, by sharing a set of A’s permissions, pos-
sibly for a specific period of time ([6]).

There are two basic requirements for a delegation of au-
thority model:

• flexibility: one authority should be allowed to dele-
gate any subset of his permissions to subordinates ([9],
[13]),

• manageability: authorities should have the capability
to specify what their subordinates can do ([2], [13]).

In this article, we restrict our scope to user-to-user role-
based delegation and we propose a delegation model that
satisfies these requirements.

This paper is organized as follows. In the next section we
will present our model for delegation of authority. In sec-
tion 3, we will discuss revocation of authority and the final
sections will discuss both the related work and our conclu-
sions.

2 Delegation of Authority

In order for a person to be able to perform a delegation
of a role, he must have theright to delegate the role. In
our work, we separate two concepts:a role andthe right to
delegate a role. A right to delegate a role is not included in
the permissions associated with the role.

For each roleR, we define a new associated roleR−.
The permissions given to these roles are the same but a
holder of the roleR can assert those permissions. How-
ever, the holder of the roleR− is NOT allowed to assert
the permissions given by the roleR. RoleR− is similar to
the noAssertion extension in an X.509 Attribute Certificate
presented in [1].

Our model supports two methods of delegating roles to
users. The first isdirect role delegationwhere a delegator
explicitly specifies aunique delegatee identifierin a dele-
gation. Direct role delegation requires that a delegator to
manually assign a role to a delegatee based on a unique
delegatee identifier. There are cases where manual delega-
tion is insufficient, for example, when the number of users
in a group is large, manual delegations would be both im-
practical and infeasible. Instead, role delegation can be
performed using someexpressions of delegatee attributes
rather than a unique delegatee identifier. This method of
delegating roles to users through some logical expression of
user attributes is known asattribute-based role delegation
([10]).

Furthermore, a delegator may want to restrict the way in
which his delegatee can further delegate the role. Our model
allows delegation withrestrictions. The restriction of a del-
egation affects all of the delegations in the delegation chain,
so that the delegatee is not able to freely delegate their role
to anyone. Our model also supports the use ofgeneric con-
strains that cannot be violated in any delegation.

2.1 Right to Delegate

In order to delegate a role, the delegator has to have the
right to delegate the role. We defineR∗ as either the roleR
or the roleR− and a delegation right (or ”right to delegate”)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the roleR∗ in this model is represented as:

d(R∗, Q, n,DT )

whereQ is a restriction of the delegation right – the holder
of the delegation right can only delegate the roleR∗ to a
user that satisfies the restrictionQ. n > 0 is the maximum
delegation depth of a delegation chain that can be made by
the holder. A special case is whenn = 0 and we denote
this asd(R∗). This means that the holder of the rightd(R∗)
is not allowed to delegate the roleR∗ any further. DT is
themaximum validity periodof the delegations that can be
made by the holder.

In general if a user holdsd(R∗, Q, n,DT ) then he
can start a delegation chain of the roleR∗ at most n
steps long, provided that each delegatee in the delega-
tion chain satisfies the restrictionQ and does not violate
any generic constraint. There is an extreme case where
n = ∞ and we denote the delegation right for this case as
d∗(R∗, Q,DT ). d∗(R∗, Q,DT ) allows a user to delegate
the rightd∗(R∗, Q,DT ) itself to another user.

2.2 Delegation Statement

A delegation right and a delegated role are given to a del-
egatee via a delegation statement. In our model, a delega-
tion statement (or ”delegation” for short) has the following
form:

delegate(UID,UAI,R∗, n, T,DT,Q)

UID specifies the unique delegator identifier – the issuer
or delegator of the delegation,UAI is either an expression
of the delegatee’s attributes or a unique delegatee identifier.
R∗ is the delegated role.n is the maximum delegation depth
of a delegation chain that the delegatee is allowed to make
based on this delegation.T is thevalidity periodof the del-
egation, which guarantees that the delegation will only last
for a specific period of time.DT is the maximum valid-
ity period of the delegations that can be made by the dele-
gatee based on this delegation. The separation betweenT

and DT is needed in order to allow a user to delegate a
role to another user with a longer validity period than the
validity period of the user’s role. For example the Presi-
dent of the United States Mr Bill Clinton can delegate (ap-
point) Mr Alan Greenspan as the Manager of The US Fed-
eral Reserve for a term of ten years even though his own
office term is no longer than four years. The right to del-
egate and the right to assert the role are valid at any time
instancet0 wheret0 ∈ T . In this work, both the validity
periodsT andDT start at the same time because the re-
moval of this condition means that the delegatee of a dele-
gation could receive the delegated role before the delegator.
The start time ofT andDT is also the issuance time of the

delegation.Q is the restriction on the delegatee of the del-
egation, e.g. in order to be a delegatee of the delegation, a
user has to satisfyQ. Further discussion ofUAI andQ

will be provided later in Section 2.11. The delegatee of
the delegationdelegate(UID,UAI,R∗, n, T,DT,Q) re-
ceivesd(R∗, Q, n,DT ) and the right to assert the permis-
sions given by the roleR∗, valid att0 ∈ T .

2.3 Comparing Restrictions - Stronger
Relation

Definition 1. If P andQ are two restrictions, we sayQ→
P or Q is stronger thanP if the restrictionP is stricter than
or equal to the restrictionQ.

Here we call the less restrictive restriction stronger than
more restrictive restrictions. A less restrictive restriction al-
lows a delegator to delegate a role to more people than a
more restrictive restriction. Especially, ”no restriction” is
stronger than any other restriction:∅ → Q for everyQ.

2.4 Comparing Roles - Stronger Relation

Definition 2. We say eitherimply(A,B) or role A inherits
role B if all the permissions of B are also permissions of A.

Definition 3. The stronger relation (→) among roles is de-
fined asA → B if and only if A = B (two roles are the
same) orimply(A,B).

2.5 Comparing Validity Periods -
Stronger Relation

Definition 4. We say thatDT1 → DT2 if the validity pe-
riod DT1 is equal to or contains the validity periodDT2.

2.6 Comparing Delegation Rights -
Stronger Relation

Definition 5. The stronger relation (→) among the delega-
tion rights is defined as follows:

• If Q → P thend(R∗, Q, n,DT ) →
d(R∗, P, n,DT ) with n > 0

• If Q→ P thend∗(R∗, Q,DT )→ d∗(R∗, P,DT )

• d∗(R∗, Q,DT ) → d(R∗, Q, n,DT ) →
d(R∗, Q, k,DT ) with n > k > 0

• If R → S thend(R∗, Q, n,DT ) →
d(S∗, Q, n,DT ) with n > 0

• If R→ S thend∗(R∗, Q,DT )→ d∗(S∗, Q,DT )

2



• If DT1 → DT2 thend(R∗, Q, n,DT1) →
d(R∗, Q, n,DT2) with n > 0

• If DT1 → DT2 thend∗(R∗, Q,DT1) →
d∗(R∗, Q,DT2)

2.7 Generic Constraints

Generic constraints are set by a system administrator in
order to lay out higher-level organisational policies. No del-
egation should be able to violate any of these generic con-
straints. We express a generic constraint as:

⊥ ← assign(U,R∗, T,DT ), γ

whereγ is a conjunction of RBAC primitive predicates and
any other derived predicates that refer to users, roles, per-
missions or time as stated in [11].assign(U,R∗, T,DT )
denotes the assignment of roleR∗ to userU with the valid-
ity periods of the delegation areT andDT . The constraint
states that it is a violation for bothassign(U,R∗, T,DT )
andγ to be true at the same time.

2.8 Strict Delegation Acceptance

We first define the relation (predicate)has(U, d) (having
a right to delegate) as:

Definition 6. has(U, d) at a time instancet0 is true if and
only if: 1) there was an accepted delegation which gave
d to U and d is valid at t0 or 2) there was an accepted
delegation which gaved′ to U , d′ → d andd′ is valid att0
or 3) U holdsd initially (U is either a system administrator
or a user trusted by an organisation to haved) at t0 or 4)
U holdsd′ initially (U is either a system administrator or a
user trusted by an organisation to haved′) at t0 andd′ → d.

Definition 7. Thedecrement function on a delegation right
is defined as follows:

• decrement(d(R∗, Q, n,DT ))=d(R∗, Q, n − 1,DT )
with n > 1

• decrement(d(R∗, Q, 1,DT ))=d(R∗)

• decrement(d∗(R∗, Q,DT ))=d∗(R∗, Q,DT )

Definition 8. If UAI is a unique delegatee identifier then
the delegation

delegate(UID,U,R∗, n, T,DT,Q)

at a time instance t0 is accepted if and only
if: 1) has(UID, d(R∗, Q, n + 1,DT )) at t0, 2)
has(UID, d(R∗, Q, n + 1, T )) at t0, 3) T and DT

start at t0, 4) Q(U) is true att0, 5) assign(U,R∗, T,DT )
does not violate any generic constraint and 6) for all roles
S such thatimply(R,S), assign(U, S∗, T,DT ) does not
violate any generic constraint.

We call direct role delegation aphysical delegation.

Definition 9. If UAI is an expression of delegatee at-
tributes then the delegation

delegate(UID,UAI,R∗, n, T,DT,Q)

at a time instance t0 is accepted if and only
if: 1) has(UID, d(R∗, Q, n + 1,DT )) at t0, 2)
has(UID, d(R∗, Q, n + 1, T )) at t0 and 3) T and
DT start att0.

To be a delegatee of this delegation, the delegatee has
to satisfy all the restrictions specified in the delegation and
the delegation does not violate any generic constraint. For-
mally:

Definition 10. UserU can be a delegatee of a delegation

delegate(UID,UAI,R∗, n, T,DT,Q)

at a time instancet0 in which UAI is an expression
of delegatee attributes, if and only if: 1) the delegation
delegate(UID,UAI,R∗, n, T,DT,Q) was accepted and
t0 ∈ T , 2) UAI(U) is true at t0, 3) Q(U) is true at
t0, 4) assign(U,R∗, T,DT ) does not violate any generic
constraint and 5) for all rolesS such thatimply(R,S),
assign(U, S∗, T,DT ) does not violate any generic con-
straint.

If userU can be a delegatee of a delegation of this type
then logically, we can say the delegation

delegate(UID,U,R∗, n, T,DT,Q)

is accepted att0. We call this delegation alogical delega-
tion.

2.9 Constrained Delegation Acceptance

The strict delegation acceptance approach requires that
the delegator knows exactly what roles and rights he has or
what he can do in an organisation. This requirement is not
always satisfied in a dynamic environment: as an organisa-
tion’s policy or requirements may be changed e.g. people
often change their positions, and can join or leave differ-
ent working groups so their roles may change often. When
a delegator tries to delegate a role (and a delegation right)
which is stronger than his own role and violates his author-
ity or the delegator does not know exactly what he can del-
egate to other people, constrained delegation acceptance is
needed. In this case, requested delegation is ”constrained”
so that the delegator would not violate his authority.

Firstly, we define the concept of ”intersection between
validity periods”. Witha andb as two time instances, we
denotemax(a, b) as a function that finds the later time in-
stance between the two time instancesa and b. We also
denotemin(a, b) as a function that finds the earlier time
instance of the two time instancesa andb.

3



Definition 11. A validity periodT is presented as two time
instancesnb and na and the validity periodT1 is pre-
sented by the two time instancesnb1 and na1. The in-
tersection between the two validity periodsT and T1 is
a validity period, denoted asT ∩ T1 and is presented as
two time instancesmax(nb, nb1) and min(na, na1). If
max(nb, nb1) > min(na, na1), then we say thatT ∩ T1
is an ”empty” validity period and denote it asET .

Definition 12. An ”Empty” role is a role without any per-
missions, denoted asER.

In order to find the constrained role from the role that the
delegator wants to delegate to the delegatee and the role in
the delegator’s delegation right, we need to find the set of
common subordinate roles of these two roles in the organ-
isation role hierarchy. If the set is empty (or there is only
theET role) then the delegation can not be constrained and
is rejected. If the set is not empty, we find the role that is
”closest” to the requested delegation role.

Definition 13. The intersection of two rolesR∗ and S∗,
denoted asR∗ ∩ S∗ is either theER role if R∗ andS∗ do
not have any common subordinate role in the organisation
role hierarchy or a set of common subordinate roles.

Definition 14. A best role in a non-empty set of roles is a
role for which no other role in the set is stronger than it.

Proposition 1. We always can find at least one best role in
a non-empty set of roles.

The proof for above proposition is straightforward.
We denotebest(R∗∩S∗) as the chosen role from the set

(non empty) of rolesR∗ ∩ S∗.
In order to be a delegatee of a delegation, the delegatee

has to satisfy both the restriction in the requested delega-
tion and the restriction in the delegator’s delegation right.
Therefore, the delegatee has to satisfy a restriction whichis
the ”intersection” between the two restrictions. Formally:

Definition 15. The intersection of two restrictionsQ and
Q1 is a restriction, denoted asQ ∩ Q1. UserU satisfies
the restrictionQ ∩ Q1 or (Q ∩ Q1)(U) is true if and only
if bothQ(U) andQ1(U) are true.

We denotesorter(n, k) as a function that finds the
smaller value in a set of two integer valuesn andk.

We now return to constrained delegation acceptance. If
the delegator does not have any valid right to delegate at the
time of issuing then obviously, the delegation is rejected.If
the delegator has a set of valid delegation rights at the time
of issuing, then he (or a delegation agent proposed in [4])
can choose one right to support the requested delegation.
We assume that the delegator chooses to delegate a right:

d(S∗, Q1, k,DT1)

which is valid att0. This right to delegate is weaker than
the right to delegated(R∗, Q, n + 1,DT )). Obviously we
have:

d(S∗, Q1, k,DT1)→

d(best(R∗∩S∗), Q∩Q1, sorter(k, n+1),DT ∩DT1)

and the delegation can be constrained to

delegate(UID,UAI, best(R∗ ∩ S∗),

sorter(n + 1, k), T,DT2, Q ∩Q1)

with DT ∩DT1→ T,DT ∩DT1→ DT2.
If sorter(k, n + 1) = 0 or R∗ ∩ S∗ = ER or DT ∩

DT1 = ET then the delegation is rejected. Otherwise, the
”constrained” delegation is accepted.

2.10 Chain of Delegations and Chain of
Delegation Rights

In order to explain how a user got a role and a delegation
right, we define the concept of achain of delegationsand a
chain of delegation rights.

Definition 16. A chain of delegations (or ”delegation
chain”) for a role S∗ is a sequence of delegations
(del0, del1, . . . , deln) where eachdeli is either a physical
or logical delegation anddeli has the form

delegate(UIDi, Ui, R
∗

i , ni, Ti,DTi, Qi)

such that:

• R∗

i → R∗

i+1 → S∗, the delegator’s role must be
stronger than the delegated role and the delegated role
must be stronger than the roleS,

• UID0 is either the system administrator or a user
trusted by the organisation that initially has the right
to delegated0(R

∗, Q0, n0,DT0),

• there is noUIDi(i > 0) in the delegation chain that
is either the system administrator or a user trusted by
the organisation that initially has the right to delegate
di(R

∗

i , Qi, ni,DTi),

• Ui = UIDi+1, that is the delegatee ofdeli is the del-
egator ofdeli+1,

• decrement(di(R
∗

i , Qi, ni,DTi)) →
di+1(R

∗

i+1, Qi+1, ni+1,DTi+1), that is the dele-
gation right delegated indeli+1 is at most as strong
as decrement(di(R

∗

i , Qi, ni,DTi)),

• DTi → Ti+1, DTi → DTi+1, that is the validity pe-
riods of thedeli+1 must be weaker than the maximum
validity period of thedeli,

4



• Qi → Qi+1, that is the restrictions must be getting
more restrictive along the chain fromdel0 to deln,

• there is no pairdeli, delj(i 6= j) in the delegation
chain, such thatUIDi = Uj or there is no loop of
delegation in the chain.

Definition 17. Associated with each delegation chain
(del0, del1, . . . , deln), we have a chain of delegation rights
(d0, d1, . . . , dn) in which,di is given bydeli, i = 1, n.

Given the delegation chain
(del0, del1, . . . , deln−1, deln), we say that
(del0, del1, . . . , deln−1) is a supporting chain for
deln. We also say that the chain of delegation rights
(d0, d1, . . . , dn−1) is a supporting chain fordn.

2.11 Discussion about Q and UAI Param-
eters

In this section we consider only the case in which,UAI

is an expression of delegatee attributes. Because delegatee
attributes are the delegatee’s properties in his organisation,
the expression of delegatee’s attributes will vary between
organisations and is application-dependent. Delegatee at-
tributes may be the roles of the delegatee in the organisa-
tion, the delegatee’s age, credit, the domain of the delegatee
etc. An example expression of delegatee’s attributes is

∧

(

has(Researcher role), age(35)
)

in which, has(Researcher role) means that a delegatee has
a ”Researcher” role andage(35) indicates that the age of
delegatee is 35. The symbol

∧

means that in order to be a
delegatee, the user has to have the Researcher role and the
user’s age must be 35.

Q is the restriction posed on the delegatee of a delega-
tion. Q can also be expressed using an expression of dele-
gatee attributes like theUAI parameter. On a general level,
Q ∈ Q, in which Q is a set of all restrictions on user’s at-
tributes. Because both users’ attributes and the restrictions
on these attributes are application-dependent, it is up to an
application/organisation to define a stricter relation between
each element inQ. From the stricter relation, we have the
stronger relation between elements inQ.

3 Revocation

Revocation is the process by which a delegation that was
accepted is removed or retracted.

3.1 Right to Revoke

In our model, revocation is an ”automatic” right for any-
one who has made a delegation. For administrative pur-
poses however it is important that others may have the right

to revoke someone else’s delegation. A manager can revoke
any delegation that he has issued or was capable of issuing,
i.e, a peer manager of the actual manager that issued a del-
egation can revoke it. This allows a manager to revoke a
delegation issued by a colleague. Thus, if a user has a right
to delegate allowing him to issue a delegation then he can
revoke that delegation. Formally, whosoever has the right
to delegate

d(R∗, Q, n,DT )

at t0 can revoke a delegation

delegate(UID,UAI, S∗, k, T,DT1, P )

at t0 if R∗ → S∗, Q → P , n > k, DT → T andDT →
DT1

3.2 Revocation Process

We define the ”dependency” between delegations and
delegation rights as:

Definition 18. A delegationdelj is dependent on a delega-
tion deli if all supporting chains fordelj containdeli. A
delegation rightdj is dependent on a delegation rightdi if
all supporting chains fordj containdi.

We classify two kinds of revocation:non-cascading
revocation and cascading revocation. Given a dele-
gation of delegate(UID,UAI,R∗, n, T,DT,Q), a non-
cascading revocation is a revocation that removes the del-
egated roleR∗ and the delegation rightd(R∗, Q, n,DT )
from a delegatee and the revocation takes effect only from
the time that the revocation happens and it does not affect
any existing delegation that is dependent on the revoked del-
egation. Cascading revocation is a revocation that removes
the delegated roleR∗, the delegation rightd(R∗, Q, n,DT )
from the delegatee and also all of the delegations that are
dependent ond(R∗, Q, n,DT ).

A revocation statement has the following format:

revoke(UID, del, S, t)

in which, theUID is the requester of the revocation,del is
the requested delegation,S is a flag indicating whether the
requested revocation is a cascading or non-cascading revo-
cation andt is the issuance time of the revocation.t is also
the time that the revocation takes effect. Aftert, the holder
of del can not assert the delegated role and can not delegate
the delegated role further.

Definition 19. The effect ofr(deli), the cascading revoca-
tion of the delegationdeli, given the set of accepted delega-
tionA, is a new set of accepted delegations:

A′ = A− {deli} − {delj |delj is dependent ondi}

in which, the delegation rightdi is given bydeli.

5



The central issue in cascading revocation is to undo the
cascading effects of a chain of delegations (or a chain of
delegation rights).

Proposition 2. Cascading revocation will leave no one
without supporting roles.

The proof for this proposition is straightforward.

4 Related Works

The weakness of the framework and model proposed
in [3] and [4] is that they do not support multi-step dele-
gation, constraints in delegation or role hierarchies. The
SPKI model ([7]) lacks the capability to specify delegation
depth and does not have any constraints on issuing name
and authorisation certificates ([5]). The role-based delega-
tion model of L. Zhang, et al. ([14], [15]) is very interest-
ing and useful but does not support constrained delegation
acceptance. The model proposed in [11] does not support
attribute-based delegation and lacks time-restrictions in del-
egation. The RT ([10]) does not support a delegation depth
constraint and allows any authority to delegate roles to any-
one. From an organisation’s point of view, the RT frame-
work is very flexible but not very manageable. The del-
egation model in [12] supports attribute-based delegation
but lacks the capability to specify generic constraints, va-
lidity periods or constrained delegation acceptance, makes
the model less manageable.

5 Conclusion

In our model, the delegated role could be any role that
is the same or subordinate to the delegator’s role. The
model has the capability of constraining requested delega-
tions so that delegators can easily delegate roles and delega-
tion rights to subordinates without worrying about overstep-
ping their authority. Furthermore, the model supports direct
role delegation and attribute-based role delegation, which is
useful when the number of users in organisation is large.

In our model, a delegator can specify the maximum del-
egation depth that a delegatee can further delegate a dele-
gated role. A delegator can delegate a role that is subor-
dinate to his role so that the delegated role is appropriate
to the delegatee’s position in the organisation.By specifying
a restriction in delegation statements, a delegator can con-
trol who gets the role based on his delegation. In addition,
every delegation can not violate the organisation’s security
requirements, specified by the generic constraints.

References

[1] Itu-t recommendation x.509, iso/iec 9594-8, information
technology. open systems interconnection. public-key and
attribute certificate frameworks, 2005.

[2] J. Bacon, K. Moody, and W. Yao. A model of oasis role-
based access control and its support for active security.ACM
Transactions on Information and System Security, 5(4):492–
540, 2002.

[3] E. Barka and R. Sandhu. A role-based delegation model and
some extensions. InIn Proceedings of the 23th National In-
formation Systems Security Conference (NISSC 2000), Bal-
timore, USA, 2000.

[4] E. S. Barka and R. Sandhu. Framework for role-based dele-
gation models. In16th Annual Computer Security Applica-
tions Conference (ACSAC’00), pages 168–177, 2000.

[5] O. Canovas and A. F. Gomez. A distributed credential man-
agement system for spki-based delegation systems. InPro-
ceedings of 1st Annual PKI Research Workshop, Gaithers-
burg, Maryland, USA, 2002.

[6] B. Crispo. Delegation protocols for electronic commerce. In
Sixth IEEE Symposium on Computers and Communications
(ISCC’01) 07 03-07 2001 Hammamet, Tunisia.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. Rfc 2693 - spki certificate theory, September
1999.

[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed nist standard for role-based ac-
cess control.ACM Transactions on Information and System
Security, 4(3):224–274, 2001.

[9] L. Kagal, T. Finin, and Y. Peng. A delegation based model
for distributed trust. InProceedings of the IJCAI01 Work-
shop on Autonomy, Delegation and Control: Interacting
with Autonomous Agent, Seattle, pages 73–80, 2001.

[10] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust-management framework. InProceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, 2002.

[11] J. Wainer and A. Kumar. A fine-grained, controllable, user-
to-user delegation method in rbac. InSACMAT’05, pages
59–66, Stockholm, Sweden, 2005. ACM.

[12] C. Ye, Z. Wu, and Y. Fu. An attribute-based delegation
model and its extension.Journal of Research and Practice
in Information Technology, 38(1):3–17, February 2006.

[13] G. Yin, H.-m. Wang, D.-x. Shi, Y. Jia, and M. Teng. A
rule-based framework for role-based constrained delegation.
ACM International Conference Proceeding Series, Proceed-
ings of the 3rd international conference on Information se-
curity, Shanghai, China, 85:186 – 191, 2004.

[14] L. Zhang, G. J. Ahn, and B. T. Chu. A rule-based framework
for role-based delegation.ACM SACMAT’01 Chantilly, Vir-
ginia, USA, 2001.

[15] L. Zhang, G. J. Ahn, and B. T. Chu. A rule-based framework
for role-based delegation and revocation.ACM Transactions
on Information and System Security, 6(3):404–441, 2003.

6


