
General Euler Diagram Generation

Peter Rodgers1, Leishi Zhang1 and Andrew Fish2

1 Computing Laboratory, University of Kent, UK
2 Computing Mathematical & Information Sciences, Brighton University of Brighton, UK

P.J.Rodgers@kent.ac.uk, L.Zhang@kent.ac.uk, Andrew.Fish@brighton.ac.uk

Abstract. Euler diagrams are a natural method of representing set-theoretic data and
have been employed in diverse areas such as visualizing statistical data, as a basis for
diagrammatic logics and for displaying the results of database search queries. For
effective use of Euler diagrams in practical computer based applications, the
generation of a diagram as a set of curves from an abstract description is necessary.
Various practical methods for Euler diagram generation have been proposed, but in all
of these methods the diagrams that can be produced are only for a restricted subset of
all possible abstract descriptions.
We describe a method for Euler diagram generation, demonstrated by implemented
software, and illustrate the advances in methodology via the production of diagrams
which were difficult or impossible to draw using previous approaches. To allow the
generation of all abstract descriptions we may be required to have some properties of
the final diagram that are not considered nice. In particular we permit more than two
curves to pass though a single point, permit some curve segments to be drawn
concurrently, and permit duplication of curve labels. However, our method attempts
to minimize these bad properties according to a chosen prioritization.

Keywords: Euler Diagrams, Venn Diagrams

1 Introduction

Euler diagrams are sets of (possibly interlinking) labelled closed curves and are
popular and intuitive notation for representing information about sets and their
relationships. They generalize Venn diagrams [16], which represent all possible set
intersections for a given collection of sets. Euler diagrams allow the omission of some
of these set intersections in the diagram, enabling them to make good use of the
spatial properties of containment and disjointness of curves. Euler diagrams are said
to be effective since the relationships of the curves matches the set theoretic
relationships of containment and disjointness [10]; they provide ‘free rides’ [17]
where one obtains deductions with little cognitive cost due to the representation. For
example, if A is contained in B which is contained in C then we get the information
that A is contained in C for free.

The motivation for this work comes from the use of Euler diagrams in a wide
variety of applications, including the visualization of statistical data [2,13], displaying
the results of database queries [1] and representing non-hierarchical computer file
systems [3]. They have been used in a visual semantic web editing environment [18]
and for viewing clusters which contain concepts from multiple ontologies [11].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another major application area is that of logical reasoning [12] and such logics are
used for formal object oriented specification [14].

A major requirement for many application areas is that they can automatically
produce an Euler diagram from an abstract description of the regions that should be
present in the diagram. This is called the Euler diagram generation problem.

AA

Fig. 1a. Concave Curve.

A

B C

A

B C

Fig. 1b. A triple point.

A

B C

A

B C

Fig. 1c. Concurrent curves.

A

B

A

B

Fig. 1d. Disconnected zones.

A

AB
A

C A

AB
A

C

Fig. 1e. Duplicated curve label.

AA

Fig. 1f. Non simple curve.

A range of diagram properties, called wellformedness conditions, which are

topological or geometric constraints on the diagrams, have been suggested with the
idea of helping to reduce human errors of comprehension; these properties can also be
used as a classification system. Some of the most common properties are shown in
Fig. 1. Note that the term zone in Fig. 1d refers to the region enclosed by a particular
set of curve labels, and excluded by the rest of the curve labels. For example the
region that is inside the curve labelled A but outside the curve labelled B is
disconnected here.

The definition of what constitutes an Euler diagram varies in the literature, and can
usually be expressed in terms of these wellformedness conditions. Although Euler
himself [5] did not formally define the diagrams he was using, his illustrations do not
break any of wellformedness conditions given in Figure 1. In [7] the first Euler
diagram generation algorithm was presented and further formalized in [6]. This work
guaranteed the production of an Euler diagram that meets all of the wellformedness
conditions in Fig. 1 except Fig 1a, from an abstract descriptions whenever it was
possible to do so. An implementation of the algorithm was also provided which had a
limited guarantee of being able to draw any such diagram with up to four contours in
any one connected component. In [1] the relaxation of the wellformedness conditions
to allow multiple points and concurrent contours was adopted, and although no
conversion from theory to practise was provided, it was shown that the Euler diagram
generation problem is NP-Complete in this case. Since imposing some
wellformedness conditions implies that some abstract descriptions are not realisable
as Euler diagrams, in [1] the notion of an Euler diagram was extended so that any
abstract description with at most nine sets could be drawn: they used Euler diagrams
that had holes, which are a restricted version of allowing duplicate curve labels.

In this paper, we integrate and significantly extend the work of these three major
attempts at the Euler diagram generation problem and provide a complete solution to
general Euler diagram generation in the sense that any abstract description is
drawable using our method.

We define an Euler diagram to be a set of labelled closed curves in the plane. We
call the set of all of the labelled curves with the same label a contour. A zone of an
Euler diagram is a region of the plane enclosed by a set of contours, and excluded by
the rest of the contours. The diagrams obtained via our generation process can have
curves of any geometric shape and they may have duplicate contour labels, multiple
points, and concurrent curves. However, we guarantee not to generate any diagrams
with duplicate zones or non-simple curves.

Utilising this broad definition of Euler diagrams makes the general generation
problem of any abstract description possible, but typically, the “more non-
wellformed” a diagram is the less desirable it is from a usability perspective.
Therefore, we adopt a strategy which guides the output towards being as wellformed
as possible, according to a chosen prioritisation of the wellformedness conditions,
whilst ensuring that we generate a diagram with the correct set of zones (i.e. it
complies with the abstract description). However, we give no guarantee that the
diagrams generated are the most wellformed diagrams possible since some of the
problems that need to be solved to ensure this are NP-Complete.

In this paper we adopt the convention of using single letters to label contours. Each
zone can be described by the contour labels in which the zone is contained, since the
excluding set of contour labels can be deduced from this set. An abstract description
is a description of precisely which zones are required to be present. For example, the
abstract description for the Euler diagram in Figure 2b is ∅∅∅∅ b c ab ac abc, where ∅∅∅∅
indicates the zone which is contained by no contours, called the outside zone, which
must be present in every abstract description.

In Section 2, we give details of the generation method. Section 3 gives our
conclusions and future directions.

2 The Generation Process

First we give a high level outline of the methodology used, with details and
explanation of the terminology appearing in later sections. Given an abstract
description of an Euler Diagram, we produce an embedded Euler diagram using the
following steps:

1. Generate the superdual graph for the abstract description.
2. Using edge removal, find a planar subgraph that is either wellconnected or

close to wellconnected.
3. If the graph is not wellconnected, add concurrent edges to increase the

closeness of the graph to being wellconnected whilst maintaining
planarity.

4. Find a plane layout for the graph.
5. Add edges to reduce unnecessary tangential intersections, forming the

dual of the Euler graph.
6. Find subgraphs where duplicate curves will be required.
7. Construct the Euler diagram from the dual of the Euler graph using a

triangulation based method.

Since we are constructing the dual of the Euler graph, planarity is clearly essential.

If the dual graph constructed is not wellconnected then the Euler diagram will have
either duplicate curves or concurrency. Steps 2 and 3 try to reduce the instances of
either. However, step 3 may add concurrent edges (i.e. those with multiple contour
labels) which can reduce the number of duplicate curves used at the expense of
causing concurrency. Step 5 removes unnecessary tangential intersections (those that
can be removed without introducing concurrent curve segments). Checking the face
conditions, as in [7] would identify if multiple points will appear, but since attempting
to search for an Euler dual which passed the face conditions (and so has no multiple
points) is so time consuming, we omit this step.

2.1 Generating a Super Dual

Recall that an abstract description of a diagram is list of zone descriptions (which
are just the sets of contour labels that will contain the zones). As described in [7] we
can construct the superdual by taking one node for each required zone, and labelling
each one with its zone description. When an Euler diagram is drawn, each contour’s
curves will enclose the nodes whose label set contains the contour label. Two nodes in
the superdual are connected by an edge precisely when the labels differ by a single
contour label. The edges are labelled with the difference between their incident node
labels. Fig. 2 shows an example of a superdual, and resultant Euler diagram generated
for the abstract description ∅∅∅∅ b c ab ac abc. In this case, and for other small
examples that can be drawn without concurrent contours or duplicate curve labels, the
superdual can be embedded without requiring steps 2,3,5,6 of our process. However,
many superduals are not planar, and so methods to find a planar dual need to be
applied, as described in the next section.

Fig. 2a. Superdual for ∅∅∅∅ b c ab ac abc

Fig. 2b. Embedded diagram.

2.2 Edge Removal to Achieve Planarity

Given a superdual that is non-planar, we try to find a planar subgraph of the
superdual that can be used to generate a general Euler diagram that has no
concurrency or duplicated curve labels; i.e. it must be wellconnected, which means
that it must pass the connectivity conditions below. Even if such properties are
necessary, the amount of concurrency and the number of curves in a contour may be
reducible (by finding a subgraph that is “close” to passing the connectivity
conditions). The connectivity conditions state that

a. the graph is connected
and for each contour label in the abstract description:
b. if the nodes with that contour label present are removed (recall, a node is

labelled by a collection of contour labels) then the graph remains connected
and,

c. if the nodes without that contour label present are removed then the graph
must also remain connected.

If condition a does not hold in the superdual, then concurrency is required in the
Euler diagram, and Step 3 of our method will be applied to add a multiply labelled
edge to the dual (corresponding to concurrency of edges in the Euler diagram). If
conditions b or c do not hold and they cannot be fixed by the addition of edges
without breaking planarity, then duplicate curve labels will be used for that contour –
in the case of condition c failing, curves are placed “inside” another curve of that
contour, forming holes in the contour.

In Step 2 we attempt to find a wellconnected planar dual by removing edges from
the superdual. If this cannot be done, our edge removal strategy attempts to find a
planar dual that has as much connectivity as possible, that is the occurrences of
conditions b, or c are as few as can be achieved.

To guarantee to find a wellconnected planar dual where one exists is an NP-
Complete problem [1]. Therefore we resort to heuristics to do as good a job as

possible. Our current technique is to take a fairly lightweight approach of discovering
potentially removable edges, checking those that may be removed from the dual and
exploring the effects of removing combinations of these. We first layout the superdual
graph using a spring embedder [4] and remove highly crossed edges, preferring the
potentially removable edges. Once a planar layout has been found we then attempt to
add back any unnecessarily deleted edges that improve the wellconnectedness. This
paper does not focus on heuristics, and we give only a simple demonstration of a
possible technique. As with other NP-Complete problems we expect there to be a
number of alternative heuristics.

Fig. 3a. Planar dual for 4Venn Fig. 3b. 4Venn embedded.

Fig. 3a shows a wellconnected plane dual for 4Venn (the Venn diagram on 4 sets),

and the corresponding diagram generated from this dual is shown in Fig 3b. Various
edges have been removed from the superdual to achieve planarity, including the edge
between ∅∅∅∅ and b, and the edge between c and bc. Depending on the starting
conditions, and on how much time is given to the search, it is also possible that
versions of 4Venn which have triple points and duplicate curve labels might be
created (see Fig. 8 for example).

2.3 Concurrent Edge Addition

If, after Step 2, the graph is disconnected then, in Step 3, we attempt to make it
connected by adding edges whilst maintaining planarity. In addition, for each contour
label, if removal of nodes without that contour label present would result in multiple
disconnected subgraphs, then we attempt to add edges which would connect those
subgraphs.. Similarly, we attempt add edges which connect any multiple disconnected
subgraphs formed by the removal of nodes with that contour label present. Recall that
edges in the dual graph are labelled with the difference between the labels of the
nodes they are incident with. Edges that are labelled by more than one contour label
are called concurrent edges since they correspond to the use of concurrency in the

Euler diagram. Adding edges in this manner can reduce the number of duplicate curve
labels but can also add extra concurrency.

Given that there appears to be a combinatorially explosive number of possible
ways of connecting up the various subgraphs of the dual graph, and only one of which
might be optimal, we expect that the problem of finding a planar dual which is as
close to wellconnected as possible by adding edges to be at least NP-Complete.
Hence, we take a heuristic approach to deciding how to add edges. Again we adopt a
simple method, taking a greedy approach, but with the small examples we are
currently exploring (less than 10 sets) we find that relatively few disconnected
components appear. We take one disconnected component and attempt to connect it to
another by an edge that is labelled with the least number of contours. This process
continues until the dual is connected or no more improvements can be made.

Fig. 4a.
Superdual of ∅∅∅∅ bc ac

Fig. 4b.
With concurrent edges

Fig. 4c.
Embedded diagram.

An example of the process is shown in Fig 4 for the abstract description ∅∅∅∅ ac bc.

Fig 4a shows the superdual which is disconnected; no two nodes have label sets
differing by one label. Fig 4b shows the dual graph with concurrent edges added as a
result of Step 3. We note that adding any two edges to the superdual does not make
the graph wellconnected. For example, if we only added one edge between nodes
labelled “∅” and “ac”, and another edge between nodes labelled “∅” and “bc” then
for the contour labelled “c” condition c of the connectivity conditions does not hold
since the nodes “ac” and “bc” would not be not adjacent. Similarly, leaving either of
the pair of nodes labelled “∅” and “ac” or the pair of nodes labelled “∅” and “bc” not
adjacent breaks condition b of the connectivity conditions. The Euler diagram created
(using the dual graph in Fig 4b) is shown in Fig. 4c, where we slightly separate the
concurrent curve segments to ease comprehension.

2.4 Planar Layout

In this step we embed the dual graph in the plane. There are various standard
approaches to planar layout. At the moment we use a method provided by the ODGF
software library. We make one adjustment to ensure the node labelled with “∅” is in
the outer face of the drawn graph, as this node represents the part of the diagram
enclosed by no contour. The layout of the dual has a significant impact on the
drawing of the diagram, and Section 3 includes some discussion of methods to layout
planar graphs to improve the usability of the final diagram.

2.5 Edge Addition to Remove Tangential Intersections

For the purposes of embedding we treat the dual as the dual of an Euler graph [1].
An Euler graph can be formed from an Euler diagram by placing a node at each point
where curves meet or cross, and connecting them up with edges that parallel the curve
segments. Using the dual of an Euler graph means that, unlike the treatment of the
dual in [7], each face in the dual has at most one point where contours meet or
concurrent edges separate. However, it can lead to the introduction of unnecessary
tangential intersections and so we apply an edge addition process to remove them
(subdividing the faces of the dual separates the tangential meetings of the curves).

Fig. 5a. Dual graph for ∅∅∅∅ a ab b bc c

Fig. 5b. Without edge addition.

Fig. 5c. Additional edge between ∅∅∅∅ and b

Fig. 5d. With edge addition.

We detect the need for extra edges by testing each face in the dual graph. If it is
possible to add an edge between two non adjacent nodes in the face and the new edge
will be labelled with one of the edge labels of the face, then that edge is added (recall
that edges are labelled with the difference in their incident node labels). An example
is shown in Fig. 5, where Fig. 5a shows a dual graph and Fig. 5b shows the
corresponding Euler diagram which contains an unnecessary tangential intersection
(the point where all of the three curves meet). The graph in Fig. 5a has an outside face
that has an edge labelled “b”, but it can also have another edge labelled “b” added to
it between nodes labelled ∅∅∅∅ and b, as shown in Fig. 5c. The Euler diagram
constructed from the dual with the additional edge is shown in Fig. 5d. We route this
edge without bends if possible, but often it is not possible, as is the case in Fig. 5c. In
this case, a triangulation of the face is made, and the edge is routed through
appropriate triangulated edges.

Fig. 6a. Dual of the Euler graph for

∅∅∅∅ a b c d ab ad bc cd.

Fig. 6b. Embedded diagram.

Fig. 6c. Additional edge between b and d

Fig. 6d. Diagram with reduced
tangentiality but extra concurrency.

Fig. 7a. Dual of the Euler graph for

∅∅∅∅ abc def ghi adg beh cfi

Fig. 7b. Embedded diagram.

Fig. 8a. Contour Routing

Fig. 8b. Embedded diagram.

Fig. 8c. Plane dual for 4Venn

Fig. 8d. Hole has labels “D” and “d” added.

Not all tangential intersections are removed by this method because some can only
be removed at a cost of adding extra concurrency. For example Fig. 6a shows the dual
of the Euler diagram in Fig 6b. Addition of an edge labelled “bd” between nodes
labelled “b” and “d” would result in the removal of the tangential connection between
the nodes labelled “a” and “c”, however this would also result in a concurrent
segment “bd” shown in figures 6c and 6d.

2.6 Duplicate Curve Labels

As shown in [1], not all Euler diagrams can be embedded in the plane with simple,
uniquely labelled curves. The reason is that there are abstract descriptions for which
any wellconnected dual graph is non-planar. The example in the paper is ∅∅∅∅ abc def
ghi adg beh cfi, for which any wellconnected graph with the corresponding nodes
contains a subgraph that is isomorphic with the non-planar K3,3. This limits the
method of [1] to guarantee the existence of a drawing only if there are 8 sets or less.
We demonstrate that this example can be drawn by our method in Fig. 7b; the red
contour “a” has two curves, since the subgraph of the dual with nodes containing the
label a consists of the two nodes abc and adg which not being adjacent in Fig. 7a,
breaking condition c of the connectivity conditions. Given the need for large amounts
of concurrency when drawing this diagram, it is not likely to have a particularly
usable embedding, but this example demonstrates the ability of our method to embed
a diagram from any abstract description.

The example in Fig.7 uses duplicate curves for the same contour. Given a dual
graph (obtained from Step 3 of our method), we discover the duplicate contours
required by looking at the connected components of the subgraphs of the dual that
include the contour label present (corresponding to the wellconnected condition c,
Section 2.2) or removed, corresponding to the use of holes (wellconnected condition
b). To enable us to draw the Euler diagram, we re-label the nodes of the graph that
contain the contour label which requires the use of duplicate curves, being careful to
distinguish the case of holes. Essentially, we keep the label of the contour the same
for one of the components (in the label present case) and change it for the other
components (thereby assigning new curve labels; here we adopt the convention of

using capital letters for the duplicates to help distinguish from the usual lowercase).
Then we alter the labels of the nodes on the components in the label removed case, so
that they indicate the new curve labels assigned as well as the fact that these nodes are
within a hole in that contour. This relabeling procedure allows us to draw the curves
correctly, but when labelling the contours of the final diagram, we revert to the
original labels for the curves.

Fig. 8 shows an example for 4Venn drawn with a hole. Here there is a duplicate
label “d” required for two curves, because, when nodes including “d” are removed
from the dual graph in Fig 8c the subgraph with nodes labelled “b” “ab” “bc” and
“abc” is not connected to the rest of the graph. Therefore, these four nodes have the
label “d” added, together with the label “D”, indicating a hole, as shown in Fig 8d.
“D” will be mapped back to “d” when the diagram is embedded, as in Fig 8b.

Fig. 9. An incorrect embedding for ∅ a b ab ac abc.

2.7 Constructing the Euler Diagram from the dual of the Euler graph

In general, straight lines cannot simply be drawn between edges of the dual to
indicate where the contours pass through the faces, because a face may not be convex.
This could cause the lines to intersect edges of the dual graph whose labels do not
include the same contour label, possibly introducing incorrect contour intersections
that cause the diagram generated to not have the required zone set. If an arbitrary
polyline routing through the face is taken, incorrect intersections can again occur, also
possibly failing to form a diagram with the required zone set. For example, see Figure
9 where the zone c appears but does not exist in the abstract description, and the zone
a is disconnected, appearing both at the bottom and top right of Figure 9. The
difficulty of routing contours motivates the use of a triangulation. The convex nature
of the triangles means that the above problems can be avoided, but we must establish
how to route contours through the triangles.

First, we triangulate the bounded faces of the plane dual graph, and for the outer
face we form a border of nodes with empty labels around the graph and triangulate the
polygon that is formed (see Fig. 10d, where the border nodes have been hidden). As
with the dual graph, each triangulation edge is labelled with the difference between

the labels present in its incident nodes, see Figure 10a. Again, as with the dual, the
labels on the triangulation edges indicate which contours will cross them when we
produce an embedding.

We choose one triangle in each face to be the meeting triangle in which all
contours in that face will cross or meet. In the current implementation, this is taken to
be the triangle that contains the centriod of the polygon formed from the face (or is
the triangle closest to the centriod, if none contain it). We mark a point called the
meeting point in the centre of the meeting triangle, and all contours in the face must
pass through that point.

Next we assign an ordering of the contours which must pass through each
triangulated edge in the face. This will enable us to assign points on the triangulation
edges where the contours cross them. For the purposes of this method we add
triangulation edges to parallel dual graph edges. Concurrent contours that are drawn
across the face maintain concurrency until at least the meeting point, where they may
separate if that concurrency is not maintained in the face.

The ordering of contours that pass through a triangulation edge that parallels a dual
edge is trivial because there is either only one contour or group of concurrent
contours. Also, any triangulation edge with no contours passing through it can be
trivially assigned an empty order. It is then necessary to assign a contour ordering to
the other triangulation edges of the face. Fig. 10 shows an example of this process.
Once the trivial above triangulation edge orderings have been performed there will be
at least two triangles with two triangulation edges assigned, see Fig. 10a. If the face is
not a meeting triangle (shown as the triangle containing a green circle as the marked
point) then the order of the third triangulation edge of such triangle can be assigned;
Fig. 10b shows the assignment of one of these. This third triangulation edge will have
contours ordered to avoid any contour crossings in the face by reading the order of the
two assigned triangulation edges in sequence and using a similar order for the edge, as
shown in Fig. 10c where both triangulation edges now have an assigned order. In
addition, we enforce the condition that all contours on the other two triangulation
edges must also be present in the third triangulation edge, to ensure that all contours
reach the meeting point.

The assignment of a contour ordering on a triangulation edge means that another
triangle has an additional triangulation edge with contour ordering assigned, as each
triangulation edge (that is not a dual graph edge) is shared between two triangles in
the face. Hence the process continues until all triangulation edges are assigned an
order. At this point the meeting triangle should also have all three of its triangulation
edges with assigned order, as the triangles that surround it should all have
triangulation edges with assigned order.

This method can be shown to terminate due to the restricted nature of the
triangulation, where any triangles without any triangulation edges parallel to face
edges imply that there is an extra triangulation face with two triangulation edges
parallel to face edges.Once the triangulation edges have been assigned an ordering,
the curves can be routed around the face by linking up the appropriate triangulation
edge points, except where the triangulation face is the meeting triangle, where they
must first pass through the meeting point in the triangle (shown as a filled circle
inside a triangle in figures 10a, 10b and 10c).

{ab,c}

{b,c}

Fig. 10a. Unassigned Triangulation Edges

c

ab

{b,c}

Fig. 10b. One Triangulation Edge Assigned.

c

ab

c

b

Fig. 10c. Both Triangulation Edges Assigned

Fig. 10d. Every Triangulation Edge

Fig. 10e. Contours Routed Through Cut Points

Fig. 10f. Final Diagram

2.8 Non-Atomic Diagrams

Up to this point we have only shown examples of atomic diagrams, which are
diagrams that can be drawn with disconnected contours. [8].. The above method can
be used to draw both atomic and non-atomic diagrams, with the atomic components
tangentially connected. However, for reasons of algorithmic efficiency, as well as
improved layout, it is desirable to lay these diagrams out as separate components,
which are joined at a later date. Figure 11 shows a non-atomic diagram that has nested
components: ∅∅∅∅ a b ab ac ad ae acd.

Fig. 11. A nested diagram, showing the rectangle in which the nested components can appear.

Non-atomic components can be identified from the dual graph from the abstract
description [1] and placed in a maximal rectangle that can found in the appropriate
zone, as shown in Figure 11. Nested components can also be created when there is
more than one curve in a contour and the additional curves do not intersect with any
other curves in the diagram. Where multiple nested components are to be embedded
within a single zone, the rectangle is simply split into the required number of sub
rectangles. Any nested component may have further nested components inserted by
simply repeating the process.

3 Conclusions and Further Work

We have presented the first generation method for generating an Euler diagram for
any abstract description.. To do this we have brought together and extended various
approaches in the literature, and developed new mechanisms for the embedding
process. We have demonstrated these ideas with output from a working software
system the implements the method. In terms of the methodology adopted, Step 2 -
edge removal to find a plane dual, and Step 3 - adding concurrent edges, are
computationally intractable problems to solve exactly in the general case, so
improved heuristics and optimizations are a rich area of further work. Initially,
utilizing effective search techniques such as constraint satisfaction and adapting well
known heuristics such as insertion methods from the Travelling Salesman Problem
are likely to improve current performance.

A further avenue of research is in improvements of the final layout which is an
essential feature in usability terms. Methods, such as those discussed in [9,15] have
been applied to the some of the diagrams shown in this paper, and further heuristics
that more accurately measure contour smoothness, and as well as measuring other

aesthetic features of the diagram not currently considered could be introduced. Also,
the plane embedding of the dual has significant impact on the usability of the
drawing, and methods to control the layout at Step 4 could impact on the number of
triple points generated, which is currently not restricted, for example.

Acknowledgments. This work has been funded by the EPSRC under grant refs
EP/E010393/1 and EP/E011160/1.

References

1. S. Chow. Generating and Drawing Area-Proportional Venn and Euler Diagrams. PhD
Thesis. University of Victoria, Canada. 2008.

2. S. Chow and F. Ruskey. Drawing area-proportional Venn and Euler diagrams. In Proc. of
Graph Drawing 2003. LNCS 2912, pages 466–477. Springer-Verlag, September 2003.

3. R. DeChiara, U. Erra, and V. Scarano. VennFS: A Venn diagram file manager. In Proc.
IV03, pages 120–126. IEEE Computer Society, 2003.

4. P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium, 22. pp. 149-160.
1984.

5. L. Euler. Lettres à une Princesse d’Allemagne, vol 2. 1761. Letters No. 102–108.
6. J. Flower, A. Fish, J. Howse. Euler Diagram Generation. Journal of Visual Languages and

Computing, Elsevier, 2008.
7. J. Flower and J. Howse. Generating Euler Diagrams, Proc. Diagrams 2002, LNAI 2317,

Springer Verlag, 61-75. 2002.
8. J. Flower, J. Howse, and J Taylor. Nesting in Euler diagrams: syntax, semantics and

construction, Journal of Software and Systems Modeling, pp 55-67, 2003.
9. J. Flower, P. Rodgers and P. Mutton. Layout Metrics for Euler Diagrams. Proc. IEEE

Information Visualization (IV03). pp. 272-280. 2003.
10. C. Gurr. Effective diagrammatic communication: Syntactic, semantic and pragmatic

issues. Journal of Visual Languages and Computing 10, 4, 317–342. 1999.
11. P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer, M. Mehrotra, and D. Bobrovnikoff.

Collaborative knowledge capture in ontologies. In Proc. of 3rd International Conference
on Knowledge Capture, pp. 99–106, 2005.

12. J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS J. Computation and
Mathematics, 8:145–194, 2005.

13. H.A. Kestler, A. Müller, T.M. Gress and M. Buchholz. Generalized Venn diagrams: a new
method of visualizing complex genetic set relations. Bioinformatics 21(8) 2005.

14. S.-K. Kim and D. Carrington. Visualization of formal specifications. Proc. APSEC '99, pp.
102-109.

15. P.J. Rodgers, L. Zhang, A. Fish. Embedding Wellformed Euler Diagrams. To appear in
Proc. Information Visualization (IV08).

16. F. Ruskey. A Survey of Venn Diagrams. The Electronic Journal of Combinatorics. March
2001.

17. A. Shimojima. Inferential and expressive capacities of graphical representations: Survey
and some generalizations. In Diagrammatic Representation and Inference: proceedings of
Diagrams 2004, LNAI 2980, pp. 18–21, Springer.

18. P. Tavel. Modeling and Simulation Design. AK Peters Ltd. 2007.
19. A. Verroust and M.-L. Viaud. Ensuring the drawability of Euler diagrams for up to eight

sets. Proc. Diagrams 2004, Cambridge, UK. LNAI 2980, pp. 128–141. Springer

