
A Logi
 for Abstra
t Data Typesas Existential TypesErik Poll1 and Jan Zwanenburg21 E.Poll�uk
.a
.ukComputing Lab, University of Kent at Canterbury, England2 janz�win.tue.nlEindhoven University of Te
hnology, The NetherlandsAbstra
t. The se
ond-order lambda 
al
ulus allows an elegant formal-isation of abstra
t data types (ADT's) using existential types. Plotkinand Abadi's logi
 for parametri
ity [PA93℄ then provides the useful proofprin
iple of simulation for ADT's, whi
h 
an be used to show equivalen
eof data representations. However, we show that this logi
 is not suÆ
ientfor reasoning about spe
i�
ations of ADT's, and we present an exten-sion of the logi
 that does provide the proof prin
iples for ADT's thatwe want.1 Introdu
tionThe se
ond-order lambda 
al
ulus allows an elegant formalisation of abstra
tdata types (ADT's), as shown in [MP88℄, using existential types. This des
rip-tion of ADT's provides a useful basis to investigate properties of ADT's. Inparti
ular, it has been su

essfully used to investigate a notion of equivalen
e ofimplementations of ADT's. [Mit91℄ 
onsiders a semanti
 notion of equivalen
eof data representations, whi
h suggests a method for proving the equivalen
e ofdata representations, namely by showing that there exists a simulation relationbetween the representations. We will refer to this proof prin
iple as simulation.Plotkin and Abadi's logi
 for parametri
ity [PA93℄ is a logi
 for reasoning aboutthe se
ond order lambda 
al
ulus (system F). It formalises the notion of para-metri
ity, and for the existential types this logi
 does indeed provide the proofprin
iple of simulation envisaged in [Mit91℄.Unfortunately, it turns out that this proof prin
iple of simulation for existen-tial types is not enough for reasoning about spe
i�
ations of ADT's, in parti
ularspe
i�
ations that use equality. We propose an extension of the logi
 of [PA93℄(with axioms stating the existen
e of quotients, to be pre
ise) that does provideall the proof prin
iples one would like for reasoning about ADT's. The same PERmodel used in [PA93℄ as a semanti
s for their logi
 immediately justi�es theseadditional axioms. (Indeed, in the PER model all types are "quotient types".)The remainder of this introdu
tion dis
usses one of the proof prin
iples wewant for ADT's. It is a very natural one, that immediately arises whenever animplementation of an ADT allows di�erent 
on
rete representations of the sameabstra
t value. This example will be treated in more detail later in Se
tion 4.Suppose we implement an ADT for bags using lists to represents bags. Thenthere will be many di�erent lists that represent the same bag: any two lists thatare permutations represent the same bag. As a 
onsequen
e, there are di�erentnotions of equality in play: equality of lists, equality of bags, and the relation�perm on lists that relates lists representing the same bag (i.e. that are per-mutations). A programmer implementing an ADT has to be aware of the fa
t

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Erik Poll and Jan Zwanenburgthat there are these di�erent notions of equality. But a programmer using anADT should only have to deal with equality of bags, and not have to know any-thing about an underlying relation �perm on lists. Indeed, this is pre
isely theabstra
tion that an abstra
t data type is supposed to provide. A 
onsequen
e ofall is that the programmer implementing an ADT and the programmer usingan ADT may want to use a slightly di�erent spe
i�
ation: the former in termsof the relation �perm on the 
on
rete data type of lists, the latter in terms ofequality on the abstra
t data type of bags. For instan
e, the programmer usingthe ADT might require that8m;n : Nat; s : Bag: add(m; add(n; s)) = add(n; add(m; s)) (i)and to meet this spe
i�
ation, the programmer implementing the ADT mustensure that8m;n : Nat; s : List: 
ons(m; 
ons(n; s)) �perm 
ons(n; 
ons(m; s)) (ii)if add is implemented as 
ons. In a logi
 for reasoning with (spe
i�
ations of)ADT's we should be able to relate statements su
h as (i) and (ii). In parti
ular,here one would want to be able to prove that (ii) implies (i). We will refer to aproof prin
iple that would allow us to dedu
e (i) from (ii) as abstra
tion.The logi
 for parametri
ity of [PA93℄ does not quite provide this proof prin
i-ple of abstra
tion for arbitrary ADT's and spe
i�
ations. But extending the logi
with axioms stating the existen
e of quotients solves this problem: we will showthat then the proof prin
iple of abstra
tion 
an be obtained from the proof prin-
iple of simulation, whi
h is provided by the logi
 for parametri
ity of [PA93℄.(For this parti
ular example, we would want the existen
e of lists quotiented by�perm.)The organisation of this paper is as follows. Se
tion 2 de�nes our notation forthe se
ond-order lambda 
al
ulus and gives a qui
k re
ap on how existential types
an be used for ADT's. Se
tion 3 dis
usses the logi
 for parametri
ity of [Tak97℄,whi
h is a slightly di�erent formulation of the logi
 as �rst introdu
ed in [PA93℄;in parti
ular, we dis
uss the proof prin
iple of simulation for proving equivalen
eof data representations that this logi
 provides. Se
tion 4 then 
onsiders a simpleexample of a spe
i�
ation of an ADT for bags and illustrates the problem withreasoning about ADT's hinted at above. Se
tion 5 then present our extension ofthe logi
 that does provide the power we want.2 The se
ond-order lambda 
al
ulusWe �rst give the de�nition of the se
ond-order lambda 
al
ulus, and then illus-trate how the existential types 
an be used for ADT's.2.1 De�nition of the se
ond-order lambda 
al
ulusThe terms t and types T of the se
ond-order lambda 
al
ulus are given by thegrammart ::= x j �x:T : t j tt j (t; t) j t:1 j t:2 j �X: t j tT j pa
k hT; ti to T j open t as hT; ti in tT ::= X j T � T j T ! T j 8X: T j 9X: THere x ranges over term-variables, X over type-variables. Free and bound vari-ables are de�ned as usual. Terms and types equal up to the names of boundvariables and permutation of �elds are identi�ed.



A Logi
 for Abstra
t Data Types as Existential Types 3We use the following 
onvention for our meta-variables: x; y; z range overterm variables, X;Y; Z range over type variables, a; b; 
; f range over terms (orprograms), A;B;C range over types.We in
lude produ
ts and existentials as primitives here be
ause they play animportant role later, but of 
ourse they 
an be regarded as synta
ti
 sugar fortheir usual en
odings. (In fa
t, we will not even need the universal types in thispaper.) Later on we will also use some base types, namely a type Nat of naturalnumbers and a type List of lists of natural numbers. These 
an be en
oded inthe usual way, too.The type inferen
e rules for judgements of the form � ` t : T , where � is asequen
e of de
larations x1 : T1; : : : ; xn : Tn, are�; x : A;� 0 ` x : A�; x : A ` b : B� ` �x:A: b : A! B � ` f : A! B � ` a : A� ` fa : B� ` a1 : A1 � ` a2 : A2� ` (a1; a2) : A1 �A2 � ` a : A1 �A2� ` a:i : Ai i = 1; 2� ` b : B� ` �X: b : 8X:B X not free in � � ` f : 8X:B� ` fA : B[A=X ℄� ` 
 : A[C=X ℄� ` (pa
k hC; 
i to 9X:A) : 9X:A X not free in ��; x : A ` b : B � ` s : 9X: A� ` (open s as hX; xi in b) : B X not free in B or �The redu
tion rules are (�x:A: b)a �� b[a=x℄(�X: a)A �� a[A=X ℄(a1; a2):i �� aiopen (pa
k hC; 
i to 9X:A) as hX; xi in b �� b[C=X; 
=x℄Notation. The notation for pairs is extended to n-tuples, whi
h are simplynested pairs. E.g. we write A�B�C for A� (B�C) and (a; b; 
) for (a; (b; 
)).We typi
ally omit the se
ond type parameter of pa
k, writing pa
k hC; ai for(pa
k hC; ai to 9X:A), whenever this type is 
lear from the 
ontext. Finally, wewill sometimes use a "pattern-mat
hing" style notation for tuples, e.g. writing�(y; z):A�B: 
 instead of �x:A �B: 
[x:1=y; x:2=z℄. ut2.2 Abstra
t Data Types as Existential TypesExistential types allow an elegant formalisation of abstra
t data types (ADT's),as shown in [MP88℄. This formalisation provides a 
lean separation betweenusing an ADT on the one hand and implementing an ADT on the other hand.Moreover, as is often the 
ase with des
riptions of notions from programminglanguages in terms of typed lambda 
al
ulus, this formalisation provides a morepowerful notion than exists in most existing programming languages: existential



4 Erik Poll and Jan Zwanenburgtypes provide implementations of ADT's as "�rst-
lass 
itizens", i.e. as valuesthat 
an be passed as parameters to fun
tions or returned as results like anyother value. This also means that we 
an talk about equality of implementationsof ADT's just like we 
an talk about equality of other values. (This will be usefullater, in Se
tion 3, when we 
onsider proof rules for ADT's.)The remainder of this se
tion brie
y explains the use of existential types forADT's (for a more extensive dis
ussion see [MP88℄), and introdu
es our runningexample of bags.Example: bagsOur running example will be an ADT of bags, whi
h provides a type Bag withthree operations: the operation of adding an element to a bag, an operation toinspe
t how often a given element o

urs in a bag, and the empty bag:empty : Bag;add : Nat� Bag ! Bag;
ard : Nat� Bag ! Nat:Tupling the three operations yields(empty; add; 
ard) : Bag� (Nat� Bag! Bag)� (Nat� Bag! Nat);so the signature of the ADT 
an be given asBagSig(X) b= X � (Nat�X ! X)� (Nat�X ! Nat):The existential type BagImp,BagImp b= 9X:BagSig(X)
an be used as type of implementations of the ADT of bags, as we will nowexplain.To implement the ADT of bags, we have to 
ome up with some type Repwhi
h will be used as representations of bags, and a 3-tuple of fun
tions oftype BagSig(Rep) that implement the bag-operations for this representation.An obvious way to represent bags is to use lists. In this 
ase empty 
an beimplemented as the empty list nil : List, add as the operation 
ons : Nat�List!List on lists, and 
ard as a fun
tion 
ount : Nat � List ! List that 
ounts howoften a given natural number o

urs in a given list of natural numbers. Thesethree operations have the right types, sin
e(nil; 
ons; 
ount) : BagSig(List):The introdu
tion rule for existential types 
an be used to 
onstru
t an elementof type BagImp from the type List and the triple (nil; 
ons; 
ount):imp1 b= (pa
k hList; (nil; 
ons; 
ount)i to BagImp) : BagImp:Now suppose we want to de�ne some program b that uses the ADT of bags.Then in b we want to use the abstra
t operations empty, add, and 
ard, and bhas to be well-typed under the assumption that these three abstra
t operationshave their 
orre
t types:empty : Bag; add : Nat� Bag! Bag; 
ard : Nat� Bag! Nat ` b : B



A Logi
 for Abstra
t Data Types as Existential Types 5Here Bag is a type variable. The elimination rule for existential types now tellsus how we 
an 
ombine this program b with the implementation imp1 : BagImpde�ned above: open imp1 as hBag; (empty; add; 
ard)i in b : BIt is easy to verify that this program behaves as expe
ted:open imp1 as hBag; (empty; add; 
ard)i in b�� b[List=Bag;nil=empty; 
ons=add; 
ount=
ard℄:So the 
on
rete representation List gets substituted for the abstra
t type Bag,and the 
on
rete implementations of the operations on List's get substituted forthe abstra
t operations on Bag's.The typing rules play a 
ru
ial role in hiding the 
on
rete implementation ofthe ADT (using List's) from the main program b. It is not possible to apply listoperations to bags in b, be
ause this would not be well-typed. The program bhas to be typed under the assumptions thatempty : Bag; add : Nat� Bag! Bag; 
ard : Nat� Bag! Nat;where Bag is a type variable.3 The logi
 for parametri
ityPlotkin and Ababi's logi
 for parametri
 polymorphism [PA93℄ is a logi
 forreasoning about the se
ond-order lambda 
al
ulus that exploits the notion ofparametri
ity. We will use the somewhat di�erent presentation of the logi
 givenby Takeuti [Tak97℄.We only des
ribe the fragment of the logi
 that is of interest to us. Thismakes the des
ription mu
h simpler and this paper mu
h easier to digest. (Inparti
ular, De�nition 4 only deals with the type 
onstru
tors ! and �, not 8and 9 { whi
h are more 
omplex { and 
onsiders the parametri
ity propertyonly for existential types 9X: T where T is a "�rst-order" signature built using� and !. The small pri
e we pay for this is that we 
an only 
onsider ADT'swith su
h signatures, but this 
overs most examples.)Takeuti de�nes the logi
 for parametri
ity in two stages: �rst a base logi
 Lwhi
h provides the standard logi
al 
onne
tives and their rules, and then a logi
Par whi
h extends L with axioms expressing parametri
ity.3.1 The base logi
 LL is a se
ond-order predi
ate logi
 over the se
ond-order lambda 
al
ulus, i.e.it provides predi
ates on the types of the se
ond-order lambda 
al
ulus. L is atyped logi
, with predi
ates { and also propositions { having types. The type ofpropositions is denoted by �p. Predi
ates 
an be viewed as fun
tions that returnpropositions, so T ! �p is the type of predi
ates over type T . Relations arebinary predi
ates, so T ! T ! �p is the type of binary predi
ates { or relations{ on T .So the types of propositions and predi
ates are given byIP ::= �p j T ! IP:



6 Erik Poll and Jan ZwanenburgThe propositions and predi
ates are given byP ::= P ) Q j 8x:T : P j 8X: P j 8P :IP : Q j �x:T : P j P t:The �rst four 
onstru
tions provide ways to built propositions: namely impli
a-tion P ) Q, and three kinds of universal quanti�
ation, universal quanti�
a-tion over all elements of a type 8x:T : P , universal quanti�
ation over all types8X: P , and (se
ond-order) universal quanti�
ation over propositions and predi-
ates 8P :IP : Q. The last two 
onstru
ts allow the de�nition of predi
ates �x:T : Pand the appli
ation of predi
ates to terms P t.Judgements in the logi
 L are of the form �;� ` P where � is a sequen
eof de
larations x1 : T1; : : : ; xn : Tn as before, � is a sequen
e of assumptionsP1; : : : ; Pm, and P is a proposition. We have the standard stru
tural rules, andthe standard elimination and introdu
tion for the logi
al 
onne
tive ) and thequanti�ers 8 (for details see [Tak97℄).The se
ond-order universal quanti�
ation over propositions and predi
atesenables the de�nition of the logi
al 
onne
tives _, ^ and 9 in the usual way. Italso enables Leibniz' equality for datatypes T to be de�ned in the standard way:De�nition 1 (Leibniz' equality). For any type T , Leibniz' equality of typeT , =T : T ! T ! �p, is de�ned by=T b= �x; y:T : 8P :(T ! �p): (Px)) (Py):The subs
ript of =T will sometimes be omitted when it is 
lear from the 
ontext.Leibniz' equality will be written in�x. Other relations will sometimes also bewritten in�x, and sometimes "post�x", i.e. (t1; t2) 2 P for Pt1t2. utRemark 2. For readers familiar with Pure Type Systems (PTS's) [Bar92℄, wenote that the logi
 L of Takeuti 
an be 
on
isely des
ribed as a PTS, namelythe PTS (S;A;R) withS = f�s;2s; �p;2pgA = f(�s : 2s) ; (�p : 2p)gR = f (2s; �s); (�s; �s);(�s;2p);(2s; �p); (�s; �p); (2p; �p); (�p; �p)gHere �s is the type of all datatypes, just like �p is the type of all propositions.The fa
t that L is a PTS is the main reason why we 
hose Takeuti's presentationof the logi
 rather than Plotkin & Abadi's; it enabled us to verify some examplesusing the theorem prover Yarrow [Zwa97℄ whi
h implements arbitrary PTS's.L is a subsystem of the logi
 �!L introdu
ed in [Pol94℄ as a logi
 for reasoningabout the higher-order typed lambda 
al
ulus (system F!). �!L in
ludes a fewmore PTS rules, so that it in
ludes the higher-order rather than the se
ondorder lambda 
al
ulus as "programming language" and allows more powerfulabstra
tions in the logi
 (su
h as polymorphi
 predi
ates). ut3.2 The logi
 for parametri
ityThe logi
 Par extends L with an axiom for every type T whi
h states thatall elements of T satisfy a 
ertain parametri
ity property. Sin
e we are onlyinterested in 
ertain properties of existential types in Par { viz. the simulationprin
iples - we simply introdu
e these properties as axioms here.First, the 
onstru
tions ! and � for building types have to be "lifted" to
onstru
tions for building relations on types.



A Logi
 for Abstra
t Data Types as Existential Types 7De�nition 3. Let R1 and R2 be relations (i.e. binary predi
ates), with Ri :Ai ! A0i ! �p. Then the relations R1 ! R2 : (A1 ! A2) ! (A01 ! A02) ! �pand R1 �R2 : (A1 �A2)! (A01 �A02)! �p are de�ned as followsf(R1 ! R2)f 0 b= 8x : A1; x0 : A01: xR1x0 ) (fx)R2(f 0x0)f(R1 �R2)f 0 b= (f:1)R1(f 0:1) ^ (f:2)R2(f 0:2) utNow we lift the type expressions A(X) to relations:De�nition 4. Let A(X) be a type expression built using! and � from X and
losed type expressions. We write A(B) for A[B=X ℄.For any relation �: B1 ! B2 ! �p the relation A(�) : A(B1)! A(B2)! �pis de�ned by indu
tion on the stru
ture of A, as follows:A(�) b= A1(�)! A2(�) , if A(X) � A1(X)! A2(X)A(�) b= A1(�)�A2(�) , if A(X) � A1(X)�A2(X)A(�) b= � , if A(X) � XA(�) b= =C , otherwise, i.e. A(X) � C and X 62 FV (C)In the right-hand sides ! and � denote the 
onstru
tion on relations de�ned inDe�nition 3, and =C is Leibniz' equality as de�ned in De�nition 1. utAs an example, 
onsider the interfa
e of the ADT for bags. Suppose � : B1 !B2 ! �p. Then BagSig(�) : BagSig(B1) ! BagSig(B2) ! �p is the followingrelation on 3-tuples:((empty1; add1; 
ard1); (empty2; add2; 
ard2)) 2 BagSig(�)() empty1 � empty2 ^8n : Nat; b1 : B1; b2 : B2: b1 � b2 ) add1(n; b1) � add2(n; b2) ^8n : Nat; b1 : B1; b2 : B2: b1 � b2 ) 
ard1(n; b1) =Nat 
ard2(n; b2)De�nition 5 (Par). The logi
 Par is the extension of L with the axioms8u1; u2:9X:A(X):u1 = u2() (9X1; X2: 9x1:A(X1); x2:A(X2): 9 �:X1 ! X2 ! �p:u1 = pa
k hX1; x1i ^ u2 = pa
k hX2; x2i ^ (x1; x2) 2 A(�))for all type expressions A(X) built using ! and � from X and 
losed typeexpressions. utThis axiom allows us to prove equivalen
e of di�erent implementations of anADT by showing there exists a simulation relation � between them. We willrefer to this proof prin
iple as simulation.Example: Equality of bag implementations.We brie
y illustrate how we 
an prove equivalen
e of di�erent data representa-tions in Par.Re
all the implementation imp1 : BagImp. Now 
onsider another implemen-tation of the ADT for bags, where we implement the add-operation not as the
ons-operation on List's, but as the sno
-operation on List's, whi
h adds a ele-ment to the end rather than the front of a list:imp2 b= pa
k hList; (nil; sno
; 
ount)i : BagImp:



8 Erik Poll and Jan ZwanenburgIntuitively, this should not make any di�eren
e, be
ause the order of the listrepresenting a bag is irrelevant. In Par we 
an prove imp1 =BagImp imp2,namely by proving((nil; 
ons; 
ount); (nil; sno
; 
ount)) 2 BagSig(�perm);where �perm: List! List! �p relates all lists that are permutations.Of 
ourse, imp1 and imp2 use the same datatype to represent bags. But we
an also prove equivalen
e of implementations that use di�erent representationtypes. For example, 
onsider the implementation imp3 below, whi
h representsbags as fun
tions of type Nat! Nat:imp3 b= pa
k hNat! Nat; (
onst0; addimp; app)i : BagImpwhere
onst0 = �n:Nat: 0addimp = �(n; f):(Nat � (Nat! Nat)): �m:Nat: �1 + (f m) if m = nf m otherwiseapp = �(n; f):(Nat � (Nat! Nat)): fnThe prin
iple of simulation 
an be used to prove imp1 =BagImp imp3, namelyby showing that from((nil; 
ons; 
ount); (
onst0; addimp; app)) 2 BagSig(�);where �: List ! (Nat ! Nat) ! �p relates l : List and f : Nat ! Nat i�8n: fn = 
ount(n; l).4 InsuÆ
ien
y of ParWe will show that the prin
iple of simulation that Par provides is not suÆ
ientfor reasoning over ADT's. To illustrate this, we 
onsider a spe
i�
ation for theADT of bags.Naive Spe
i�
ationA possible spe
i�
ation for the operations empty, add, and 
ard 
ould be:8n : Nat: 
ard(n; empty) =Nat 0 ^8m : Nat; s : Bag: 
ard(m; add(m; s)) =Nat 1 + 
ard(m; s) ^8m;n : Nat; s : Bag: m 6=Nat n) 
ard(m; add(n; s)) =Nat 
ard(m; s) ^8m;n : Nat; s : Bag: add(m; add(n; s)) =Bag add(n; add(m; s))We will 
onsider a simple spe
i�
ation Spe
 giving only the last 
onjun
t. Thisis the most interesting part of the spe
i�
ation, as it uses equality of bags. Forany type Bag and any triple (empty; add; 
ard) : BagSig(Bag) we de�neSpe
(Bag; (empty; add; 
ard))b= 8m;n : Nat; s : Bag: add(m; add(n; s)) =Bag add(n; add(m; s)):Spe
 
an be turned into a predi
ate on BagImp as followsSpe
9 : BagImp ! �pb= �imp:BagImp: 9Rep; ops: imp =BagImp pa
k hRep; opsi ^ Spe
(Rep; ops)



A Logi
 for Abstra
t Data Types as Existential Types 9Note that here Spe
(Rep; ops) uses Leibniz' equality on type Rep, i.e. =Rep.Clearly Spe
(Rep; ops) ) Spe
9(pa
k hRep; opsi):(But beware that the reverse impli
ation does not always hold. In fa
t, this wouldbe in
onsistent with parametri
ity, following the example given in Remark 7.)Remark 6. It is tempting to extend the "open as h i in " 
onstru
tion thatwe have for programs to predi
ates, 
.f. the indu
tive types proposed in [CP90℄.This so-
alled "strong" elimination prin
iple is in
luded in Coq [PM93℄. It wouldmean having the rule�; x : A ` P : �p � ` s : 9X:A� ` (open s as hX; xi in P ) : �p X 62 FV(� )With this rule the spe
i�
ation Spe
 
ould be turned into a predi
ate on BagImpin a mu
h more dire
t way:Spe
9(imp) b= open imp as hBag; opsi in Spe
(Bag; ops)and Spe
9(pa
k hList; (nil; 
ons; 
ount)i) would then simply �-redu
e toSpe
(List; (nil; 
ons; 
ount)), so these two propositions would be equivalent. Un-fortunately, this is in
onsistent with parametri
ity, as will be shown in Remark 7.utThe problem with the naive spe
i�
ationThe spe
i�
ation Spe
9 might be what the user of the ADT wants, but it maybe a problem for the implementor of the ADT to meet this spe
i�
ation. As anexample we take the implementation imp1,imp1 b= pa
k hList; (nil; 
ons; 
ount)i : BagImp;and 
onsider the following question: Can we prove Spe
9(imp1) ?We 
ould prove Spe
9(imp1) by proving Spe
(List; (nil; 
ons; 
ount)), i.e. byproving8m;n : Nat; s : List: 
ons(m; 
ons(n; s)) =List 
ons(n; 
ons(m; s)):But this is 
learly not true! Note that the proposition above uses Leibniz' equalityof lists, =List, sin
e Spe
 uses Leibniz' equality. The equality above makes sensefor bags, but not for lists. We 
ould only prove the proposition above for a weakernotion of equality for lists than =List, e.g. �perm.We now dis
uss two ways to solve (or avoid) the problem above. Neither ofthese is really a

eptable, whi
h is why we then propose an extension of the logi
Par to solve the problem in a more satisfa
tory way.Solution 1: Finding another implementationRe
all that by the de�nition of Spe
9Spe
9(imp1)() 9Rep; ops: imp1 =BagImp pa
k hRep; opsi ^ Spe
(Rep; ops):So we 
an prove Spe
9(imp1) by �nding another implementation pa
k hRep; opsiof the ADT su
h that imp1 =BagImp pa
k hRep; opsi for whi
h we 
an proveSpe
(Rep; ops).



10 Erik Poll and Jan ZwanenburgIt turns out that su
h an implementation exists, namely the implementationwhi
h represents bags as sorted lists. Letimpsort b= pa
k hList; (nil; insert; 
ount)i;where insert : Nat � List ! List inserts a natural number in a list and returnsthe list sorted. For this implementation we 
an prove it meets Spe
, sin
e8m;n : Nat; s : List: insert(m; insert(n; s)) =List insert(n; insert(m; s)): (i)The reason we 
an prove Spe
 for this implementation is due to the fa
t that forthis parti
ular representation { bags are represented as sorted lists { equality ofthe 
on
rete representation type, i.e. equality of lists, 
oin
ides with equality ofthe abstra
t type, i.e. equality of bags.Using parametri
ity we 
an proveimp1 =BagImp impsort; (ii)namely by showing that �perm is a simulation relation between the two imple-mentations. Now Spe
9(imp1) follows from (i) { i.e. Spe
(List; (nil; insert; 
ount)){ and (ii).There are obvious drawba
ks to this way of proving Spe
9(imp1). Firstly,it is not a

eptable that to prove 
orre
tness of our original implementationimp1 we have to 
ome up with a se
ond implementation impsort. Moreover, itmay not always be possible to �nd a se
ond implementation that does meet thespe
i�
ation, i.e. for whi
h 
on
rete and abstra
t equality 
oin
ide! For example,for a generi
 datatype Bag(X) of bags over an arbitrary type X we would havea problem; there is no way to extend the implementation using sorted lists ofnatural numbers to lists of an arbitrary type, sin
e there is no generi
 sortingalgorithm for arbitrary types.Remark 7. We 
an use impsort to show the in
onsisten
y of the eliminations
heme dis
ussed in Remark 6. If Spe
9 were de�ned with this s
heme, thenSpe
9(pa
k hRep; opsi) would be �-equivalent with Spe
(Rep; ops), so thenSpe
9(imp1)() Spe
(List; (nil; 
ons; 
ount))Spe
9(impsort)() Spe
(List; (nil; insert; 
ount))But Spe
(List; (nil; 
ons; 
ount)) is false (sin
e 
ons is not "
ommutative"), whereasSpe
(List; (nil; insert; 
ount)) is true, (sin
e insert is "
ommutative"). And byparametri
ity imp1 = impsort, so Spe
9(imp1)() Spe
9(impsort), and we havea 
ontradi
tion. utSolution 2: Using a weaker spe
i�
ationThe best we 
ould prove for imp1 is that8m;n : Nat; s : List: 
ons(m; 
ons(n; s)) �perm 
ons(n; 
ons(m; s)):Note that �perm is a bisimulation for the implementation, i.e.((nil; 
ons; 
ount); (nil; 
ons; 
ount)) 2 BagSig(�perm); (*)sin
e nil �perm nil ^8n : Nat; l; l0 : List: l �perm l0 ) 
ons(n; l) �perm 
ons(n; l0) ^8n : Nat; l; l0 : List: l �perm l0 ) 
ount(n; l) =Nat 
ount(n; l0):



A Logi
 for Abstra
t Data Types as Existential Types 11Intuitively, (*) says that lists in the relation �perm 
annot be distinguished usingthe bag-operations, so that lists in the relation �perm represent the same bag.With this in mind, one 
ould propose a weaker spe
i�
ation for bags. First, weabstra
t the spe
i�
ation Spe
 over a notion of equality for bags, to get thefollowing "generi
" spe
i�
ation GenSpe
:GenSpe
(Bag; (empty; add; 
ard);�)b= 8m;n : Nat; s : Bag: add(m; add(n; s)) � add(n; add(m; s)):(So Spe
(Bag; ops) = GenSpe
(Bag; ops;=Bag).)We 
an now 
onsider the following weaker spe
i�
ationWeakSpe
(Bag; ops)b= 9 � : Bag! Bag ! �p:GenSpe
(Bag; ops;�) ^ (ops; ops) 2 BagSig(�) ^ Equiv(�);where Equiv(�) says that � is an equivalen
e relation.Turning WeakSpe
 into a predi
ate WeakSpe
9 on BagImp we getWeakSpe
9 : BagImp ! �pb= �imp:BagImp:9Rep; ops: imp =BagImp (pa
k hRep; opsi) ^ WeakSpe
(Rep; ops):The implementor of the ADT will be happy with this weaker spe
i�
ation, as itis possible to prove WeakSpe
9(imp1), simply by provingWeakSpe
(List; (nil; 
ons; 
ount)), taking �perm for �.The user of the ADT on the other hand will be less happy with WeakSpe
9:rather than using the standard Leibniz' equality of bags, the user has to reasonabout bags using some bisimulation � as notion of equality for bags. This seemsan unne
essary 
ompli
ation: there is no reason why the user shouldn't useLeibniz' equality instead of �. Indeed, this is pre
isely the abstra
tion that theabstra
t data type is supposed to provide.5 Our Solution: Extending the logi
Given that the two solutions dis
ussed above are not really satisfa
tory, we now
onsider an extension of the logi
 Par that provides a satisfa
tory solution ofthe problem.What we really want is a way to relate the two spe
i�
ations, WeakSpe
9and Spe
9, by proving8imp : BagImp:WeakSpe
9(imp)) Spe
9(imp): (�)Then the implementor of the ADT would only have to establish WeakSpe
9 {i.e. prove the spe
i�
ation up to some bisimulation � { and the user of the ADT
ould assume the stronger spe
i�
ation Spe
9 { i.e. assume the spe
i�
ation with(Leibniz') equality {. Intuitively the property (*) seems OK. (Indeed, it is truein the PER model.)It turns out that if we have quotient types then (*) 
ould be proved. Quotienttypes are available in some type theories, e.g. Nuprl [Con86℄ and HOL [GM93℄,and have been proposed as extensions of other type theories, see e.g. [Hof95℄[BG96℄.We will �rst give the general idea of how quotient types 
ould be used toprove the property above. Suppose WeakSpe
9(imp), i.e.GenSpe
(Rep; ops;�) ^ (ops; ops) 2 BagSig(�) ^ Equiv(�)



12 Erik Poll and Jan Zwanenburgfor some pa
k hRep; opsi =BagImp imp and some �. The tri
k to proving (*) isto 
onsider the quotient type Rep=�, i.e. the type with �-equivalen
e 
lasses ofRep as elements. (ops; ops) 2 BagSig(�)says that ops respe
ts �-equivalen
e 
lasses, so ops indu
es a related fun
tionops=� on �-equivalen
e 
lasses, ops=� : BagSig(Rep=�). And by the prin
ipleof simulation it follows thatpa
k hRep; opsi = pa
k hRep=�; ops=�i:The interesting thing about ops=� is that is satis�es the spe
i�
ation up toLeibniz' equality: it follows from GenSpe
(Rep; ops;�) thatGenSpe
(Rep=�; ops=�;=Rep=�);i.e. Spe
(Rep=�; ops=�) !(Note that the argument above goes along the lines as indi
ated in Solution 1.But the use of quotient types means that the additional work of �nding anotherimplementation of ADT is avoided, as this implementation is 
onstru
ted as aquotient.)We 
ould 
onsider adding quotient types to the syntax of the se
ond-orderlambda 
al
ulus. But we do not a
tually have to do this: it suÆ
es if we addaxioms to the logi
 stating that quotients exist:De�nition 8 (ParQuot). The logi
 ParQuot is the extension of Par withthe axioms 8X: 8opsX : A(X): 8 �: X ! X ! �p:(opsX; opsX) 2 A(�) ^ Equiv(�)) 9Q: 9opsQ:A(Q): isQuot(X; opsX;�; Q; opsQ)where isQuot(X; opsX;�; Q; opsQ)b= 9inj:X ! Q: 8r; r0:X: r � r0 () (inj r) =Q (inj r0) ^8q:Q: 9r:X: q =Q (inj r) ^(opsX; opsQ) 2 A(�r:X; q:Q: q =Q (inj r))for all type expressions A(X) built using ! and � from X and 
losed typeexpressions. utThe same PER model used in [PA93℄ as a semanti
s for their logi
, viz.[BFSS90℄, quite trivially justi�es these additional axioms. Indeed, in a PERmodel all types are "quotient types"!Theorem 9. In the logi
 ParQuot it 
an be proved that8imp : BagImp:WeakSpe
9(imp)) Spe
9(imp):Proof. AssumeWeakSpe
9(imp). Then there is a typeRep with ops : BagSig(Rep)su
h that imp =BagImp pa
k hRep; opsifor whi
h GenSpe
(Rep; ops;�) ^ (ops; ops) 2 BagSig(�) ^ Equiv(�)



A Logi
 for Abstra
t Data Types as Existential Types 13for some �: Rep! Rep! �p.By (ops; ops) 2 BagSig(�) and Equiv(�) there then exist a type Q withopsQ : BagSig(Q) and inj:Rep! Q su
h that8r; r0:Rep: r � r0 () (inj r) =Q (inj r0) (i)8q:Q: 9r:Rep: q =Q (inj r) (ii)(ops; opsQ) 2 A(�r:Rep; q:Q: q =Q (inj r)) (iii)It follows from (iii) thatpa
k hQ; opsQi =BagImp pa
k hRep; opsi:Using the de�nition of GenSpe
, we 
an proveGenSpe
(Q; opsQ;=Q) (iv)using GenSpe
(Rep; ops;�) and (i), (ii), and (iii).And (iv) is equivalent with Spe
(Q; opsQ), and sin
e pa
khQ; opsQi =BagImppa
k hRep; opsi =BagImp imp it then follows thatSpe
9(imp): utSimilar theorems 
an be proved for other ADT's and other (equational) spe
-i�
ations: For any other ADT and spe
i�
ation for it, a weak version of the spe
-i�
ation using some relation � (similar to WeakSpe
9) and the strong versionusing Leibniz' equality (similar to Spe
9) 
an be related in exa
tly the same wayas in the theorem above.6 Con
lusionIn this paper we have explored the gap between the formal notion of parametri
-ity of [PA93℄ and the important "folk" reasoning prin
iple about ADT's, whi
hwe have 
alled abstra
tion.Roughly, this prin
iple of abstra
tion says that elements of the 
on
rete repre-sentation type of an ADT 
an be 
onsidered equal if they are not distinguishableusing the ADT-operations. For example, if we implement bags as lists, then liststhat are permutations 
annot be distinguished using the bag-operations { theyrepresent the same bag { and 
an hen
e be 
onsidered equal. To prove that su
han implementation of bags satis�es an equational spe
i�
ation we may thereforeuse permutation of lists as the notion of equality. This prin
iple of abstra
tionis a well-known reasoning prin
iple for ADT's.Parametri
ity provides the proof prin
iple of simulation for existential types[Mit91℄ [PA93℄. This is a useful proof prin
iple if existential types are used forabstra
t data types: it provides a method to prove that di�erent implementationsof an ADT are equivalent, namely by showing that there exists a simulationrelation between them.However, we have shown that this prin
iple of simulation alone is not enoughto reason about ADT's, sin
e in general it does not provide the proof prin
ipleof abstra
tion that one would want. This observation is new, as far as we know.However, extending the logi
 for parametri
ity of [PA93℄ with axioms statingthe existen
e of quotients is enough to solve this problem. Like the original logi
for parametri
ity of [PA93℄ these additional axioms 
an be justi�ed by a PERmodel.



14 Erik Poll and Jan ZwanenburgProofs for the example of the spe
i�
ation for bags have all been veri�edusing the intera
tive theorem prover Yarrow [Zwa97℄. Indeed, it was only in the
ourse of formalising spe
i�
ations for ADT's in Yarrow that we noti
ed thatmore was needed than just the proof prin
iple of simulation to reason aboutspe
i�
ations of ADT's.Referen
es[Bar92℄ H.P. Barendregt. Lambda 
al
uli with types. In D.M. Gabbai, S. Abram-sky, and T.S.E. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e,volume 1. Oxford University Press, 1992.[BFSS90℄ E.S. Bainbridge, P.J. Freyd, A. S
edrov, and P.J. S
ott. Fun
torial poly-morphism. Theoreti
al Computer S
ien
e, 70(1):35{64, 1990.[BG96℄ G. Barthe and J.H. Geuvers. Congruen
e types. In Computer S
ien
e Logi
'95,volume 1092 of Le
ture Notes in Computer S
ien
e, pages 36{51. Springer,1996.[Con86℄ R.L. Constable et al. Implementing Mathemati
s in the Nuprl proof develop-ment system. Prenti
e-Hall, 1986.[CP90℄ Thierry Coquand and Christine Paulin. Indu
tively De�ned Types. InP. Martin-L�of and G. Mints, editors, COLOG-88, volume 417 of Le
ture Notesin Computer S
ien
e, pages 50{66. Springer, 1990.[GM93℄ M. J. Gordon and T. F. Melham. Introdu
tion to HOL. Cambridge, 1993.[Hof95℄ Martin Hofmann. A simple model for quotient types. In Typed Lambda Cal
uliand Appli
ations, volume 902 of Le
ture Notes in Computer S
ien
e, pages216{234, 1995.[Mit91℄ John C. Mit
hell. On the equivalen
e of data representations. In Arti�
ial In-telligen
e and Mathemati
al Theory of Computation, pages 305{330. A
ademi
Press, 1991.[MP88℄ John C. Mit
hell and Gordon D. Plotkin. Abstra
t types have existential type.ACM Trans. on Prog. Lang. and Syst., 10(3):470{502, 1988.[PA93℄ Gordon Plotkin and Martin Abadi. A logi
 for parametri
 polymorphism.In Typed Lambda Cal
uli and Appli
ations, volume 664 of Le
ture Notes inComputer S
ien
e, pages 361{375, 1993.[PM93℄ Christine Paulin-Mohring. Indu
tive de�nitions in the system Coq. In TypedLambda Cal
uli and Appli
ations, volume 664 of Le
ture Notes in ComputerS
ien
e, pages 328{345. Springer, 1993.[Pol94℄ Erik Poll. A Programming Logi
 based on Type Theory. PhD thesis, Te
hnis
heUniversiteit Eindhoven, 1994.[Tak97℄ Izumi Takeuti. An axiomati
 system of parametri
ity. In Typed Lambda Cal
uliand Appli
ations, volume 1130 of Le
ture Notes in Computer S
ien
e, pages354{372, 1997.[Zwa97℄ Jan Zwanenburg. The proof assistant Yarrow. Submitted for publi
ation. Seealso http://www.win.tue.nl/
s/pa/janz/yarrow/, 1997.


