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Abstract. The second-order lambda calculus allows an elegant formal-
isation of abstract data types (ADT’s) using existential types. Plotkin
and Abadi’s logic for parametricity [PA93] then provides the useful proof
principle of simulation for ADT’s, which can be used to show equivalence
of data representations. However, we show that this logic is not sufficient
for reasoning about specifications of ADT’s, and we present an exten-
sion of the logic that does provide the proof principles for ADT’s that
we want.

1 Introduction

The second-order lambda calculus allows an elegant formalisation of abstract
data types (ADT’s), as shown in [MP88], using existential types. This descrip-
tion of ADT’s provides a useful basis to investigate properties of ADT’s. In
particular, it has been successfully used to investigate a notion of equivalence of
implementations of ADT’s. [Mit91] considers a semantic notion of equivalence
of data representations, which suggests a method for proving the equivalence of
data representations, namely by showing that there exists a simulation relation
between the representations. We will refer to this proof principle as simulation.
Plotkin and Abadi’s logic for parametricity [PA93] is a logic for reasoning about
the second order lambda calculus (system F). It formalises the notion of para-
metricity, and for the existential types this logic does indeed provide the proof
principle of simulation envisaged in [Mit91].

Unfortunately, it turns out that this proof principle of simulation for existen-
tial types is not enough for reasoning about specifications of ADT’s, in particular
specifications that use equality. We propose an extension of the logic of [PA93]
(with axioms stating the existence of quotients, to be precise) that does provide
all the proof principles one would like for reasoning about ADT’s. The same PER
model used in [PA93] as a semantics for their logic immediately justifies these
additional axioms. (Indeed, in the PER model all types are ”quotient types”.)

The remainder of this introduction discusses one of the proof principles we
want for ADT’s. It is a very natural one, that immediately arises whenever an
implementation of an ADT allows different concrete representations of the same
abstract value. This example will be treated in more detail later in Section 4.

Suppose we implement an ADT for bags using lists to represents bags. Then
there will be many different lists that represent the same bag: any two lists that
are permutations represent the same bag. As a consequence, there are different
notions of equality in play: equality of lists, equality of bags, and the relation
~perm ON lists that relates lists representing the same bag (i.e. that are per-
mutations). A programmer implementing an ADT has to be aware of the fact
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that there are these different notions of equality. But a programmer using an
ADT should only have to deal with equality of bags, and not have to know any-
thing about an underlying relation ~pe,m, on lists. Indeed, this is precisely the
abstraction that an abstract data type is supposed to provide. A consequence of
all is that the programmer implementing an ADT and the programmer using
an ADT may want to use a slightly different specification: the former in terms
of the relation ~e,, on the concrete data type of lists, the latter in terms of
equality on the abstract data type of bags. For instance, the programmer using
the ADT might require that

VYm,n : Nat, s : Bag. add(m, add(n, s)) = add(n, add(m, s)) (i)

and to meet this specification, the programmer implementing the ADT must
ensure that

Vm,n : Nat,s : List. cons(m, cons(n, s)) ~perm cons(n, cons(m,s)) (i)

if add is implemented as cons. In a logic for reasoning with (specifications of)
ADT’s we should be able to relate statements such as (i) and (ii). In particular,
here one would want to be able to prove that (ii) implies (i). We will refer to a
proof principle that would allow us to deduce (i) from (ii) as abstraction.
The logic for parametricity of [PA93] does not quite provide this proof princi-
ple of abstraction for arbitrary ADT’s and specifications. But extending the logic
with axioms stating the existence of quotients solves this problem: we will show
that then the proof principle of abstraction can be obtained from the proof prin-
ciple of simulation, which is provided by the logic for parametricity of [PA93].
(For this particular example, we would want the existence of lists quotiented by

Nperm-)

The organisation of this paper is as follows. Section 2 defines our notation for
the second-order lambda calculus and gives a quick recap on how existential types
can be used for ADT’s. Section 3 discusses the logic for parametricity of [Tak97],
which is a slightly different formulation of the logic as first introduced in [PA93];
in particular, we discuss the proof principle of simulation for proving equivalence
of data representations that this logic provides. Section 4 then considers a simple
example of a specification of an ADT for bags and illustrates the problem with
reasoning about ADT’s hinted at above. Section 5 then present our extension of
the logic that does provide the power we want.

2 The second-order lambda calculus

We first give the definition of the second-order lambda calculus, and then illus-
trate how the existential types can be used for ADT’s.

2.1 Definition of the second-order lambda calculus

The terms t and types T of the second-order lambda calculus are given by the
grammar

tu=a| ATttt | (¢,t) | t.1]6.2| AX.t|tT | pack (T,t)toT |opentas (T,t)int
T:=X|TxT|T-—>T|vVX.T|3X.T
Here x ranges over term-variables, X over type-variables. Free and bound vari-

ables are defined as usual. Terms and types equal up to the names of bound
variables and permutation of fields are identified.
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We use the following convention for our meta-variables: z,y,z range over
term variables, X, Y, Z range over type variables, a,b, ¢, f range over terms (or
programs), A, B, C range over types.

We include products and existentials as primitives here because they play an
important role later, but of course they can be regarded as syntactic sugar for
their usual encodings. (In fact, we will not even need the universal types in this
paper.) Later on we will also use some base types, namely a type Nat of natural
numbers and a type List of lists of natural numbers. These can be encoded in
the usual way, too.

The type inference rules for judgements of the form I' - ¢ : T, where I is a
sequence of declarations z1 : Ty, ...,x, : Ty, are

Nz:AIFz:A

I''z:A+Fb:B I'+rf:A—-B TIta:A
I'-X\e:A.b:A— B 't fa:B
I'Fa :A1 T'kFas: A I'Fa:A; x4y 12
1=1,
Fl—(al,ag):Ale2 F"CLZA,
I'+bv: B r-f:vX.B
X not free in I”
I'-AX.b:VX.B I'+ fA: B[A/X]
I'te: AlC/X]

X not free in I'
I't (pack (C,c)to3X. A) : 3X. A

Nx:Arb:B TI'kFs:3dX.A
I't (opensas(X,z)inb): B

X not free in B or I'

The reduction rules are

(Az:A. b)a >g bla/x]
(AX.a)A >galA/X]
(a1,0a2).0 >g a;
open (pack (C,c)to3X. A) as (X, z) inb >pg b[C/X,c/x]

Notation. The notation for pairs is extended to n-tuples, which are simply
nested pairs. E.g. we write A x B x C for A x (B x C) and (a, b, ¢) for (a, (b,c)).
We typically omit the second type parameter of pack, writing pack (C,a) for
(pack (C,a) to 3X. A), whenever this type is clear from the context. Finally, we
will sometimes use a ”pattern-matching” style notation for tuples, e.g. writing
Ay, 2):A x B.cinstead of Az:A x B.c[z.1/y,x.2/z]. a

2.2 Abstract Data Types as Existential Types

Existential types allow an elegant formalisation of abstract data types (ADT’s),
as shown in [MP88]. This formalisation provides a clean separation between
using an ADT on the one hand and implementing an ADT on the other hand.
Moreover, as is often the case with descriptions of notions from programming
languages in terms of typed lambda calculus, this formalisation provides a more
powerful notion than exists in most existing programming languages: existential
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types provide implementations of ADT’s as "first-class citizens”, i.e. as values
that can be passed as parameters to functions or returned as results like any
other value. This also means that we can talk about equality of implementations
of ADT’s just like we can talk about equality of other values. (This will be useful
later, in Section 3, when we consider proof rules for ADT’s.)

The remainder of this section briefly explains the use of existential types for
ADT’s (for a more extensive discussion see [MP88]), and introduces our running
example of bags.

Example: bags

Our running example will be an ADT of bags, which provides a type Bag with
three operations: the operation of adding an element to a bag, an operation to
inspect how often a given element occurs in a bag, and the empty bag:

empty : Bag,
add : Nat x Bag — Bag,
card : Nat x Bag — Nat.

Tupling the three operations yields
(empty, add, card) : Bag x (Nat x Bag — Bag) x (Nat x Bag — Nat),
so the signature of the ADT can be given as
BagSig(X)= X x (Nat x X — X) x (Nat x X — Nat).
The existential type Baglmp,
BagImp = 3X. BagSig(X)

can be used as type of implementations of the ADT of bags, as we will now
explain.

To implement the ADT of bags, we have to come up with some type Rep
which will be used as representations of bags, and a 3-tuple of functions of
type BagSig(Rep) that implement the bag-operations for this representation.
An obvious way to represent bags is to use lists. In this case empty can be
implemented as the empty list nil : List, add as the operation cons : Natx List —
List on lists, and card as a function count : Nat x List — List that counts how
often a given natural number occurs in a given list of natural numbers. These
three operations have the right types, since

(nil, cons, count) : BagSig(List).

The introduction rule for existential types can be used to construct an element
of type BagImp from the type List and the triple (nil, cons, count):

impl = (pack (List, (nil, cons, count)) to BagImp) : BagImp.

Now suppose we want to define some program b that uses the ADT of bags.
Then in b we want to use the abstract operations empty, add, and card, and b
has to be well-typed under the assumption that these three abstract operations
have their correct types:

empty : Bag, add : Nat x Bag — Bag, card : Nat X Bag— Nat+b: B
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Here Bag is a type variable. The elimination rule for existential types now tells
us how we can combine this program b with the implementation impl : Baglmp
defined above:

open impl as (Bag, (empty, add, card)) inb : B
It is easy to verify that this program behaves as expected:

open impl as (Bag, (empty, add, card)) in b
>
b[List/ Bag, nil/ empty, cons/ add, count/ card).

So the concrete representation List gets substituted for the abstract type Bag,
and the concrete implementations of the operations on List’s get substituted for
the abstract operations on Bag’s.

The typing rules play a crucial role in hiding the concrete implementation of
the ADT (using List’s) from the main program b. It is not possible to apply list
operations to bags in b, because this would not be well-typed. The program b
has to be typed under the assumptions that

empty : Bag, add : Nat X Bag — Bag, card : Nat X Bag — Nat,

where Bag is a type variable.

3 The logic for parametricity

Plotkin and Ababi’s logic for parametric polymorphism [PA93] is a logic for
reasoning about the second-order lambda calculus that exploits the notion of
parametricity. We will use the somewhat different presentation of the logic given
by Takeuti [Tak97].

We only describe the fragment of the logic that is of interest to us. This
makes the description much simpler and this paper much easier to digest. (In
particular, Definition 4 only deals with the type constructors — and X, not V
and 3 — which are more complex — and considers the parametricity property
only for existential types 3X.T where T is a "first-order” signature built using
x and —. The small price we pay for this is that we can only consider ADT’s
with such signatures, but this covers most examples.)

Takeuti defines the logic for parametricity in two stages: first a base logic L
which provides the standard logical connectives and their rules, and then a logic
Par which extends L with axioms expressing parametricity.

3.1 The base logic L

L is a second-order predicate logic over the second-order lambda calculus, i.e.
it provides predicates on the types of the second-order lambda calculus. L is a
typed logic, with predicates — and also propositions — having types. The type of
propositions is denoted by *,. Predicates can be viewed as functions that return
propositions, so T' — %, is the type of predicates over type 7. Relations are
binary predicates, so T — T — %, is the type of binary predicates — or relations
-onT.
So the types of propositions and predicates are given by

P =, |T — IP.



6 Erik Poll and Jan Zwanenburg

The propositions and predicates are given by
P:=P=Q|VYzT.P|VX.P|VP:P.Q | \x:T.P | Pt.

The first four constructions provide ways to built propositions: namely implica-
tion P = @, and three kinds of universal quantification, universal quantifica-
tion over all elements of a type Vz:T'. P, universal quantification over all types
VX. P, and (second-order) universal quantification over propositions and predi-
cates VP:IP. Q. The last two constructs allow the definition of predicates Az:T". P
and the application of predicates to terms P t.

Judgements in the logic L are of the form I A F P where I" is a sequence
of declarations =1 : T1,...,x, : T, as before, A is a sequence of assumptions
P,...,P,, and P is a proposition. We have the standard structural rules, and
the standard elimination and introduction for the logical connective = and the
quantifiers V (for details see [Tak97]).

The second-order universal quantification over propositions and predicates
enables the definition of the logical connectives V, A and 3 in the usual way. It
also enables Leibniz’ equality for datatypes T to be defined in the standard way:

Definition 1 (Leibniz’ equality). For any type T, Leibniz’ equality of type
T,=7:T =T — %, is defined by

=7 = Az,y:T. VP:(T — *,). (Px) = (Py).

The subscript of = will sometimes be omitted when it is clear from the context.
Leibniz’ equality will be written infix. Other relations will sometimes also be
written infix, and sometimes ”postfix”, i.e. (t1,t2) € P for Ptits. O

Remark 2. For readers familiar with Pure Type Systems (PTS’s) [Bar92], we
note that the logic L of Takeuti can be concisely described as a PTS, namely
the PTS (S, A,R) with

S = {*37 DSa *pa DP}

A= {(*s : Ds) ’ (*p : Dp)}
R = { (0, %), (*s,%s5),
E*57DP)7

(s, %p), (ks,%p), (Op,*p), (kp, *p) }

Here *; is the type of all datatypes, just like *, is the type of all propositions.
The fact that L is a PTS is the main reason why we chose Takeuti’s presentation
of the logic rather than Plotkin & Abadi’s; it enabled us to verify some examples
using the theorem prover Yarrow [Zwa97] which implements arbitrary PTS’s.
L is a subsystem of the logic Awp, introduced in [Pol94] as a logic for reasoning
about the higher-order typed lambda calculus (system F*). Awr, includes a few
more PTS rules, so that it includes the higher-order rather than the second
order lambda calculus as ”programming language” and allows more powerful
abstractions in the logic (such as polymorphic predicates). O

3.2 The logic for parametricity

The logic Par extends L with an axiom for every type 71" which states that
all elements of T satisfy a certain parametricity property. Since we are only
interested in certain properties of existential types in Par — viz. the simulation
principles - we simply introduce these properties as axioms here.

First, the constructions — and x for building types have to be ”lifted” to
constructions for building relations on types.
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Definition 3. Let R; and R, be relations (i.e. binary predicates), with R; :
A; = A, — x,. Then the relations Ry — Ry : (41 — As) = (4] = AY) = %,
and Ry X Ry : (A1 x Ay) = (A} x AL) — %, are defined as follows

f(R1 = Ry)f’
f(R1 x Ry)f'

Vo : Ay, 2" Al zRia’ = (fr)Ra(f'2")
(fDR(f 1) A(f2)Ra(f'2)

~
A~

a
Now we lift the type expressions A(X) to relations:

Definition 4. Let A(X) be a type expression built using — and x from X and
closed type expressions. We write A(B) for A[B/X].

For any relation ~: By — By — #,, the relation A(~) : A(B1) = A(B>) — %,
is defined by induction on the structure of A, as follows:

A(~) = Ar(~) = As(~) L i A(X) = A1(X) = 42(X)

A(~) = Ar(~) x Ay(~) L if A(X) = A41(X) x Ay(X)

A(~) 2 ~ Lif AX) = X

A(~) & =¢ , otherwise, i.e. A(X)=C and X ¢ FV(C)

In the right-hand sides — and x denote the construction on relations defined in
Definition 3, and =¢ is Leibniz’ equality as defined in Definition 1. O

As an example, consider the interface of the ADT for bags. Suppose ~ : By —
B; — x,. Then BagSig(~) : BagSig(B1) — BagSig(Bs) — *, is the following
relation on 3-tuples:

((empty, , add,, card,), (emptys, adds, cards)) € BagSig(~)
—
empty, ~ emptys N
Vn : Nﬂt, bl : Bl,b2 : B2. b1 ~ b2 = addl(n,bl) ~ add2(n,b2) A
Vn : Nﬂt, by : Bl,b2 :Bs.by ~ by = cardl(n,bl) =Nat C(l?"dg(n,bg)

Definition 5 (Par). The logic Par is the extension of L with the axioms

Vg, us:3X. A(X).
U = U2
==
(E'Xl,XQ. 31‘13A(X1),1‘22A(X2). d~X] =5 Xo > *p.
Uy = pack <X1,1‘1> N ug = pack <X2,1‘2> A (1‘1,1’2) S A(N))

for all type expressions A(X) built using — and x from X and closed type
expressions. O

This axiom allows us to prove equivalence of different implementations of an
ADT by showing there exists a simulation relation ~ between them. We will
refer to this proof principle as simulation.

Example: Equality of bag implementations.

We briefly illustrate how we can prove equivalence of different data representa-
tions in Par.

Recall the implementation ¢mpl : Baglmp. Now consider another implemen-
tation of the ADT for bags, where we implement the add-operation not as the
cons-operation on List’s, but as the snoc-operation on List’s, which adds a ele-
ment to the end rather than the front of a list:

imp2 = pack (List, (nil, snoc, count)) : BagImp.



8 Erik Poll and Jan Zwanenburg

Intuitively, this should not make any difference, because the order of the list
representing a bag is irrelevant. In Par we can prove impl =pgegrmp imp2,
namely by proving

((nil, cons, count), (nil, snoc, count)) € BagSig(~perm),

where ~perm: List = List — x, relates all lists that are permutations.

Of course, impl and imp2 use the same datatype to represent bags. But we
can also prove equivalence of implementations that use different representation
types. For example, consider the implementation ¢mp3 below, which represents
bags as functions of type Nat — Nat:

imp3 = pack (Nat — Nat, (consty, addimp, app)) : BagImp
where
consty = An:Nat. 0

addimp = X(n, f):(Nat x (Nat — Nat)). A\m:Nat. {
app = A(n, f):(Nat x (Nat — Nat)). fn

1+(fm) fm=n
fm otherwise

The principle of simulation can be used to prove impl = imp3, namely

BagImp
by showing that from

((nil, cons, count), (consty, addimp, app)) € BagSig(~),

where ~: List — (Nat — Nat) — %, relates | : List and f : Nat — Nat iff
Vn. fn = count(n,l).

4 Insufficiency of Par

We will show that the principle of simulation that Par provides is not sufficient
for reasoning over ADT’s. To illustrate this, we consider a specification for the
ADT of bags.

Naive Specification

A possible specification for the operations empty, add, and card could be:

Vn : Nat. card(n, empty) =nq: 0 A
Vm : Nat, s : Bag. card(m, add(m,s)) =nat 1 + card(m,s) A
Vm,n : Nat,s : Bag. m #nat 1 = card(m, add(n, s)) =nat card(m, s) A
Vm,n : Nat,s : Bag. add(m, add(n,s)) =pag add(n, add(m, s))

We will consider a simple specification Spec giving only the last conjunct. This
is the most interesting part of the specification, as it uses equality of bags. For
any type Bag and any triple (empty, add, card) : BagSig(Bag) we define

Spec(Bag, (empty, add, card))
=Vm,n: Nat,s : Bag. add(m, add(n, s)) =pag add(n, add(m, s)).

Spec can be turned into a predicate on BagImp as follows

Spec? : BagImp — *p
= Mimp:BagImp. IRep, ops. imp =pagrmp pack (Rep, ops) A Spec(Rep, ops)
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Note that here Spec(Rep, ops) uses Leibniz’ equality on type Rep, i.e. =pep.
Clearly
Spec(Rep, ops) = Spec>(pack (Rep, ops)).
(But beware that the reverse implication does not always hold. In fact, this would

be inconsistent with parametricity, following the example given in Remark 7.)

Remark 6. It is tempting to extend the ”open as { ) in ” construction that
we have for programs to predicates, c.f. the inductive types proposed in [CP90)].
This so-called ”strong” elimination principle is included in Coq [PM93]. It would
mean having the rule

Ie:AFP:x, I'kFs:3X.A
I't (opensas (X, z)in P) : %,

X ¢FV(I)

With this rule the specification Spec could be turned into a predicate on Baglmp
in a much more direct way:

Spec? (imp) = open imp as (Bag, ops) in Spec(Bag, ops)

and Spec? (pack (List, (nil, cons, count))) would then simply 3-reduce to

Spec(List, (nil, cons, count)), so these two propositions would be equivalent. Un-

fortunately, this is inconsistent with parametricity, as will be shown in Remark 7.
O

The problem with the naive specification

The specification Spec” might be what the user of the ADT wants, but it may
be a problem for the implementor of the ADT to meet this specification. As an
example we take the implementation impl,

impl = pack (List, (nil, cons, count)) : BagImp,

and consider the following question: Can we prove Spec? (impl) ?
We could prove Spec?(impl) by proving Spec(List, (nil, cons, count)), i.e. by
proving

Vm,n : Nat, s : List. cons(m, cons(n, s)) =rist cons(n, cons(m, s)).

But this is clearly not true! Note that the proposition above uses Leibniz’ equality
of lists, =p;st, since Spec uses Leibniz’ equality. The equality above makes sense
for bags, but not for lists. We could only prove the proposition above for a weaker
notion of equality for lists than =r;s, €.8. ~perm.-

We now discuss two ways to solve (or avoid) the problem above. Neither of
these is really acceptable, which is why we then propose an extension of the logic
Par to solve the problem in a more satisfactory way.

Solution 1: Finding another implementation
Recall that by the definition of Spec?
Spec? (impl) <= IRep, ops. impl =pagrmp pack (Rep, ops) A Spec(Rep, ops).

So we can prove Spec® (impl) by finding another implementation pack { Rep, ops)
of the ADT such that impl =pgagrmp Pack (Rep, ops) for which we can prove
Spec(Rep, ops).
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It turns out that such an implementation exists, namely the implementation
which represents bags as sorted lists. Let

impsort = pack (List, (nil, insert, count)),

where insert : Nat x List — List inserts a natural number in a list and returns
the list sorted. For this implementation we can prove it meets Spec, since

Vm,n : Nat, s : List. insert(m, insert(n, s)) =rist insert(n, insert(m,s)). (i)

The reason we can prove Spec for this implementation is due to the fact that for
this particular representation — bags are represented as sorted lists — equality of
the concrete representation type, i.e. equality of lists, coincides with equality of
the abstract type, i.e. equality of bags.

Using parametricity we can prove

impl =BagImp iMPsort, (11)

namely by showing that ~pe,m is a simulation relation between the two imple-
mentations. Now Spec? (impl) follows from (i) —i.e. Spec(List, (nil, insert, count))
—and (ii).

There are obvious drawbacks to this way of proving Spec?(impl). Firstly,
it is not acceptable that to prove correctness of our original implementation
impl we have to come up with a second implementation imps,.+. Moreover, it
may not always be possible to find a second implementation that does meet the
specification, i.e. for which concrete and abstract equality coincide! For example,
for a generic datatype Bag(X) of bags over an arbitrary type X we would have
a problem; there is no way to extend the implementation using sorted lists of
natural numbers to lists of an arbitrary type, since there is no generic sorting
algorithm for arbitrary types.

Remark 7. We can use imps,+ to show the inconsistency of the elimination
scheme discussed in Remark 6. If Spec® were defined with this scheme, then
Spec?(pack (Rep, ops)) would be fB-equivalent with Spec(Rep, ops), so then

Spec? (impl) <> Spec(List, (nil, cons, count))
Spec? (impsort) <= Spec(List, (nil, insert, count))

But Spec(List, (nil, cons, count)) is false (since cons is not ”commutative”), whereas
Spec(List, (nil, insert, count)) is true, (since insert is ”commutative”). And by
parametricity impl = impsort, 50 Spec? (impl) <= Spec? (impsort), and we have
a contradiction. O

Solution 2: Using a weaker specification

The best we could prove for impl is that
Vm,n : Nat, s : List. cons(m, cons(n, s)) ~perm cons(n, cons(m, s)).
Note that ~perm, is a bisimulation for the implementation, i.e.
((nil, cons, count), (nil, cons, count)) € BagSig(~perm), *

since

il ~perm nil A
Vn : Nat,l,1": List. l ~perm I = cons(n,l) ~perm cons(n,l') A
Vn 2 Nat, 11" : List. ] ~perm I = count(n,l) =nat count(n,l’).
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Intuitively, (*) says that lists in the relation ~per, cannot be distinguished using
the bag-operations, so that lists in the relation ~yc,n represent the same bag.
With this in mind, one could propose a weaker specification for bags. First, we
abstract the specification Spec over a notion of equality for bags, to get the
following ”generic” specification GenSpec:

GenSpec(Bag, (empty, add, card), ~)
= Vm,n: Nat,s : Bag. add(m, add(n, s)) ~ add(n, add(m, s)).

(So Spec(Bag, ops) = GenSpec(Bag, 0ps, =Bag)-)
We can now consider the following weaker specification

WeakSpec(Bag, ops)
= 3~ : Bag — Bag — *,.
GenSpec(Bag, ops,~) A (ops, ops) € BagSig(~) N Equiv(~),

where Fquiv(~) says that ~ is an equivalence relation.
Turning WeakSpec into a predicate WeakSpec® on Baglmp we get

WeakSpec? : BagImp — *,,
= Ximp:BagImp.
ARep, ops. imp =Bagrmp (pack (Rep, ops)) AN WeakSpec(Rep, ops).

The implementor of the ADT will be happy with this weaker specification, as it
is possible to prove WeakSpec? (impl), simply by proving
WeakSpec(List, (nil, cons, count)), taking ~pepm for ~.

The user of the ADT on the other hand will be less happy with WeakSpec:
rather than using the standard Leibniz’ equality of bags, the user has to reason
about bags using some bisimulation ~ as notion of equality for bags. This seems
an unnecessary complication: there is no reason why the user shouldn’t use
Leibniz’ equality instead of ~. Indeed, this is precisely the abstraction that the
abstract data type is supposed to provide.

5 Our Solution: Extending the logic

Given that the two solutions discussed above are not really satisfactory, we now
consider an extension of the logic Par that provides a satisfactory solution of
the problem.

What we really want is a way to relate the two specifications, WeakSpec?
and Spec?, by proving

Vimp : BagImp. WeakSpec (imp) = Spec? (imp). (%)

Then the implementor of the ADT would only have to establish WeakSpec? —
i.e. prove the specification up to some bisimulation ~ — and the user of the ADT
could assume the stronger specification Spec® — i.e. assume the specification with
(Leibniz’) equality —. Intuitively the property (*) seems OK. (Indeed, it is true
in the PER model.)

It turns out that if we have quotient types then (*) could be proved. Quotient
types are available in some type theories, e.g. Nuprl [Con86] and HOL [GM93],
and have been proposed as extensions of other type theories, see e.g. [Hof95)
[BGI6].

We will first give the general idea of how quotient types could be used to
prove the property above. Suppose WeakSpec (imp), i.e.

GenSpec(Rep, ops, ~) A (ops, ops) € BagSig(~) N Equiv(~)
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for some pack (Rep, 0ps) =Bagrmp imp and some ~. The trick to proving (*) is
to consider the quotient type Rep/~, i.e. the type with ~-equivalence classes of
Rep as elements.

(ops, ops) € BagSig(~)
says that ops respects ~-equivalence classes, so ops induces a related function

ops/~ on ~-equivalence classes, ops/~ : BagSig(Rep/~). And by the principle
of simulation it follows that

pack (Rep, ops) = pack (Rep/~,ops/~).

The interesting thing about ops/~ is that is satisfies the specification up to
Leibniz’ equality: it follows from GenSpec(Rep, ops, ~) that

GenSpec(Rep/~, ops/~, =pgepr),

i.e. Spec(Rep/~, ops/~) !

(Note that the argument above goes along the lines as indicated in Solution 1.
But the use of quotient types means that the additional work of finding another
implementation of ADT is avoided, as this implementation is constructed as a
quotient.)

We could consider adding quotient types to the syntax of the second-order
lambda calculus. But we do not actually have to do this: it suffices if we add
axioms to the logic stating that quotients exist:

Definition 8 (ParQuot). The logic ParQuot is the extension of Par with
the axioms

VX . VopsX : A(X).V~ X = X — %,
(opsX,opsX) € A(~) A Equiv(~)
= 3Q. JopsQ:A(Q). isQuot(X, opsX, ~,Q, opsQ)

where

isQuot(X, opsX, ~,Q,opsQ)

I}

Jing:X —» Q. Vr,r'":X.r ~r' < (injr) =¢ (injr') A
Vg:Q.3r:X.q =¢ (injr) A
(opsX,opsQ) € A(Ar:X, q¢:Q. q =¢ (injr))
for all type expressions A(X) built using — and x from X and closed type
expressions. m|

The same PER model used in [PA93] as a semantics for their logic, viz.
[BFSS90], quite trivially justifies these additional axioms. Indeed, in a PER
model all types are ”quotient types”!

Theorem 9. In the logic ParQuot it can be proved that
Vimp : BagImp. WeakSpec (imp) = Spec?(imp).

Proof. Assume WeakSpec(imp). Then there is a type Rep with ops : BagSig( Rep)
such that

imp =BagImp Pack (Rep, ops)
for which

GenSpec(Rep, ops, ~) A (ops, ops) € BagSig(~) N Equiv(~)
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for some ~: Rep — Rep — %,.
By (ops,ops) € BagSig(~) and Equiv(~) there then exist a type @ with
ops@ : BagSig(Q) and inj:Rep — @ such that

Vr,r":Rep.r ~ r' <= (injr) =¢ (inj r') (i)
Vq:Q. 3r:Rep.q =¢ (inj r) (ii)
(ops,opsQ) € A(Ar:Rep, q:Q. q =¢ (inj r)) (iii)

It follows from (iii) that

paCk <Qa OpSQ> —BagImp PaCk (Rep, 0p8)'

Using the definition of GenSpec, we can prove

GenSpec(Q, opsQ, =) (iv)

using GenSpec(Rep, ops, ~) and (i), (ii), and (iii).
And (iv) is equivalent with Spec(Q, opsQ), and since pack(Q, opsQ) =Bagrmp
pack (Rep, ops) =Bagrmp imp it then follows that

Spec? (imp).
a

Similar theorems can be proved for other ADT’s and other (equational) spec-
ifications: For any other ADT and specification for it, a weak version of the spec-
ification using some relation ~ (similar to WeakSpec?) and the strong version
using Leibniz’ equality (similar to Spec?) can be related in exactly the same way
as in the theorem above.

6 Conclusion

In this paper we have explored the gap between the formal notion of parametric-
ity of [PA93] and the important ”folk” reasoning principle about ADT’s, which
we have called abstraction.

Roughly, this principle of abstraction says that elements of the concrete repre-
sentation type of an ADT can be considered equal if they are not distinguishable
using the ADT-operations. For example, if we implement bags as lists, then lists
that are permutations cannot be distinguished using the bag-operations — they
represent the same bag — and can hence be considered equal. To prove that such
an implementation of bags satisfies an equational specification we may therefore
use permutation of lists as the notion of equality. This principle of abstraction
is a well-known reasoning principle for ADT’s.

Parametricity provides the proof principle of simulation for existential types
[Mit91] [PA93]. This is a useful proof principle if existential types are used for
abstract data types: it provides a method to prove that different implementations
of an ADT are equivalent, namely by showing that there exists a simulation
relation between them.

However, we have shown that this principle of simulation alone is not enough
to reason about ADT’s, since in general it does not provide the proof principle
of abstraction that one would want. This observation is new, as far as we know.
However, extending the logic for parametricity of [PA93] with axioms stating
the existence of quotients is enough to solve this problem. Like the original logic
for parametricity of [PA93] these additional axioms can be justified by a PER
model.
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Proofs for the example of the specification for bags have all been verified
using the interactive theorem prover Yarrow [Zwa97]. Indeed, it was only in the
course of formalising specifications for ADT’s in Yarrow that we noticed that
more was needed than just the proof principle of simulation to reason about
specifications of ADT’s.
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