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Abstract

We enumerate all ternary length-` square-free words, which are words avoiding
squares of words up to length `, for ` ≤ 24. We analyse the singular behaviour of
the corresponding generating functions. This leads to new upper entropy bounds
for ternary square-free words. We then consider ternary square-free words with
fixed letter densities, thereby proving exponential growth for certain ensembles with
various letter densities. We derive consequences for the free energy and entropy of
ternary square-free words.

1 Introduction

The interest in the combinatorics of pattern-avoiding [3, 2, 8], in particular of power-free
words, goes back to work of Axel Thue in the early 20th century [35, 36]. The celebrated
Prouhet-Thue-Morse sequence, defined by a substitution rule a → ab and b → ba on a
two-letter alphabet {a, b}, proves the existence of infinite cube-free words in two letters
a and b.

Here, a word of length n is a string of n letters from a certain alphabet Σ, an element
of the language L(n) = Σn of n-letter words in Σ. The union

L =
⋃

n≥0

L(n) = ΣN0 (1)

is the language of all words in the alphabet Σ. It is a monoid, with concatenation of
words as operation, and with the empty word λ of zero length as neutral element [22].

1



A word w is called square-free if w = xyyz, with words x, y and z, implies that y = λ
is the empty word, and cube-free words are defined analogously. So square-free words
are characterised by the property that they do not contain an adjacent repetition of any
subword.

It is easy to see that there are only a few square-free words in two letters, these are
the empty word λ, the two letters a and b, the two-letter words ab and ba, and, finally,
the three-letter words aba and bab. Appending any letter to those two words inevitably
results in a square, either of a single letter, or of one of the square-free two-letter words.

However, there do exist infinite ternary square-free words, i.e., square-free words on
a three-letter alphabet. In fact, the number sn of ternary square-free words of length n
grows exponentially with n. Denoting set sets of ternary square-free words of length n by
An, we have

A0 = {λ},

A1 = {a, b, c},

A2 = {ab, ac, ba, bc, ca, cb},

A3 = {aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc}, (2)

and so on. So s0 = 1, s1 = 3, s2 = 6, s3 = 12, and so on, see [1] and [12] where the values
of sn for n ≤ 90 and 91 ≤ n ≤ 110 are tabulated, respectively. In [29], the sequence sn is
listed as A006156 (formerly M2550).

In this article, we consider ternary square-free words [35, 36, 38, 25, 3, 4, 5, 11, 22,
28, 21, 27, 18, 1, 10, 24, 12, 9, 32]. We are interested in the asymptotic growth of the
sequence sn. We use a series of generating functions for a truncated square-freeness
condition and conjecture the presence of a natural boundary at the radius of convergence.
We also consider the frequencies of letters in ternary square-free words and derive upper
and lower bounds. We prove exponential growth for certain ensembles of ternary square-
free words with fixed letter frequencies. We use methods of statistical mechanics [17] to
prove that, subject to a plausible regularity assumption on the free energy of ternary
square-free words, the maximal exponential growth occurs for words with equal mean
letter frequencies, where we average over all square-free words. Some of our results are
based on extensive exact enumerations of square-free ternary words of length n ≤ 110 [12]
and on constructions of generalised Brinkhuis triples [11, 12].

2 Ternary square-free words

Denote the number of ternary square-free words by sn and the corresponding generating
function by S(x),

S(x) =
∞

∑

n=0

sn xn . (3)
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Since the language of ternary square-free words is subword-closed, we conclude that the
sequence sn is submultiplicative,

sn+m ≤ sn sm . (4)

A standard argument, compare [1, Lemma 1] and [17, Lemma A.1], shows that this
guarantees that the limit S := limn→∞

1
n

log sn, also called the entropy, exists. Bounds
for the limit have been obtained in a number of investigations [5, 4, 11, 10, 24, 12, 32],
which give

1.1184 ≈ 1101/42 ≤ exp(S) < 1.30201064 , (5)

but the exact value is unknown. The lower bound implies an exponential growth of sn

with n. The behaviour of the subleading corrections to the exponential growth is not
understood.

One of the authors computed the numbers sn for n ≤ 110 [12]. Assuming an asymp-
totic growth of the numbers sn of the form

sn ∼ Ax−n
c nγ−1 (n → ∞) , (6)

we used differential approximants [15] of first order to get estimates of the critical point
xc = exp(−S), the critical exponent γ and the critical amplitude A. We obtain

A = 12.72(1) , xc = 0.768189(1) , γ = 1.0000(1) , (7)

where the number in the bracket denotes the (estimated) uncertainty in the last digit.
The value of γ, also found in [24], suggests a simple pole as dominant singularity of the
generating function at x = xc. Numerical analysis indicates the presence of a natural
boundary, a topic which we considered further by computing approximating generating
functions S(`)(x), which count the number of words which contain no squares of words of
length ≤ `.

3 Generating functions

We call a word w ∈ L length-` square-free if w = xyyz, with x, z ∈ L and y ∈
⋃`

n=0 L(n),
implies that y is the empty word λ. In other words, w does not contain the square of a
word of length ≤ `.

Denote the number of ternary length-` square-free words of length n by s
(`)
n . Clearly,

`′ > ` implies s
(`′)
n ≤ s

(`)
n , because at least the same number of words are excluded. On

the other hand, we have s
(`′)
n = s

(`)
n = sn for n < 2`. Thus, by considering larger and

larger squares `, we approach the case of square-free words.
We define corresponding generating functions

S(`)(x) =
∞

∑

n=0

s(`)
n xn (8)
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for the number of ternary length-` square-free words. These generating functions are
rational functions of the variable x which can be calculated explicitly, at least for small
values of `, see [24] where the computation is explained in detail. The first few generating
functions are

S(0)(x) =
1

1 − 3x
,

S(1)(x) =
1 + x

1 − 2x
,

S(2)(x) =
1 + 2x + 2x2 + 3x3

1 − x − x2
,

S(3)(x) =
1+3x+6x2+11x3+14x4+20x5+20x6+21x7+12x8+6x9(1−x−x2−x3−x4)

1 − x3 − x4 − x5 − x6
.

We computed the generating functions S(`)(x) explicitly for ` ≤ 24. The functions are
available as Mathematica code [37] at [14]. Note that some generating functions agree;
for instance, S(4)(x) = S(5)(x). The reason is that, going from ` = 4 to ` = 5, no “new”
squares arise; in other words, all squares of square-free words of length 5 already contain
a square of a word of smaller length.

The radius of convergence x
(`)
c ≤ xc of the series defining the generating function

S(`)(x) is determined by a pole in the complex plane located closest to the origin, thus by
a zero of the denominator polynomial of smallest modulus. Due to Pringsheim’s theorem
[30, Sec. 7.21], a real and positive such zero exists. Note that the zeros of the numerator
and denominator are mutually exclusive, because the do not contain common polynomial
factors.

The values x
(`)
c are given in Table 1, together with the degrees dnum and dden of the

polynomials in the numerator and in the denominator which both grow with `. Thus,
with growing length `, the generating functions S(`)(x) have an increasing number of zeros
and poles. The patterns of zeros and poles appear to accumulate in the complex plane
close to the unit circle around the origin; and comparing the patterns for increasing `
one might be tempted to the plausible conjecture that the poles approach the unit circle
in the limit as ` → ∞. However, there appear to be some oscillations in the patterns
close to the real line, and at present we dot not have any argument why the poles should
accumulate on the unit circle.

The values x
(`)
c in Table 1 approach xc from below, so they yield upper bounds on

the exponential growth constant S = − log(xc). The upper bound quoted in equation (5)

above was given in [24] on the basis of an estimate for x
(23)
c obtained via the series expan-

sion of S(23)(x). Our value for x
(23)
c , based on the complete evaluation of the generating

function S(23)(x), is contained in Table 1; it confirms the bound of Noonan and Zeilberger
[24]. The value for ` = 24 slightly improves the upper bound.

Theorem 1. The entropy S of ternary square-free words is bounded as S ≤ − log(x
(24)
c ),

which gives exp(S) < 1.30193812 < 1/x
(24)
c .
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Table 1: Degrees dnum and dden of the numerator and denominator polynomials of the
generating functions S(`)(x), respectively, and the numerical values of the radius of con-

vergence x
(`)
c .

` dnum dden x
(`)
c

0 0 1 0.333 333 333
1 1 1 0.500 000 000
2 3 2 0.618 033 989
3 5 3 0.682 327 804

4, 5 13 6 0.724 491 959
6, 7 27 15 0.750 653 202

8, 9, 10 38 19 0.757 826 433
11 81 58 0.762 463 266
12 143 106 0.765 262 611

13, 14 184 145 0.766 784 948
15 209 170 0.767 006 554

16, 17 217 178 0.767 136 379
18 441 380 0.767 542 044
19 644 594 0.767 752 831
20 968 890 0.767 887 486
21 1003 925 0.767 896 727
22 1436 1337 0.767 974 175
23 1966 1872 0.768 042 881
24 2905 2787 0.768 085 659

The complete set of poles of the generating function S(24)(x) is shown in Fig. 1. The
pattern looks very similar for other values of `. This suggests that, in the limit as `
becomes infinite, which corresponds to the generating function S(x) of ternary square-
free words, the poles accumulate close to the unit circle. This corroborates the conjecture
that S(x) has a natural boundary.

4 Square-free words with fixed letter frequencies

We now consider the letter statistics of ternary square-free words. Denote the number of
occurrences of the letter a in a ternary square-free word wn of finite length n by a(wn).
Clearly, the frequency of the letter a in wn is 0 ≤ a(wn)/n ≤ 1. For an infinite ternary
square-free word w, letter frequencies do not generally exist. Consider sequences {wn} of
n-letter subwords containing arbitrarily long words. We define upper and lower frequencies
f+

a ≥ f−
a by f+

a := sup{wn} lim supn→∞ a(wn)/n and f−
a := inf{wn} lim infn→∞ a(wn)/n,

where we take the supremum and infimum over all sequences {wn}. We can also compute
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Figure 1: Pattern of poles of the generating functions S(24)(x) in the complex plane. The poles

(red) accumulate along the unit circle (green). The isolated pole at x
(24)
c on the real positive

axis determines the radius of convergence.

these from a+
n = maxwn⊂w a(wn) and a−

n = minwn⊂w a(wn) by f±
a = limn→∞ a±

n /n, as these
limits exist. This follows, for instance, from the subadditivity of the sequences {a+

n } and
{1 − a−

n }. If the infinite word w is such that f+
a = f−

a =: fa, we call fa the frequency of
the letter a in w. In general, f+

a > f−
a , and letter frequencies do not exist, see also the

discussion below.
However, we can derive bounds on the upper and lower letter frequencies f+

a and f−
a .

Denote the number of ternary square-free words of length n which contain the letter a
exactly k times by sn,k. Since there are no square-free words of length greater than three
in two letters, a ternary square-free word contains no gaps between letters a of length
greater than three. This implies sn,k = 0 for k < n/4 or k > n/2, since the minimal
number of letters b and c is, by the same argument, equal to k = n/2. By counting
the number sn,k of ternary square-free words with a given number k of letters a, we
can sharpen these bounds. Clearly, for fixed k, there are numbers nmin(k) and nmax(k)
such that sn,k = 0 for n < nmin(k) and n > nmax(k). This means that any ternary
square-free word of length (m + 1)nmax(k) ≥ n > mnmax(k), for any integer m, contains
at least mk + 1 letters a, so the frequency of the letter a is bounded from below by
(mk +1)/(mnmax(k)+1), which becomes k/nmax(k) as m tends to infinity. Similarly, any
word of length mnmin(k) > n ≥ (m−1)nmin(k) contains at most mk−1 letters a. Thus we
obtain an upper limit of (mk − 1)/(mnmin(k) − 1), which becomes k/nmin(k) as m tends
to infinity. We computed nmax(k) for k ≤ 31 and nmin(k) for k ≤ 40; the strongest bounds
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are derived from nmax(31) = 117 and nmin(39) = 97, which yield lower and upper bounds
31/117 ≈ 0.265 and 39/97 ≈ 0.402, respectively, for the frequency of a single letter in an
infinite ternary square-free word. This gives

Theorem 2. The upper and lower frequencies f± of a given letter in an infinite ternary

square-free word are bounded by 0.265 ≈ 31/117 ≤ f− ≤ f+ ≤ 39/97 ≈ 0.402.

Remark. In fact, there is a recent, stronger result for the lower frequency [33]. The
minimum frequency f−

min is bounded from below and above by [33]

0.274649 ≈ 1780/6481 ≤ f−
min ≤ 64/233 ≈ 0.274678 ,

compare also similar treatments for binary power-free words [19, 20]. The upper bound
can be sharpened to f+ ≤ 469/1201 ≈ 0.390508 [34].

It is easy to see that the mean letter frequency of any given letter in the set of ternary
square-free words is 1/3. This is a consequence of symmetry under permutation of letters.
Indeed, the symmetric group S3 acts on any square-free word w by permutation of the
three letters, and the set of square-free words of a given length is a disjoint union of
orbits under this action. Each orbit consists of a square-free word and its images under
permutation of letters, and each letter has the same mean frequency on this orbit. So,
for each orbit, the mean frequency of any given letter is 1/3, thus also for the set of all
ternary square free words of any given length, or indeed for the set of all ternary square
free words.

We now want to show that there exist ternary square-free words of infinite length with
well-defined letter frequencies for the case fa = fb = fc = 1/3 and for some cases where
not all letter are equally frequent. In fact, we are going to prove not just that, but that
there are exponentially many such words, so the growth rate for words of fixed frequencies,
at least for the cases considered below, is positive. This can be done in a similar fashion
as the proofs that the number of ternary square-free words grow exponentially [5, 4, 11,
10, 24, 12, 32]. These proofs are based on Brinkhuis triple pairs [5, 4, 11, 10, 24] and their
generalisations [11, 12, 32]. We briefly sketch the argument here, see [5, 4, 11, 10, 24, 12,
32] for details.

The argument is based on square-free morphisms [6, 7]. Here, we immediately consider
the generalised version of [11, 12]. Assume that we have a set of substitution rules

a →























w
(1)
a

w
(2)
a

...

w
(k)
a

b →























w
(1)
b

w
(2)
b

...

w
(k)
b

c →























w
(1)
c

w
(2)
c

...

w
(k)
c

(9)

where w
(j)
a , w

(j)
b and w

(j)
c , 1 ≤ j ≤ k, are ternary square-free words of equal length m.

Starting from any ternary square-free word w of length n, consider the set of all words
of length mn obtained by substituting each letter, choosing independently one of the k
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words from the lists above. A generalised Brinkhuis triple is defined as a set of substitution
rules (9) such that all these words of length mn are square-free, for any choice of w. This
immediately implies that the number of square-free words grows at least as k1/(m−1), see
[12, Lemma 2]. In the case k = 1, this reduces to a usual substitution rule without any
freedom; in this case, it only proves existence of infinite words, not exponential growth of
the number of words with length.

In [12], a special class of generalised Brinkhuis triples was considered, and triples up
to length m = 41 with k = 65 were obtained. This was recently improved to m = 43 and
k = 110 in [32], yielding the lower bound of (5).

What about the letter frequencies? In general, the words w
(j)
a that replace a will have

different letter frequencies, and in this case it is easy to see that not all the infinite words
obtained by repeated substitution will have well-defined letter frequencies. However, we
can say something about letter frequencies if we consider generalised Brinkhuis triples
where all words w

(j)
a , 1 ≤ j ≤ k, have the same letter frequencies, and analogously for the

words w
(j)
b , 1 ≤ j ≤ k, and w

(j)
c , 1 ≤ j ≤ k. In this case, regardless of our choice of words

in the substitution process, we obtain words with well-defined letter frequencies, precisely
as in the case of a standard substitution rule. Denoting the number of letters a, b and
c in any of the words w

(j)
a by na

a, nb
a and nc

a, respectively, with na
a + nb

a + nc
a = m, and

analogously for w
(j)
b and w

(j)
c , we can summarise the letter-counting for the generalised

Brinkhuis triple in a 3 × 3 substitution matrix

M =





na
a na

b na
c

nb
a nb

b nb
c

nc
a nc

b nc
c



 . (10)

In general, all entries of this matrix are positive integers, because there are no square-free
words of length m > 3 with only two letters. The (right) Perron-Frobenius eigenvector is
thus positive, and its components encode the letter frequencies of the infinite words ob-
tained by repeated application of the substitution rules. The Perron-Frobenius eigenvalue
is m, because (1, 1, 1) is a left eigenvector with eigenvalue m.

As mentioned previously, the generalised Brinkhuis triples considered in [12] do not
have the property that the letter frequencies of the substitution words coincide. However,
if we have a generalised Brinkhuis triple, any subset of substitutions also forms a triple,
because all we do is restricting to a subset of words which still are square-free. So by
looking at the triples of [12] and selecting suitable subsets of substitutions, we can use
the same arguments to prove exponential growth of words with fixed letter frequencies.

4.1 Equal letter frequencies

Let us first consider the case of equal frequencies fa = fb = fc = 1/3. We note that

the special Brinkhuis triples of [12] had the additional property that w
(j)
b = σ(w

(j)
a ) and

w
(j)
c = σ2(w

(j)
a ), where σ is the permutation of letters defined by σ(a) = b and σ(b) = c.

If we select a subset of the words replacing a such that they have the same numbers of
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letters na
a, nb

a and nc
a, the substitution matrix for the corresponding triple consisting of

those words and their images under σ is

M =





na
a nc

a nb
a

nb
a na

a nc
a

nc
a nb

a na
a



 (11)

which is symmetric. Hence the right Perron-Frobenius eigenvector is (1, 1, 1)t, and the
letter frequencies are given by fa = fb = fc = 1/3.

The simplest example is a Brinkhuis triple with m = 18 [12] (see also [24]) which
explicitly given by

w(1)
a = abcacbacabacbcacba ,

w(2)
a = abcacbcabacabcacba = w(1)

a ,
(12)

where w(1)
a denotes w

(1)
a read back-to-front, which thus has the same letter numbers na

a = 7,
nb

a = 5 and nc
a = 6. So the number of ternary square-free words with letter frequencies

fa = fb = fc = 1/3 grows at least as 21/17. By looking for the largest subsets of words
with equal letter frequencies in the special Brinkhuis triples of [12], we can improve this

bound. For m = 41, we find 30 words w
(j)
a with letter numbers na

a = 14, nb
a = 13 and

nc
a = 14, yielding a lower bound of 301/40 ≈ 1.08875 for the exponential of the entropy.

One of the two triples for m = 43 of [32] contains 39 words with na
a = 14, nb

a = 14 and
nc

a = 15. This gives the following result.

Lemma 1. The entropy S( 1
3
, 1

3
, 1

3
) of ternary square-free words with letter frequencies

fa = fb = fc = 1/3 is bounded from below via exp[S( 1
3
, 1

3
, 1

3
)] ≥ 391/42 ≈ 1.09115.

Remark. This bound can without doubt be improved, because the triples of [12] and
[32] where not optimised to contain the largest number of words of equal frequency.

4.2 Unequal letter frequencies

What about words with non-equal letter frequencies? The following square-free substitu-
tion rule [38]

a → cacbcabacbab

b → cabacbcacbab

c → cbacbcabcbab

(13)

already shows that infinite words with unequal letter frequencies exist. In this case, the
substitution matrix is

M =





4 4 3
4 4 5
4 4 4



 , (14)
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and the right Perron-Frobenius eigenvector with eigenvalues 12 is (11, 13, 12)t. Thus
this substitution leads to a ternary square-free word with letter frequencies fa = 11/36,
fb = 13/36 and fc = 1/3.

Can we show that, for some frequencies, there are exponentially many words? Indeed,
for some examples we can find generalised Brinkhuis triples by choosing subsets of those
given in [12]. Here, we restrict ourselves to a few examples.

Consider the two generating words

w1 = abcbacabacbcabacabcbacbcabcba (na = 10, nb = 10, nc = 9) ,

w2 = abcbacabacbcacbacabcacbcabcba (na = 10, nb = 9, nc = 10) ,
(15)

of a Brinkhuis triple with m = 29 [12]. Choosing w
(1)
a = w1, w

(2)
a = w1, w

(1)
b = σ(w1),

w
(2)
b = σ(w1), w

(1)
c = σ2(w2) and w

(2)
c = σ2(w2), where again w denotes the words obtained

by reversing w, we obtain a Brinkhuis triple with substitution matrix

M =





10 9 9
10 10 10
9 10 10



 . (16)

The corresponding frequencies are f = (fa, fb, fc) = ( 9
28

, 10
29

, 271
812

), and the growth rate for
this case is at least 21/28.

Consider now two generating words

w1 = abcbacabacbabcabacabcacbcabcba (na = 11, nb = 10, nc = 9) ,

w2 = abcbacabacbcabcbacabcacbcabcba (na = 10, nb = 10, nc = 10) ,
(17)

of a Brinkhuis triple with m = 30 [12]. Choosing w
(1)
a = w1, w

(2)
a = w1, w

(1)
b = σ(w2),

w
(2)
b = σ(w2), w

(1)
c = σ2(wα) and w

(2)
c = σ2(wα), where α ∈ {1, 2}, we obtain two

Brinkhuis triples with substitution matrices Mα given by

M1 =





11 10 10
10 10 9
9 10 11



 , M2 =





11 10 10
10 10 10
9 10 10



 . (18)

The corresponding frequencies now are f1 = (10
29

, 271
841

, 280
841

) and f2 = (10
29

, 1
3
, 28

87
), and the

growth rates for these examples are at least 21/29.
Our next examples use the generating words

w1 = abcacbacabcbabcabacbcabcbacbcacba (na = 11, nb = 11, nc = 11) ,

w2 = abcacbcabacabcacbabcbacabacbcacba (na = 12, nb = 10, nc = 11) ,
(19)

of a Brinkhuis triple with m = 33 [12]. Choosing as above w
(1)
a = w1, w

(2)
a = w1,

w
(1)
b = σ(w2), w

(2)
b = σ(w2), w

(1)
c = σ2(wα) and w

(2)
c = σ2(wα), where α ∈ {1, 2}, we

obtain two Brinkhuis triples, this time with substitution matrices Mα given by

M1 =





11 11 11
11 12 11
11 10 11



 , M2 =





11 11 10
11 12 11
11 10 12



 . (20)

10



The corresponding frequencies now are f1 = (1
3
, 11

32
, 31

96
) and f2 = ( 331

1024
, 11

32
, 341

1024
). Here, the

growth rate is at least 21/32.
Finally, we give one example with a rather large deviation from equidistribution of

letters. This uses three generating words

w1 = abcacbacabacbcabacabcacbcabacbcacba (na = 13, nb = 10, nc = 12) ,

w2 = abcacbcabacbabcbacabcbabcabacbcacba (na = 12, nb = 12, nc = 11) ,

w3 = abcacbacabacbcabacabcbabcabacbcacba (na = 13, nb = 11, nc = 11) ,

(21)

of a Brinkhuis triple with m = 35 [12]. Choosing w
(1)
a = w1, w

(2)
a = w1, w

(1)
b = σ(w2),

w
(2)
b = σ(w2), w

(1)
c = σ2(w3) and w

(2)
c = σ2(w3), we obtain a Brinkhuis triple with

substitution matrix

M =





13 11 11
10 12 11
12 12 13



 , (22)

which yields frequencies f = ( 1
3
, 16

51
, 6

17
). The growth rate is at least 21/34.

To summarise, we proved the following.

Lemma 2. The entropy of ternary square-free words with fixed letter frequency fa is

strictly positive for fa ∈ {16
51

, 9
28

, 28
87

, 271
841

, 31
96

, 331
1024

, 280
841

, 341
1024

, 1
3
, 271

812
, 11

32
, 10

29
, 6

17
}.

One should expect that the entropy is strictly positive for all letter frequencies fa

in an interval. However, it is not straightforward to show that by using substitutions
of Brinkhuis triples with different letter frequencies. The reason is that, in general, the
infinite words obtained by such substitutions do not have well-defined letter frequencies.

In the following sections, we are going to use methods from the theory of generating
functions and convex analysis [31] which are often applied in the context of statistical
mechanics [17]. The free energy of square-free words, which we will define below, is related
to the entropy function of square-free words with fixed letter density, as follows from
Proposition 2. An immediate consequence of the concavity of the entropy function is that
the entropy is strictly positive for all frequencies fa ∈ (16/51, 6/17) ≈ (0.3137, 0.3529),
see below.

5 Free energy

Since the language of square-free words is subword closed, the numbers sn,k satisfy the
submultiplicative inequality

sn+m,k ≤
k

∑

l=0

sn,l sm,k−l . (23)

Consider the functions sn(q) defined by sn(q) =
∑n

k=0 sn,k qk. These are polynomials in q
of degree not larger than n. The submultiplicative inequality (23) implies for the functions
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sn(q) that sn+m(q) ≤ sn(q) sm(q) for 0 < q < ∞. We are interested in the exponential
growth rate of sn(q). To this end, define Fn(q) := 1

n
log sn(q). The submultiplicative

inequality yields [17, Lemma A.1] that the limit F (q) := limn→∞ Fn(q) exists, and that
F (q) < ∞ for 0 < q < ∞. The function F (q) is called the free energy of the model. More
can be said about the properties of the free energy by using convexity arguments. These
are largely independent of the underlying combinatorial model and are discussed in detail
in [17, Sec. 2.1, App. B]. We obtain

Proposition 1. The functions Fn(q) = 1
n

log sn(q) of ternary square-free words are con-

tinuous, analytic and convex in log q in (0,∞). The free energy F (q) of ternary square-

free words

F (q) = lim
n→∞

Fn(q) (24)

exists and satisfies F (q) < ∞ for q ∈ (0,∞). Moreover, it is a convex function of log q
for q ∈ (0,∞). If F (q) is finite, its right- and left-derivatives exist everywhere in (0,∞),
and they are non-decreasing functions of q. The function F (q) is differentiable almost

everywhere, and wherever the derivative dF (q)/dq exists, it is given by limn→∞ dFn(q)/dq.

In the following, we will apply the results of the preceding section in order to derive
bounds on the free energy. This will show that the free energy F (q) is finite for 0 < q < ∞.
Using the above substitution rule (13) and the substitution rule given in [33], we first
derive a lower bound on the free energy.

Lemma 3. The free energy F (q) is bounded from below by

F (q) ≥ max

{

64

233
log q,

13

36
log q

}

. (25)

Proof. Consider ternary square-free words wn of length n = 12k, where k ∈ N, generated
by the substitution rule (13), with w1 = c. Define k+(n) = 13n/36 + δ+(n), which
denotes the number of letters of type a in wn. Note that δ+(n) = o(n). We have sn(q) ≥
sn,k+(n)q

k+(n). Taking the logarithm, dividing by n and performing the limit leads to
F (q) ≥ 13

36
log q. The second part of the statement follows by the same argument with the

substitution rule given in [33].

Remark. A weaker bound with 64/233 replaced by 11/36 > 64/233 may be derived
using the substitution (13), where the role of a and b are interchanged.

We now turn to the question of an upper bound, which can be analysed using the
bounds for letter frequencies obtained in [33, 34] or in Theorem 2.

Lemma 4. The free energy F (q) of ternary square-free words is bounded from above by

F (q) ≤ − log xc + max

{

1780

6481
log q,

469

1201
log q

}

(26)

where xc = limn→∞ s
1/n
n ≈ 0.768189 is the critical point of ternary square-free words.
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Proof. Assume that q 6= 1. (The case q = 1 has been discussed in Section 2, where
F (1) = − log xc was proven.) Assume that Bn and An are numbers such that sn,k = 0 for
k > Bn or k < An, sn,Bn

> 0, and sn,An
> 0. For 1 6= q ∈ (0,∞) we have the estimate

sn(q) ≤ sn

Bn
∑

An

qk = sn
qBn+1 − qAn

q − 1
. (27)

Assume that q > 1. Taking the logarithm, dividing by n and performing the limit
n → ∞, this implies F (q) ≤ log xc + ε+ log q, where ε+ = lim supn→∞ Bn/n. Note that
ε+ ≤ 469/1201, as follows from the bound given in [34]. A similar argument holds for
q < 1, involving the lower bound An. From [33], we get the bound 1780/6481. Combining
the two results, we get the inequality (26).

Remark. A weaker bound with (1780/6481, 469/1201) replaced by (31/117, 39/97) fol-
lows from Theorem 2.

Define the two-variable generating function S(x, q)

S(x, q) =
∞

∑

n=0

n
∑

k=0

sn,k xn qk =
∞

∑

n=0

sn(q) xn . (28)

Denote the radius of convergence of S(x, q) by xc(q). The curve xc(q) is called critical

curve, and the plot of xc(q) in the xq-plane is called the phase diagram of the model. The
free energy is related to the critical curve by

xc(q)
−1 = lim

n→∞
sn(q)1/n = eF (q) . (29)

We set xc = xc(1) for the critical point of ternary square-free words. Bounds on the curve
xc(q) can be derived from bounds on the free energy F (q) as given above. This yields

xc min{q−1780/6481, q−469/1201} ≤ xc(q) ≤ min{q−64/233, q−13/36} . (30)

The phase diagram is shown in Fig. 2. Using the series data from exact enumeration for
length n ≤ 100, we extrapolated the values of xc(q) for different values of q, using first
order differential approximants [15]. The critical curve xc(q) is, within the analysed range
of q, very close to the curve xc q−1/3, reflecting the fact that the values k = k(n) where
sn,k 6= 0 are sharply concentrated around k = bn/3c. For large values of q, such a form is,
however, not compatible with the derived bounds on xc(q). Numerical analysis suggests
that the leading divergence of S(x, q) is a simple pole, which is approached uniformly
in x and q. Thus, there is no indication that the nature of the singularity changes, in
contrast to other examples from statistical mechanics, where such a change indicates a
phase transition [17].
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Figure 2: Phase diagram of ternary square-free words, as extrapolated from exact enumeration

data (circles). Upper and lower bounds on xc(q) are drawn for comparison.

6 Entropy and symmetry

We now address the question of the number of ternary square-free words, where we fix
the frequency of letters of type a. We consider the number of square-free words sn,bεnc

in n letters with bεnc occurrences of the letter a. The number ε may thus be regarded
as the frequency of the letter a. We are interested in the exponential growth rate of
sn,bεnc. This leads to the question whether sequences of the form 1

n
log sn,bεnc have a limit

as n → ∞, which we then call entropy function P (ε). It is related to the free energy F (q)
by a Legendre-Fenchel transform, as we will now show.

Note that there is a constant K > 0 such that 0 ≤ sn,k ≤ Kn for each value of n and
k. This follows from the existence of the entropy s of ternary square-free words. Note also
that there exists a finite constant C > 0, and numbers An and Bn such that sn,An

> 0 and
sn,Bn

> 0, and sn,k ≥ 0, when 0 ≤ An < k < Bn ≤ Cn. This follows from the substitution
rule (13). Take An and Bn such that sn,k = 0 if k < An or k > Bn. Define the numbers

ε+ = lim sup
n→∞

Bn

n
, ε− = lim inf

n→∞

An

n
. (31)

From [33, 34] and the substitution rule (13), we have 0.361 ≈ 13/36 ≤ ε+ ≤ 469/1201 ≈
0.391 and 0.274649 ≈ 1780/6481 ≤ ε− ≤ 64/233 ≈ 0.274678. Thus, the assumptions in
[17, Thm. 3.19] are satisfied, and we obtain
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Proposition 2. The entropy function P (ε) of ternary square-free words exists in (ε−, ε+)
and is defined by

P (ε) = inf
0<q<∞

{F (q) − ε log q} . (32)

Moreover, there is a sequence of integers {σn}
∞
n=0 such that σn = o(n) and the limit

P (ε) = lim
n→∞

1

n
log sn,bεnc+σn

(33)

exists and is finite and concave in (ε−, ε+). Lastly, note also that δn = bεnc + σn is the

least value of k that maximises sn,k q̃k, where q̃ is that value of q where the infimum is

taken in (32).

Remark. Together with Lemma 2, an immediate consequence of the concavity of the en-
tropy function is that the entropy is strictly positive for all frequencies ε ∈ (16/51, 6/17) ≈
(0.3137, 0.3529).

We consider now the question where the entropy function takes its maximum. To
this end, we assume a special regularity condition on the free energy, whose validity is
supported by the numerical analysis of the preceding section, see also the discussion in
the conclusion.

Lemma 5. Let ε ∈ (ε−, ε+). If F (q) ∈ C2(0,∞), and if F (q) is strictly convex in log q,
we have P (ε) ∈ C2(ε−, ε+) for the entropy function, and it is given by

P (ε) = F
(

q(ε)
)

− ε log q(ε) , (34)

where q(ε) is the unique positive solution of

ε = q
d

dq
F (q) . (35)

The entropy function P (ε) attains its global maximum at q = 1.

Proof. Since F (q) is convex in log q and continuous, and F (q) ≥ max{ε− log q, ε+ log q},
the infimum in (32) occurs at a unique value q = q(ε) ∈ (0,∞). Since F (q) ∈ C1(0,∞),
we obtain ε = qF ′(q) = d

d(log q)
F (q) as an implicit equation for q(ε). This uniquely

defines a positive function q = q(ε) ∈ C1(ε−, ε+), since strict convexity of F (q) and
F (q) ∈ C2(0,∞) implies d2

d(log q)2
F (q) 6= 0. We have explicitly P ′(ε) = − log q(ε), which

shows that P (ε) ∈ C2(ε−, ε+), and −∞ < P ′′(ε) = −( d2

d(log q)2
F (q))−1 < 0. This implies

that q = 1 is a local maximum of P (ε). Due to the concavity of P (ε), it is the global
maximum.

We note that at q = 1, the letter density ε = F ′(1) is the mean letter density, which
was determined above to be ε = 1/3 by a symmetry argument. Thus, under the above
regularity assumption, maximum entropy occurs at equal (mean) letter density εa = εb =
εc = 1/3. This is an example of the more general result that maximum entropy in occurs
at points of maximum symmetry, see [26] for the concept of symmetry and its implications
for the free energy and entropy of the combinatorial problem of random tilings, which is
applicable in this case.
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7 Conclusions

In this article, we considered the growth rate, or the entropy, of the set of ternary square-
free words. By computing generating functions S(`)(x) for length-` square-free words,
where the condition of square-freeness is truncated at length `, we verified an upper
bound proposed in [24] and slightly improved it. The pattern of poles of these generating
functions, and their behaviour as ` increases, points towards a natural boundary for the
generating function S(x).

The presence of a natural boundary in a model indicates that it cannot be solved ex-
actly in terms of standard functions of mathematical physics, which obey linear differential
equations with polynomial coefficients [16]. This would exclude, for ternary square-free
words, an exact value for the entropy and the functional form of the free energy. It
may even be difficult to prove the existence of a critical exponent, compare the related
self-avoiding walk problem [17].

In the ternary alphabet, no letter is preferred by the condition of square-freeness. Thus,
averaging over the entire sets of ternary square-free words, all letters appear equally often.
However, in a single infinite word this need not be the case, indeed, the letter frequency
may not be well-defined. However, one can derive limits on the minimum or maximum
frequency of a given letter in an infinite ternary square-free words, and by explicitly
constructing infinite words with given well-defined frequencies by means of substitution
rules the minimum and maximum frequency can be bounded from above and below. We
obtained limits from counting square-free words up to a certain length, sharper limits
were given recently in [33, 34]. The bounds for the maximum frequency can certainly be
further improved employing the approach of [19, 20, 33].

Lower bounds on the entropy are based on Brinkhuis triples and their generalisations.
We used these to prove that, for a list of rational values, the entropy of the set of square-
free words with a fixed letter frequency is strictly positive. Together with the concavity of
the entropy function, obtained by methods of convex analysis and statistical mechanics,
this led to the result that the entropy is strictly positive on an entire interval.

Concerning the entropy function, it would be interesting to extend the interval of
strict positivity by providing sharper bounds from suitable substitution rules. This might
be achievable by following and suitably modifying the approach taken in [19, 20, 33]. It
is conceivable, albeit not necessary, that there exists a region of frequencies for which
infinite square-free words exist, but the entropy vanishes, because the number of square-
free words with that given letter frequency grows sub-exponentially. Such behaviour has
been reported for kth-power-free binary square-free words with rational powers in the
range 2 < k ≤7/3 [13].

Further, it is necessary to prove the validity of the regularity assumption on the free
energy in Theorem 5. In contrast to other problems in statistical mechanics [17], there is
no indication of a phase transition in the model of ternary square-free words, wherefore
an analytic free energy is expected.

It would also be interesting to analyse the letter distribution using probabilistic meth-
ods. Similar examples lead, in an appropriate scaling limit, to Gaussian distribution
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functions [23].
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[26] C. Richard, M. Höffe, J. Hermisson and M. Baake, Random tilings: concepts and examples,
J. Phys. A: Math. Gen. 31 (1998) 6385–6408.
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