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Abstract 

 

Development Of a New Laser Doppler Vibrometer-Based Non-Contact 

Damage Detection System for Cracks in Rail Head 

 

Korkut Kaynardag, Ph.D. 

The University of Texas at Austin, 2023 

 

Supervisor:  Salvatore Salamone 

 

Rail defects are one of the dominant causes of train derailments and an essential 

factor affecting transportation safety. Among the rail defects, transverse defects (TDs), 

which are cracks located transversely in rail heads, are one of the main causes of 

derailments. When TDs are left undetected, their size expands, leading to rail breaks. 

Therefore, the railway transportation community is interested in the detection of such 

defects at speeds that do not obstruct the routine railroad operation.  

The goal of this research is to develop a novel LDV-based noncontact damage 

detection system for TDs. The tasks performed herein to achieve this goal (i.e., the 

objective of the study) were: (i) extensive literature review and in-situ testing to understand 

the vibrations resulting from the propagating waves in rail, (ii ) numerical modeling of the 

damage detection system, (iii) rigorous laboratory and in-situ testing to understand the 

noise in LDV measurements as well as to evaluate the performance of the damage detection 

system, and (iv) analytical work to develop filters to minimize the noise in the LDV 

measurements. 
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Accordingly, the configuration of the developed damage detection consists of two 

LDVs attached vertically in front of a rail car to measure guided waves in the rail head, 

which are induced by rail-wheel interaction. This system uses the LDV measurements to 

detect a change in the relative amplitudes of the recorded waves caused by a defect in the 

frequency range between 30 kHz to 100 kHz. The lower cut-off frequency was selected 

conservatively since it was shown in the literature that guided waves start to localize in the 

rail head after approximately 15 kHz. The higher cut-off frequency was selected since (i) 

the guided waves below 100 kHz can be used for transverse defect detection (as the 

frequency exceeds 100 kHz, waves are susceptible to surface defects), and (ii) the 

measurements collected from rail during the passage of operating trains showed that the 

power of the excitations induced by wheel-rail interactions is dominant up to 

approximately 100 kHz. The main challenge during the development of the system was 

speckle noise, which is inevitable due to the inherent nature of the measurements 

performed by LDVs placed on a moving platform. 

Consequently, the damage detection framework associated with the system 

operates as follows: 1) in the pre-processing stage, time-varying mean and impulsive noise 

in the recorded LDV signals are filtered and then the changes in the LDV signals in the 

frequency range of interest are quantified and monitored using moving standard deviation, 

2) in the post-processing stage, two damage features, which are based on the relative 

change in the moving standard deviations and transfer functions between two measurement 

points are combined using multivariate statistical analysis to create a damage index that 

shows the location of rail segments which are affected by a defect. The goal of impulsive 

noise filtering and transfer functions in the framework is to minimize the speckle noise.  

The field tests demonstrated that rail segments consisting of a defect can be identified by 

the developed system.   
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CHAPTER 1: INTRODUCTION  

This chapter first introduces the terminology used for railway tracks, then explains 

the details of different types of cracks located in rail heads which are one of the major 

causes of train accidents. Subsequently, the damage detection methods developed in the 

literature to detect such cracks are summarized. Afterward, the chapter explains the 

motivation for further research on damage detection of the cracks in rail heads and finally 

presents the objective and outline of the research. 

1.1 TERMINOLOGY USED IN RAILWAY TRACKS 

The main components of a railway track are two rails, fasteners, crossties, and 

ballast (see Figure 1 (a)). The loads imposed on the rails by rolling stock (i.e., locomotives, 

carriages, wagons, or other vehicles used on a railroad) are transferred to the ground 

through crossties and ballast.  

Rail is made of steel, and a typical railôs cross-section is shown in Figure 1 (b). As 

the figure shows, the rail is divided into three sections: rail head, web, and foot. The 

fastening system connects the crossties with the rail by applying force on the rail foot. The 

side of a rail facing the other rail in the railway track is called the gauge side and the top 

corner of the rail at this side is called the gauge corner. Similarly, the side of the rail facing 

outside of the railway track is called the field side, and the top corner of the rail at this side 

is called the field corner. The direction perpendicular to the cross-section of the rail is 

referred to as longitudinal or rail running direction, the vertical direction which is 

perpendicular to the plane on which the railway track is located is referred to as the vertical 

direction, and the direction parallel to the railôs cross-section is called transverse direction. 

In addition, the plane of the railôs cross-section is called the transverse plane. Depending 
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on the fastening system, a steel plate or a rubber pad can be placed between the bottom of 

a rail and crossties. 

 

 

Figure 1:  Railway Track: (a) Components of A Railway Track (b) Cross-Section of a 

Rail and The Components of the Rail. 

 Crossties were first made of wood but they are now made of concrete in modern 

railway tracks as they are cheaper and provide longer service life [1].  

 In a fastening system, different kinds of fasteners can be used. One of the oldest 

and most widely used fasteners consists of spikes with an offset head and a plate between 

the rail and the crossties [2] (see Figure 2 (a)). The spikes are driven into the sleeper and 

the offset of the spike makes the rail keep in touch with the crossties. The other fastener 

types are (i) SKL-clip rail fasteners where a tension clip is placed on the rail foot and a 

screw spike fixes the tension clip over the rail (see Figure 2 (b)), (ii) E-clip fasteners where 

clips are placed on the rail foot and connected directly, or through a plate, to the cross ties 

(see Figure 2 (c)), and (iii) KPO rail fasteners where screws and bolts are used to make the 

connection between the rail foot and the cross ties (see Figure 2 (d) [3]. 
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Figure 2:  Fastener Types: (a) Spikes (b) SKL-Clip (c) E-Clip (d) KPO. 

1.2 TRANSVERSE DEFECTS IN RAIL HEAD 

One of the main reasons for rail derailments is rail defects. Therefore, rail defects 

play a major role in transportation safety. Such defects can occur anywhere along the length 

of a railway track and at different locations within a rail cross-section, such as in the rail 

head, or web [4]. 

Track inspector rail defect reference manual [5] prepared by the Office of Railroad 

Safety, Federal Railway Administration (i.e., FRA) states that rail defects stem from the 

rail manufacturing process, cyclic loading, impact from rolling stock, rail wear, and plastic 

flow. The main reasons that lead to rail defects during the manufacturing process are 

hydrogen imperfections during the cooling process, seam or shrinkage cavity, and 

inappropriate cooling [6]. The impact from rolling stock mainly occurs due to 

imperfections in the wheels or rail such as wheel flats, irregular wheel profiles, and rail 

corrugations as well as the differences in the height of rails connected at welded joints [7]. 

The main cause of wheel flats is braking [8] while irregular wheel profiles and corrugations 

result from the wear and plastic flow [9].  Therefore, rail wear and plastic flow can lead to 

rail defects not only directly, but also indirectly since they lead to surface irregulates and 

corrugations which cause impacts from rolling stocks. Lateral wear occurs generally on the 

gauge side of the rail due to high lateral force induced by the wheel when the rail is located 

higher compared to the other rail of the railway track at a curve. Vertical wear takes place 
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on the rail head due to the wheel-rail interaction during cyclical loading and rail grinding 

patterns. Plastic flow occurs when the material strength of the rail steel is exceeded due to 

high wheel-rail contact stress which results from the rail being higher or lower compared 

to the other rail of the railway track at  a curve. 

Rail defects are grouped according to the type of defect, origin, and direction of 

development in relation to the planes of the rail section [5]. These planes are identified as 

transverse, vertical, and horizontal planes (i.e., the plane in the longitudinal direction in 

Figure 1 (b)). The growth of the defects is grouped into normal, rapid, and sudden growth. 

Among the defects on vertical, horizontal, and transverse planes, the origin of the defects 

on the transverse plane is usually located inside the rail head and therefore their 

identification cannot be visually performed until the progression of the defects reaches the 

surface of the rail head.  

Detailed statistics of railway incidentsô causes provided by the Office of Safety 

Analysis, FRA [10] demonstrate that, among all rail defects, transverse defects (i.e., TDôs) 

are listed as one of the main causes of railway track-related incidents. The statistics show 

that TDs themselves are responsible for 11.2% of railway track-related train accidents 

(2789 out of 24777 accidents) between 1991 and 2020 which resulted in $655 million in 

reported damages. Therefore, this research focuses on TDs such as transverse fissure (i.e., 

TF), compound fissure (i.e., CF), and detailed fissure (i.e., DF). 

A transverse fissure is a fracture originating from a crystalline center or nucleus 

inside rail head and progressively propagates in the transverse direction, at a right angle to 

the longitudinal direction, in a round or oval shape (see Figure 3 (a)) [5]. This type of crack 

differs from other types of defects in terms of the crystalline center or nucleus, and the 

almost smooth surface of the development that surrounds it. TF develops in modern high-

chrome rail from a hydrogen imperfection while it results from non-controlled cooled rail 
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before the mid-1930s. The development of TFs is dominantly affected by wheel impact 

and rail bending stresses and its growth is normally slow to a size covering 20% to 25% of 

the cross-sectional area of the rail head. When the defect reaches such a size, its growth is 

accelerated. 

Compound Fissure is caused by a horizontal split (separation) in rail head, which 

is a longitudinal defect stemming from an internal seam, segregation, or inclusion from the 

manufacturing process [5]. After the horizontal separation progresses longitudinally for 

some distance, it then turns upwards or downward (or both directions) with respect to the 

horizontal plane, leading to transverse progression in rail head. Figure 3 (b) displays an 

example of CF developed in rail head. Its growth is usually slow up to 30-35% of the rail 

headôs cross-section. 

Detail Fracture is a fracture that arises from shelly spots, head checks, or flaking, 

and their initiation location is at or near the rail headôs surface [5]. The development of 

DFôs is due to the presence of longitudinal seams or streaks near the surface of the gauge 

side of the rail head. No nucleus is present in the formation of DF, unlike TF. Figure 3 (c) 

shows an example of DF developed in rail head. Their growth is usually slow up to 10-

15% of the rail headôs cross-section and then can become rapid and/or sudden before 

complete failure. It is not uncommon for more than one detail fracture to develop in an 

immediate area where the conditions that initiate their development, such as shelling or 

head checking, are present. 
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Figure 3:  Transverse Defects: (a) Transverse Fissure (b) Compound Fissure (c) Detail 

Fissure. 

1.3 DEVELOPED INSPECTION METHODS FOR RAIL HEAD DEFECTS 

Title 49 of the Code of Federal Regulations (CFR) Part 213.339, which is based on 

the inspection of rail in service [11] states ñA continuous search for internal defects shall 

be made of all rail in track at least twice annually with not less than 120 days between 

inspectionsò. Therefore, in order to detect the cracks located in rail efficiently, different 

methods were developed in the literature. These methods can be grouped based on the 

approaches that they use such as conventional ultrasonic, ultrasonic phased arrays, guided 

wave, acoustic emission, eddy current, alternating current field measurements, electro-

magnetic acoustic transducers, and electromagnetic tomography. Among these methods, 

the methods adopting the first three approaches are used for detecting TDs while the 

methods using the other approaches are used for detecting surface cracks (i.e., caused by 

rolling contact fatigue, i.e., RCF) and engine burn defects (i.e., a progressive fracture 

originating in spots where driving wheels have slipped on top of the rail head) on rail heads 

[5]. The detection of surface defects is crucial because if surface cracks grow further, they 

might propagate into the rail head causing deep TDs.  

 Even though this research focuses on the detection of TDs, the literature review 

was carried out for all the studies that aimed at detecting any kind of cracks observed in 
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rail head. The reason is to gain a comprehensive insight into different damage detection 

techniques as well as different signal processing and damage detection algorithms that 

might be used to develop a robust TD detection system. 

Conventional ultrasonic is one of the earliest and widely adopted approaches to 

detect rail head cracks [12]. Its working principle is based on sending ultrasonic energy 

into the rail and monitoring the reflected or scattered energy through a series of transducers. 

The ultrasonic waves are transmitted to the rail at different incident angles (mostly 0, 37, 

or 45 and 70 degrees) to maximize the detection of cracks with different orientations. The 

transducers are placed within a liquid-filled wheel (i.e., roller search unit) or a sled carrier 

[13]. The purpose of the liquid is to ensure adequate coupling between the rail and the 

transducers. Currently, operating systems can go up to 32 km/h (20 mph), and new systems 

report operational speeds up to 90 km/h (56 mph) [14]. However, actual inspection speeds 

can be low as 15 km/h (9.3 mph) as higher speeds decrease the reliability of testing results 

[12]. The difficulties encountered by these conventional ultrasonic systems are the 

determination of a signal threshold and the position of the time window (i.e., acquisition 

time). A robust and optimum threshold is required to minimize false alarms and improve 

defect detection. The accurate length of the time window is needed to account for variations 

in the water path, sound velocity, and material to improve reliability at higher test speeds. 

Another problem is that sub-surface cracks can be undetected because horizontal surface 

damages such as shelling and head checks can prevent ultrasonic beams from reaching the 

sub-surface defects [15]. 

Ultrasonic phased arrays (i.e., UPAôs) can provide advantages over conventional 

ultrasonic measurements since the ultrasonic beam can be steered, scanned, swept, and 

focused [13]. Such features of the ultrasonic beam are possible due to the integration of 

multiple ultrasonic transducers and electronics. The use of multiple transducers allows for 
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time delays between waves generated by each transducer so that the waves can be 

combined constructively and destructively to produce ultrasonic beams with different 

features. However, a large amount of data created during testing makes data processing 

less straightforward compared to the conventional ultrasonic transducers. Consequently, 

several studies were performed on rails using UPAs to find defects in the rail. A hybrid 

array sensor consisting of one phased array and one static array was placed on the sides of 

the rail and the detection of flaws was carried out based on ultrasonic shadowing [16]. 

Ultrasonic shadowing means that the angled transmitted ultrasonic beams (generated by 

phased array) cannot reach several segments of the receiving array (i.e., static array) due 

to reflection from TDs. However, the observed shadow boundaries were not distinctly 

apparent in the received array. Therefore, a model was developed to determine the shadow 

pattern from which the shadow boundaries could be obtained accurately. Another study 

using UPAs was a two-phased research study performed as a part of the FRA-sponsored 

Rail Flaw Detection Research Program whose aim was to exploit UPA approaches for the 

in-service inspection of rail [17]. In the first phase of the research, the performance of 

conventional ultrasonic and UPA were compared with each other to identify different 

widths of TDs. Since UPA performed better, the second phase consisted of determining 

both the width and height of cracks using different UPA approaches such as using a 

sectorial scan (i.e., beam steering process) to determine the width of cracks and linear scan 

(i.e., moving the UPA transducer itself) to determine the height of cracks. The 

determination of cracksô width was reliable while small uncertainties existed in the 

determination of cracksô height due to the geometry of the rail. Therefore, it was stated that 

height sizing could be considered as first estimation of true defect height. Upon these two 

phases, field tests were also carried out and the change in defect size with respect to 

accumulated amount of load passed over the instrumented section was observed. The 
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advantage of UPA approach used in the study was that the sensors could be placed at field 

side of the rail head unlike other dynamic contact ultrasonic methods, creating possibilities 

to combine this method with other ultrasonic methods. In another study, to overcome the 

problem that the reflected energy depends on the position of transducers and the actual 

orientation of defects, a new system which could detect and characterize any type of defect 

located in any orientation using a single ultrasonic pulse was developed [18]. The new 

system consisted of a transmitter which was capable of producing multi-directional wave 

in one shot as well as a novel real-time data processing method which could evaluate the 

coherence between signals and provide data reduction for faster computation. It was 

reported that the proposed system could perform high speed testing of rails (up to 100 km/h, 

i.e., 62 mph). However, more field tests using UPA are required to evaluate the 

performance of UPA in detecting TDs.  

Another method to overcome the limitations of conventional ultrasonic methods is 

to use guided waves (i.e., natural wave modes that can propagate along a structure). Guided 

waves are used in the range of kilohertz (compared to the megahertz range used in the 

conventional ultrasonic method), and they can propagate tens or even hundreds of meters 

along a structure (e.g., rail). Therefore, they are sensitive to TDs located in rail head since 

some portion of the traveling wavesô energy is reflected from the TDs, resulting in lower 

wave energy transmitted to the other side of the defect. The amount of loss of energy 

depends on the crack size (the higher the size of a crack is, the more the reflected energy 

is). However, the disadvantage of using guided waves is that many different guided wave 

modes can exist at a particular frequency and these waves propagate at different velocities 

(i.e., dispersion). Therefore, the superposition of multiple modes can make data 

interpretation challenging [19]. In one of the studies exploiting guided waves for the 

damage detection of rail head defects, a G-scan instrument employing an array of 
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independently controlled transducers was developed and tested [19]. A reflection 

coefficient matrix was used for damage detection which showed the amplitudes of the 

symmetric and antisymmetric components of the incident and reflected portions of the 

excited wave mode. Experimentally obtained coefficient maps were compared with the 

numerically obtained ones (through Finite Element Method, i.e., FEM), and good 

consistency was observed. The measurement from a level crossing, which exhibits 

challenges for rail defect inspection since access is available only to the running surface of 

the rail, demonstrated that the developed instrument could detect engine burn defects as 

well as alumino-thermic welds (since guided waves propagate along the rail, they are also 

reflected from the welds as well as TDôs). In another study, to investigate the frequency 

range of guided waves induced by moving trains at speeds between 40 km/h (25 mph) and 

97 km/h (60mph), accelerometers were placed on the rail, and signals were collected during 

the passage of trains [20]. The results showed that the guided waves whose frequencies are 

between 40 kHz and 80 kHz had the highest wave energy, indicating that moving train-

induced waves in this range could be suitable for damage detection purposes. Furthermore, 

tests were conducted on a rail with different sizes of TDs (introduced by cutting the rail 

head) in pitch-catch mode (i.e., transmitting a wave with a transducer located before the 

damage and recording the transmitted wave from the damage with a transducer located 

after the damage) and pulse-echo mode (i.e., transmitting a wave with a transducer located 

before the damage and recording the reflected wave from the damage with the same or 

another transducer located before the crack). The results showed that the energy of 

reflected waves increased while the energy of transmitted waves decreased as the crack 

size increased. In order to investigate the amount of reflected and transmitted energy from 

TDs in the rail head, FEM simulations and experiments were carried out and the results 

were compared [21]. First, equations were presented for the required integration time step 
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and the smallest dimension of finite elements for the dynamic analysis of wave 

propagation. Initially, a model of a plate was used for an initial assessment of finite element 

size. Experimentally and analytically obtained group velocity dispersion curves for a 

couple of symmetric and antisymmetric propagating wave modes were compared with each 

other to validate the finite element size which was calculated with the proposed equations. 

Also, using the energy in the Gabor Wavelet Transform, reflection coefficients were found 

for the waves reflecting from the edge of the plate. A similar procedure was performed on 

a rail having TDs whose size ranged from 15% to 100% of the cross-section of the rail 

head, respectively. The defects having inclinations of 20% and 35% oblique were also 

considered. Therefore, overall, 12 different cracks with varying sizes and inclinations were 

considered in the study. For the excitation of waves in the FEM simulations, the impulse 

recorded from the impact hammer in the experimental tests was used as an input to the 

numerical model. A comparison of group velocity dispersion curves obtained from the 

experiments and FEM simulations demonstrated a good match, validating the use of the 

integration step size and finite element size obtained from the proposed equations. In the 

next step, energy reflection coefficients for 12 cases were obtained for the same mode 

reflection (from vertical bending to vertical bending) and mode converted reflections (from 

vertical bending wave to lateral bending wave). Another study evaluated the interaction of 

different kinds of guided wave modes with TDs as well as shelling (i.e., surface and sub-

surface defects) using FEM modeling [22]. The evaluated guided wave mode ranged from 

30 kHz to 200 kHz. Also, modes with different phase velocities at the same frequencies 

were considered as well. It was observed that Rayleigh-like surface wave modes existed at 

all the considered frequencies and that these modes had the lowest phase velocities at each 

frequency. It was also demonstrated that, at lower frequencies, Rayleigh-like wave mode 

had a displacement pattern covering the entire cross-section of the rail head while it had a 
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displacement pattern confined to the top surface of the rail head as the frequency increased. 

Therefore, it was concluded that using Rayleigh-like wave mode up to 100 kHz is efficient 

for detecting TDs since this wave mode is also susceptible to shelling at higher frequencies. 

One study aimed at developing a stationary damage detection system that could be placed 

on operating railway tracks (under the rail head) to detect the defects located in rail heads 

[23]. A similar system was initially developed and employed to detect broken rails at a rail 

network while the new system aimed at detecting defects before the occurrence of any rail 

break [24], [25]. The system was designed to use guided waves so that defects located far 

away from the system could be detected. To demonstrate the feasibility of the system, two 

transducers, that were developed to excite the symmetric wave modes, were placed on an 

operating railroad very close to each other to create an array of transducers. Such an array 

generated the desired waves only in the preferred direction (however, some other wave 

modes were excited as well). Furthermore, signal processing techniques such as dispersion 

compensation (to eliminate the effect of dispersion as the waves propagated long distances 

and also to convert the signals from time-domain to spatial-domain) and signal stretching 

and scaling (to eliminate the effect of temperature changes on the speed of wave 

propagation) were used. Since some noise still existed in the signals due to environmental 

operating conditions, the signals collected over a period of time were processed using 

Singular Value Decomposition (i.e., SVD) and Independent Component Analysis (i.e., 

ICA) methods to observe the change in the trend of the signals and to eliminate the effect 

of noise. In the study, an artificial defect was used and this defect was created by adding a 

small mass under the rail head to imitate the reflections that would be caused by a TD. 

Results showed that ICA could detect the change in the trend of signals caused by the 

defects.  
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However, monitoring of guided waves with contact transducers exhibits limitations 

such as limited coverage of the testing area, long duration of testing, and high cost due to 

the placement of many contact transducers. Therefore, several studies aimed at developing 

non-contact rail defect detection systems using guided waves.  

An initial attempt to demonstrate the potential of such a system was made using 

laboratory tests [26]. In the tests, the guided waves propagating in the rail head excited by 

an impact hammer and pulse laser were recorded using air-coupled non-contact ultrasonic 

transducers. Since the guided waves were transmitted to the air at an angle due to the 

impedance mismatch between the rail and the air, the optimum detection angle (i.e., the 

angle between the air-coupled ultrasonic sensors and the rail) from the normal to the rail 

surface was determined by Snellôs law by using the speed of waves in the air and the rail. 

Then, tests were conducted using different defect sizes located in the rail head and different 

excitation mechanisms such as impact hammer and laser excitation. Reflection and 

transmission coefficients were used to quantify the defects. Discrete Wavelet Transform 

(i.e., DWT) was proposed to enhance defect detection sensitivity. Thresholds were 

determined in the wavelet domain and only the wavelet coefficients exceeding these 

thresholds were converted back to the time domain. Transverse cracks larger than 15% of 

the rail headôs cross-section were detected using frequencies below 50 kHz while the 

smaller transverse cracks were detected using frequencies between 100 and 600 kHz. 

Furthermore, the results showed that (i) the use of reflection coefficients was feasible for 

crack sizing, and (ii) the lift-off distance for ultrasonic-coupled sensors could be as large 

as 7.5 cm. Upon the promising results, a rail inspection prototype consisting of a pulse laser 

to excite guided waves and a pair of non-contact air-coupled transducers to record the 

guided waves were tested in laboratory [27][28]. DWT was used again to enhance defect 

detection sensitivity. The results showed that the reliability of sizing was higher when the 
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transmission measurements were used rather than the reflection measurements. Different 

features such as statistical and deterministic values of wavelet coefficients as well as 

frequency domain properties of the time domain signals converted back from the wavelet 

domain after thresholding were integrated into a multi-dimensional damage index vector. 

For damage classification, automatic pattern recognition using a neural network was 

utilized. A parametric analysis was conducted to find the network design that optimized 

network performance (i.e., the largest percentage of testing data correctly classified). The 

study demonstrated that network performance was strongly dependent on the network 

design. Three and four features were found effective for the reflection mode and the 

transmission mode, respectively, to use in the damage classification. The most robust 

classification was obtained in the transmission mode. The defect location, in addition to 

defect size, was added to the output vector of the classification algorithm in the prototype. 

Next, a new prototype was placed on a cart that could move over the rail and it was tested 

on a longer rail (located in laboratory) as well as on the field tests [15]. The new prototype 

consisted of three air-coupled transducers to cover the centerline, the gauge side, and the 

field side of the rail head so that defects in different parts of the rail head could be detected 

more efficiently. It also consisted of a pulse laser to excite the guided waves in the rail 

head. In the laboratory test, the prototype was pushed manually while on the field test, it 

was attached to a rail car that traveled up to 16 km/h (10 mph). 75 kHz ï 300 kHz range 

was used to detect TDs while 300 kHz ï 1.2 MHz range was used for the detection of 

surface cracks. The features used in the previous studies were again adopted. However, to 

observe the most effective features, a parametric study was carried out to determine the 

most effective combination of the features. In order to increase the performance of the 

detection, the study adopted an outlier analysis based on Mahalanobis squared distance 

which statistically compared the difference between the features obtained from the defect-
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free rail and the rail with unknown conditions. The algorithm developed for the field tests 

provided a real-time indication of defects. It also differentiated the damage indexes 

obtained from the TDs and rail joints since the guided waves also reflect from the rail 

joints. To further investigate the propagating waves in the rail head excited by the pulse 

laser, Semi-analytical Finite Element (i.e., SAFE) method was used [29]. Using this 

method, dispersion curves for the guided waves propagating in the rail were obtained and 

the strain energy of symmetric and anti-symmetric wave modes traveling in the rail head 

was investigated. Then, the overall response of the rail head to symmetric and anti-

symmetric laser excitations was investigated. The results showed that symmetric excitation 

predominantly excited the center of the rail head while nonsymmetric excitation resulted 

in the vibrations being dominant on one side of the rail. Based on these results as well as 

previously developed statistical defect detection and classification algorithms, the field 

tests of the proposed damage detection system were carried out up to the speed of 16 km/h 

(10 mph). The tests resulted in a high probability of detection of the defects, ranging from 

75% to 100% success rate over 24 runs. However, the use of a pulse laser made the system 

costly and difficult to maintain [30]. Therefore, a new system, in which the excitation 

mechanism was based on a non-contact air-coupled sensor, was proposed. First, numerical 

simulations were carried out. Several rail defects were simulated to observe the interaction 

of the excited guided waves to different defect conditions. Time histories were collected 

from the simulation at different locations to explore the effectiveness of placing the air-

coupled transducers at these locations. The statistical outlier detection method was again 

implemented for damage detection. The baseline required for this method was computed 

from 1000 measurements in a nondetective part of the rail.  To increase the signal-to-noise 

ratio (i.e., SNR) signals were filtered with a bandpass filter centered around the excitation 

frequency. Moreover, to decrease the magnitude of random noise, a matched filter was 
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used. The signal required for this filter was obtained by averaging 1000 raw ultrasonic 

measurements obtained from the nondetective potion of the rail. For the testing, three 

different ñrunsò were performed on the same track. The prototype was manually pushed. 

The signals were generated and acquired with a spatial resolution of 80 times per foot. 

Receiver operating characteristics (i.e., ROC) curves were computed as a quantitative 

means for selecting the following operation parameters: the number of receiving sensors, 

type of filtering technique, and signal features to consider for the statistical analysis. These 

curves represented the probability of true positives and false alarms for different values of 

the threshold of the statistical analysis (increased gradually from zero up to a value for 

which both probabilities of true positives and false alarms went down to zero). A true 

positive was determined when the discrimination metric exceeded the threshold at least 

once in a tight region with a length of half a foot centered at the defect location. True 

positive probability was obtained by using the ratio of the number of detected defects to 

the number of total defects. False alarm probability was determined based on the number 

of times the discrimination metric exceeded the threshold in a non-defective part of the rail, 

divided by the measurements collected from such a portion of the rail. Further field tests 

of the proposed system in the Technology Transfer Center (i.e., TTC) test track were 

performed [31]. To increase the SNR, a specially focused transmitter air-coupled 

transducer along with a highly resonant impedance matching network connected to receiver 

air-coupled transducers were used. It was observed, at speeds exceeding 2.4 km/h (1.5 

mph), that reverberations of airborne acoustic waves between the transmitter and the rail 

surface degraded the SNR. To overcome this problem, a sponge with opening sizes on the 

order of the acoustic wavelength in the air was placed around the transmitter transducer. 

However, the friction of the sponge with the rail caused some noise in the measurements. 

Tests were carried out up to the speed of 24 km/h (15 mph). Results were again evaluated 
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with ROC curves. Satisfactory results were obtained at lower speeds but performance 

degradation was observed at speeds at and higher than 16 km/h (10 mph). To gain more 

insight, detailed simulations of the proposed system were carried out [32]. For the 

simulation, wave excitation was induced on the model, and measurements were collected 

from locations corresponding to the location of receiver air-coupled transducers. TDs with 

varying defect sizes and locations as well as vertical split head and horizontal split head 

cracks were simulated in the models. In order to add noise to the measurements obtained 

from the simulations, the signals collected from the tests when no excitation was induced 

on the rail by the transmitter transducer were used. The damage index calculated from the 

tests and the simulations demonstrated combability. Evaluation in terms of ROC curves 

demonstrated that satisfactory results could be achieved with the proposed system. 

However, higher speeds were not considered. As a result, a new system that only included 

receiver air-coupled transducers was developed. This new system was the first non-contact 

guided wave damage detection system tested at speeds above 48 km/h (30 mph), up to 128 

km/h (80 mph). The system relies on constructing the transfer function between two 

noncontact ultrasonic transducers using the excitations provided by the moving wheel, 

therefore it is a passive-only system, not requiring an excitation mechanism [33]. The 

method adopted the normalized cross-correlation operator (normalized by one of the 

receivers) to find the transfer function. This approach allowed for the isolation of the 

Greenôs function passively without the influence of the excitation sourceôs frequency 

content.  

Acoustic emission (i.e., AE) is another testing method and it is based on the elastic 

waves (i.e., AE waves) emitted as a result of the release of stored strain energy during the 

cracking process in a solid  [34]. The propagating AE waves are detected by AE sensors. 

The advantage of this method is that the stages of damage can be observed during the entire 
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load history. The applicability of AE to rail steel was tested through two types of laboratory 

tests [35]. In the first type of test, rail specimens were pre-cracked using a 4-point bending 

test machine. Then, specimens were cyclically loaded using a 3-point bending test machine 

to simulate crack growth during cyclic fatigue loading. The number of recorded AE energy 

(i.e., hit number) above 40 dB (noise of the testing machine) during the tests exhibited a 

clear increasing trend with respect to time, and then a sudden jump that indicated a rapid 

propagation once the crack reached a critical size.  In the second type of test, an AE sensor 

was placed on a rail, and the rail wheel was moved over the instrumented rail at a speed of 

3 km/h (1.86 mph). To simulate a fast crack growth, a pencil tip was broken (i.e., pencil 

break test) on the rail while the rail was moving over. The recorded signal showed that fast 

rapid crack growth could be detected by AE measurements. Another study placed AE 

sensors at two railway track crossings with the purpose of evaluating the condition of the 

rails [36]. In another study, to examine the effect of different AE sources (i.e., defects), the 

propagation distances between the sources and AE sensors, and the depth of AE sources, a 

small rail piece was excited with wave pulses (having different frequencies to simulate 

different AE sources) at different depths (along rail head, web, and foot) on one side of the 

rail, and the measurements were collected at several points by the AE sensors placed on 

the rail web [37]. The recorded signals were transformed into the wavelet domain to obtain 

the signal energy versus time plots. Over these plots, group velocity curves of several wave 

modes were integrated into the time domain using the calculated propagation distances. 

The tests conducted with different propagation depths and distances showed that the 

miscalculation of actual propagation distance, the reflection effects, and the mixing of the 

wave modes limited the applicability of the AE measurements to short propagation 

distances. The tests conducted with short propagation distances showed that the use of the 

ratios of the accumulated energy regions of different wave modes was capable of 
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characterization of different AE sources as well as different AE source depths. To 

characterize the severity of the damages, a template-matching algorithm was used. This 

algorithm quantified the similarity between the recorded signals with the pre-selected 

template signal patterns. Templates were selected through laboratory tests based on 

different severity of defects. Results demonstrated that ñearly stageò and ñmoderate stageò 

damage severities could be detected from the AE signals collected under train passages, 

and that heavier axle loads triggered middle-stage defect growth while lighter axle loads 

triggered small crack growth. To further increase the efficiency in quantifying damage 

severity, a probabilistic framework that could perform quantitative assessment of damage 

severity was proposed for AE signals collected from rail during regular operation [38]. The 

framework was based on creating a one-dimensional structural health index (i.e., SHI) 

using a Fourier transform of time-domain signals collected from different AE sensors 

(Fourier transform of several signals led to a two-dimensional matrix) and using the 

imaginary and real parts of SHI to quantify the damage. In the first step, signals were 

collected from intact rails and data-driven models (based on Bayesian generalized linear 

regression) using these signals were generated. These data-driven models were then used 

to predict the imaginary and real parts of SHI of the new signals collected from the rail 

with an unknown condition. The imaginary and real parts of SHI were also obtained 

directly from the new signals. Then, the comparison of the predicted and directly calculated 

SHI values were used to calculate the probability of damage through the Bayes factor. In 

order to investigate the efficacy of the AE method at higher speed, a rail-wheel test rig was 

designed [39]. The test rig consisted of a rail wheel that was in contact with a circular rail. 

The wheel was rotated by an electric motor up to the speed of 124 km/h (77 mph). The 

defect on the rail was simulated by a broken pencil lead. The frequency-domain behavior 

of the recorded signals caused by the wheel-noise and defect showed that signals caused 
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by wheel-noise and defect have different frequency ranges at low speeds (up to 24 km/h, 

i.e., 15 mph) and that the frequency bandwidth of noise could coincide with the frequency 

bandwidth of defect at higher speeds. Shannon entropy was used to detect defects while 

Energy-to-Shannon entropy was used to select the appropriate wavelet in the considered 

range. For damage detection, the frequency range of interest was chosen as the frequency 

range caused by the defects. Furthermore, thresholding on the wavelet coefficients at the 

frequency range of interest was applied. The threshold was selected based on the wavelet 

coefficients of noise that could appear in the frequency range of interest when tests were 

performed at high speeds. The recorded signals were analyzed using time windows. It was 

shown that the short time windows led to high fluctuations and a large standard deviation 

of Shannon entropy of noise signals, making the differentiation between Shannon entropy 

caused by noise and the defects unfeasible. However, since long time windows would 

decrease the time resolution, a trade-off between short and long windows was made. It was 

observed that Shannon entropy versus time graph demonstrated the event of defects since 

the defect events led to lower Shannon entropy. However, as the speed increased, false low 

Shannon entropy values were apparent on the graph. To eliminate these false low values, 

low-pass filters were applied on the Shannon entropy versus time graph since the duration 

of the false low Shannon entropy values was shorter than the duration of the true low 

Shannon entropy values caused by the defects. Using this approach, the results showed that 

it was possible to detect the time instants of defects up to the speed of 124 km/h (77 mph). 

In the subsequent study using the same wheel-rail test rig, multi-level noise cancellation 

based on adaptive noise cancellation (i.e., ANC) was proposed  in order to improve filtering 

of the noise [40]. This algorithm allowed for filtering of the random noise and the main 

noise component of the noise signal. First, the reference signal of noise required in ANC 

was filtered with self-adaptive noise cancellation (i.e., SANC) to eliminate the random 
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noise component in the noise signal, leading to only the main noise component. The 

random noise component in the recorded noisy AE signals were also eliminated using 

SANC as well. Then, ANC method was used to obtain the pure AE signal caused by the 

defects. ANC method requires an adaptive algorithm to iteratively obtain the filter 

coefficients. The study suggested a new adaptive size parameter formulation required in 

the adaptive algorithm with the purpose of enhancing the computational efficiency and 

performance of ANC. Shannon entropy versus time graph was again used for damage 

detection. Results (up to 140 km/h, i.e., 87 mph) demonstrated that the new proposed 

method suppressed the false peaks resulting from the noise and enhanced the efficiency of 

damage detection. 

Eddy current (i.e., EC) method is based on the electrical current flowing on a coil 

(i.e. EC sensor) located on the rail head which leads to the generation of a circular magnetic 

field near the surface of the rail head [13], [41]. The defects are detected by monitoring the 

changes in the magnetic field by a sensing coil in terms of voltage [13]. Therefore, the eddy 

current method is usually performed on surface cracks located on the rail head. Field tests 

demonstrated that the eddy current method was able to detect head checks (i.e., cracks on 

the surface) when the eddy current coils moved over the rail head up to 72 km/h (45 mph) 

[42], [43]. The difficulty encountered with the EC method at high-speed inspections was 

to position to eddy current system at a stable limit-off distance from the surface of the rail 

since eddy-current systems are very sensitive to lift-off variations. Therefore, the coils were 

placed on a sliding block instead of in a roller system. However, maintaining a stable lift-

off can be difficult depending on the quality of the rail surface [44]. In one study, EC 

sensors were used along with conventional ultrasonic probes to overcome uncertainty in 

the results of ultrasonic inspection results [45]. The study showed that defects such as 

surface-breaking and squats as well as rail joints were able to be identified more reliably 
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due to the combination of two different systems. Furthermore, several studies aimed at 

improving the sensitivity of eddy-current coils by advancing the design of coils [46], [47]. 

Alternating current field measurement (i.e., ACFM) is an electromagnetic 

inspection method that can identify the length and depth of surface-breaking cracks caused 

by RCF [48]. It is based on imposing an alternating current to flow in a thin skin near the 

surface of the target test structure in one direction by induction coils. The current produces 

a three-dimensional magnetic field and, similar to the EC method, defects cause 

disturbances in the magnetic field. However, the bi-directional flow of the current allows 

for defect sizing, unlike the EC method. The current is usually imposed perpendicular to 

the expected direction of cracking. To find the length and depth of the crack, the magnetic 

field component normal to the plane of the test surface, which is generated by the 

circulations of the bi-directional current flow, is used. Since the circulation is clockwise at 

one end and anticlockwise at the other end, the magnetic field component demonstrates 

positive and negative responses at crack ends. The magnetic field component perpendicular 

to the flow of the current in the plane of the test surface is used to determine the reduction 

in the surface density since the current density (so as the magnetic field density) decreases 

with respect to the depths of cracks. Therefore, the measurement of the magnetic field 

perpendicular to the current flow provides the density of the crack depth. The probes 

developed for the ACFM system consist of a non-contact field induction system along with 

magnetic field sensors. ACFM probes can have a maximum 5 mm lift-off distance without 

a significant loss in signal strength, which is a greater lift-off distance compared to the lift-

off distance required for EC sensors [49]. This is because the signal strength decreases 

proportionally to the square of the lift-off distance when ACFM probes are used while it 

decreases proportionally to the cube of the lift-off distance when EC sensors are used. 

There are two types of different probes such as simple (i.e., pencil) and array probes [48]ï
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[50]. Simple probes cover an area of approximately 1 cm wide. The probe should pass 

along the line of the defect to determine the defect size and the probe is capable of detecting 

cracks only in orientations between 0Ј and 30Ј degrees and 60Ј to 90Ј. Array probes consist 

of typically eight or sixteen sets of coils, about 5 mm apart. Array probes allow for larger 

areas of inspection and detection of defects in any orientation by arranging the coils within 

the array probe in different configurations. The limitation of array probes is the rate of the 

switch through the sensors as quickly as possible for higher inspection speeds, which could 

be overcome by advanced instrumentation [48]. The application of this method on the rail 

was carried out through a pedestrian walking stick in which ACFM probes were placed 

[48]. High-speed tests were carried out using a test rig which is made of different curved 

rail pieces connected. The ACFM probe was placed stationary over the test rail rig and 

satisfactory results were obtained up to 32 km/h (20 mph) test speeds, missing only very 

small defects even though the lift-off distance could not be kept stable in the tests [44].   

Another technique developed is to use electromagnetic acoustic transducers (i.e. 

EMATs) to generate surface waves to detect defects such as gauge corner cracking (i.e., 

closely spaced cracks in a small region of rail with some of the defects propagating at an 

angle to the surface) and breaking defects such as transverse and longitudinal defects on 

the surface caused by RCF [51], [52]. EMATs are made of a coil that induces eddy currents 

(hence electromagnetic fields) at the surface of a conductive material and permanent 

magnets that provide a magnetic field [53]. Interaction of the eddy currents with the 

magnetic field results in Lorentz-force which creates Rayleigh waves (waves propagating 

on the surface, i.e., surface waves). EMATs are positioned at a fixed distance between each 

other through a holder and a trolley to maintain a constant stand-off distance from the target 

test surface [52]. EMAT sensors can have stand-off distances from the target surface on 

the rail without losing the adequate signal strength required for the analysis. Different types 
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of coils can be created to impose pulses with slightly different frequency content, 

amplitude, and directionality for different types of applications. The advantage of using 

Rayleigh waves is that they have their energy confined within a depth of about one 

wavelength from the surface [52]. Therefore, these waves are naturally sensitive to surface 

defects. It was demonstrated that using low-frequency Rayleigh waves resulted in better 

efficiency compared to high-frequency waves because the propagation of waves over 

longer distances and spreading of the wave around the rail (to cover the surface area of rail) 

were possible. The determination of defect depth (i.e. depth gauging) is performed by 

comparing the changes in the signal amplitude and frequency content of the recorded 

signals obtained from a damaged structure with the ones obtained from an intact structure 

[52]. Similar to guided waves, a portion of the propagating wave, depending on the depth 

of the defect and the ultrasonic wavelength, is reflected towards the generator EMAT while 

a portion of the signal is transmitted under the crack and detected by the receiver EMAT. 

As the wavelength increases with respect to the depth of cracks, the reflected portion of the 

signal decreases. Another approach for detecting damages is to observe the reflected waves 

which were constructively interfered with the generated waves when the receiving EMAT 

is located very close to the defect. This situation results in signal enhancement which is 

also dependent on the crack depth. However, this enhancement is mostly observed in slow 

scans. However, Rayleigh waves do not exist in rails. Instead, a type of guided wave which 

propagates on the rail surface is generated. This is because the velocity of the surface wave 

increases as the curvature of the surface increases and the Rayleigh wave no longer exists 

when the wave velocity exceeds the bulk shear velocity. The energy of the Rayleigh wave 

is transmitted to other wave modes (i.e. Rayleigh-like waves) [54]. The reliability of using 

EMATs to create Rayleigh-like waves on the rail was tested and it was demonstrated that 

the induced surface waves were not affected by blind spots, which is the difficulty in 
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separating different types of guided waves propagating when they constructively interfere 

with each other [51]. The tests were carried out with an exciting EMAT and a laser sensor 

for the detection of propagating waves. Spatial averaging was used to filter out other 

spurious waves, which led to the clear observation of Rayleigh-like waves. The tests show 

that Rayleigh-like waves both have in-plane and out-of-plane components, so they spread 

in all directions. The blind spots were not observed because, due to the smooth curvature 

of the rail surface, the waves could propagate over the rail head without causing any 

reflected waves which could cause blind spots. For depth gauging of defects in rails, known 

defects were introduced in aluminum bars, and signal amplitude and frequency content of 

signals were calibrated to defect depths [52]. Machine-induced cracks on rails were 

accurately sized by comparing the signals obtained from the rail with the ones obtained 

from the aluminum bars. To detect longitudinal cracks, EMATs were placed on each side 

of the rail instead of the top of the rail. In the case of buildup residue and spalling, signal 

amplitudes in the time domain were changed but the examination of frequency content 

allowed for detection and sizing of the cracks.  One study combined EMAT and EC probes 

in order to increase performance in detecting surface cracks as the EC technique exhibits a 

major sensitivity to cracks up to 5 mm while the EMAT technique is more sensitive to 

cracks up to 20 mm [55]. The distance between EMAT sensors and EC sensor was adjusted 

in a way that no interference occurred between the magnetic fields produced by them. This 

approach was advantageous especially for angled cracks as the angle, depth and direction 

of such cracks could be determined using the combination of both techniques.  

Electromagnetic tomography (i.e., EMT), which has similar working principles to 

the EC, ACFM, and EMAT-based methods, was also used [56]. This method is also based 

on generating magnetic fields through exciting and receiving coils. The path of propagating 

waves between the exciting and receiving coils was used to produce the image of the cross-
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section of the target structure. FEM simulations, as well as laboratory tests, showed that 

the proposed method was able to detect artificially created surface defects as well as small 

cavities placed under but very close to the surface. Detection was performed by generating 

the image of one portion of the rail head cross-section (the portion around the wheel-rail 

contact point) through topography imagining algorithms such as Linear back projection 

and Tikhonov regularization. The system consisted of four coils placed on an L-shape 

holder to be located around the rail. One coil was used as the excitation while the other 

three were used for detection, leading to four projections and 12 measurements in total 

from the receiver coils. 

Furthermore, as the Rayleigh waves transform into surface waves in rail, one study 

adopted a water-coupled transducer array angled at 30Ј which was sealed with a rubber 

contact patch at the contact point with the rail top surface [57]. The transducer was used in 

the pulse-echo setup, sending and receiving the waves. The surface waves were excited at 

200 kHz. Unwanted surface modes were filtered out with spatial averaging and results were 

presented with plots showing the amplitude of waves along the position of rail. The tests 

performed on rails with real RCF defects (measurement at every 10mm interval) 

demonstrated that the method can distinguish between defective and defect-free areas, even 

when several defects were clustered in a small area. However, accurate defect sizing was 

limited when cracks had complex shapes and/or were located in small regions due to the 

complex interaction of waves reflected from such cracks.  

However, even though satisfactory results were obtained by the methods adopting 

EC, ACFM, EMAT, and EMT approaches, most of the tests were carried out in laboratory 

environments rather than in high-speed field tests.  
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A review of rail damage detection methods and their applications, as well as the 

current performance of the methods and future needs, can also be found in review studies 

[4], [6], [12], [13].   

1.4 MOTIVATIONS FOR FURTHER RESEARCH   

American Society of Civil Engineersô report card [58], which is based on several 

criteria such as the condition of the infrastructure, operation and maintenance, public 

safety, resilience, innovation, funding, and meeting operational demands, is B for rail. This 

indicates that the overall condition of the rail infrastructure is good and satisfactory but 

some elements of the infrastructure exhibit signs of deterioration and need further attention. 

As a consequence of such condition of the rail infrastructure, since 2000, train accident 

rates decreased by 30%, and rail employee fatalities in 2019 matched an all-time low [59]. 

However, even though the number of rail accidents decreased in the last decades, 17702 

derailment accidents occurred in the USA between 2011 and 2020 according to the Office 

of Safety Analysis, FRA  [10]. More than a quarter percentage of these accidents (4814 out 

of 17702) were railway track related and cost $942 million in reported damage.  

Furthermore, the European Unionôs Mobility and Transport report states that rail 

infrastructure in the European Union (EU) has been degrading due to inadequate 

maintenance [60]. In Europe, 620 derailments occurred between 2014 and 2019 [61]. 

European Railway Agency (ERA) estimates that freight train derailments cost EU countries 

more than 200 million Euros per year and the agency reported that rail infrastructure is the 

second major cause (34%) of rail derailments [62]. The agency stated that the leading cause 

of the railway track-related derailments was track geometry-related problems, but other 

dominant causes were reported to be excessive track gauge, rail failures, switch component 

structural failure, and excessive track twists.  
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In addition to the USA and Europe, in India, 224 derailments between 2013 and 

2016 occurred [63], and one of the primary causes of the derailments was reported to be 

track-related problems.  

A detailed analysis provided by FRA [10] showed that TDs such as TF, CF, and 

DF played a significant role in track-related accidents in the USA between 2011 and 2020 

[1]. Train accidents resulting from such defects consisted of 5.5% of all types of accidents 

and 13.6% of track-related accidents and cost $171 million in reported damage. Besides 

this detailed analysis, 55% of yearly detected rail defects by Sperry Rail Service company 

were reported to be TDs, weld defects, and split head defects. Such defects also consist of 

75% of the notified failures received by the company. Moreover, 39.5% of rail breaks on 

the rail network operated by Railtrack plc. were caused by TDôs [64].  

Accordingly, recent train accidents and the limitations faced in the developed 

damage detection methods along with increasing tonnage and operation and the aging of 

the rail infrastructure [58], [65] demonstrate that there is still a crucial need to enhance the 

current rail damage detection techniques. As a result, an international joint research project 

whose main objective is to improve rail internal defect inspection was initiated by the 

International Railway Union (UIC) [66]. Consequently, researchers, government agencies, 

and companies have been enhancing the current damage detection systems or developing 

new ones  [66]. 

1.5 RESEARCH OBJECTIVE AND THESIS OUTLINE  

In the context of the efforts to introduce new rail inspection techniques, and since 

TDs are responsible for a significant portion of railway track-related accidents, the goal of 

this research is to develop a novel non-contact rail damage detection system for TDs that 

can operate at speeds that do not obstruct the routine railroad operation.  
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The work carried out to develop the system (i.e., the objective of the study) can be 

grouped into three categories: pre-development stage, development stage, and post-

development and testing stage. In the pre-development stage; (i) an extensive review of the 

previously developed damage detection systems and the vibrations of propagating waves 

in rail were performed, (ii) rail vibrations were recorded with accelerometers during the 

passage of operating trains, and (iii) the feasibility of recording the vibrations of 

propagating waves in rails with an LDV placed on a moving rail car was demonstrated. In 

the development stage, (i) a damage detection system consisting of 2 LDVs placed in front 

of a rail car/train was suggested, (ii) Finite Element Method (FEM) simulations of the 

system were carried out to examine the interaction of the train-induced guided waves with 

TDs using two damage features, with the purpose of exploiting such interactions to locate 

the location of TDs using a multi-variate statistical analysis-based damage index, (iii) an 

approach was proposed to use scanning periodic LDV measurements to represent the noise 

in the signals recorded from rail by an LDV placed on a moving rail car/train, and (iv) the 

selected approach to filter the time-varying mean in the recorded signals and the developed 

impulsive noise filter was presented. In the post-processing and testing stage; (i) the final 

configuration of the damage detection system as well as the damage detection framework 

associated with it (into which the filters and the multi-variate statistical analysis based-

damage index presented in the development stage were embedded) were presented using 

the first field test of the system, which was performed at the Transportation Technology 

Center (TTC) in Pueblo, CO where a welded rail joint was used to represent a TD, and (ii) 

the second field test of the system was performed in Cleburne, TX in collaboration with 

BNSF railroad company, to evaluate the performance of the system to detect TDs. 

Accordingly, the configuration of the developed damage detection system in the 

post-development phase consists of two LDVs attached vertically in front of a rail car to a 
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holder through vibration isolators (to minimize the vibration of the LDVs) to measure 

ultrasonic guided waves in the rail head, which are induced by random rail-wheel 

interaction forces. Therefore, the damage detection system does not include an excitation 

mechanism, only the measurement instrumentation with the purpose of enhancing its 

compactness to attach it easily to any operational rail car or train. This system uses the 

LDV measurements to detect a change in the relative amplitudes of the recorded waves 

caused by a defect in the rail head. After the outcomes obtained in the pre-development 

stage, it was determined to use the reflection of propagating waves from TDs in the 

frequency range between 30 kHz to 100 kHz. The lower cut-off frequency was selected 

conservatively in this study since it was shown in the literature that guided waves start to 

localize in the rail head after approximately 15 kHz. The higher cut-off frequency was 

selected since (i) the guided waves below 100 kHz can be used for transverse defect 

detection (as the frequency exceeds 100 kHz, waves are also susceptible to shelling), and 

(ii) the accelerometer measurements collected from rail during the passage of operating rail 

cars showed that the power of the excitations induced by wheel-rail interactions is 

dominant up to approximately 100 kHz. The main challenge in the proposed damage 

detection system is to minimize the speckle noise observed in the recorded signals, which 

is inevitable due to the inherent nature of the measurements performed by LDVs placed on 

a moving platform (i.e., rail car). 

Consequently, the damage detection framework associated with the system 

operates as follows: 1) in the pre-processing stage, time-varying mean and impulsive noise 

in the recorded LDV signals are filtered and then the changes in the LDV signals in the 

frequency range of interest are quantified and monitored using moving standard deviation, 

2) in the post-processing stage, two damage features, which are based on the relative 

change in the moving standard deviations (computed in the pre-processing stage) and 
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transfer functions between two measurement points (computed in the post-processing 

stage), are combined using multivariate statistical analysis to create a damage index that 

shows the location of rail segments which are affected by a defect. The goal of the 

impulsive noise filtering and transfer functions embedded into the framework is to 

minimize the impulsive noise and broadband noise (i.e., in this thesis, broadband noise of 

the LDV measurements stands for the signal noise segments that do not contain the 

impulsive noise) components of the speckle noise observed in the LDV measurements.  

To the best of the authorôs knowledge, the proposed damage detection system 

instrumented with two LDVs placed in front of a rail car, and the associated damage 

detection framework are new, and this system offers the advantage of non-contact, remote 

(distant from the rail head) and compact (only 2 LDVs) testing of railway tracks without 

intervening the routine operations of railroads since this system can be placed on 

operational rail cars. Consequently, the system can enable railroad-related monitoring that 

is not possible with conventional techniques. 

In this study, the tasks described in the research objective are presented elaborately 

in 8 chapters including Chapter 1. First, Chapters 1, 2, and 3 describe the work carried out 

in the pre-development stage. Then, Chapters 4, 5, and 6 describe the work carried out in 

the development stage. Finally, Chapters 7 and 8 describe the work carried out in the post-

development and testing stage. Overall, this thesis consists of 9 chapters, and the last 

chapter is about the conclusion drawn from this study. 

Accordingly, the outline of the following chapters (i.e., from Chapters 2 to 9) is as 

follows: 

Chapter 2 presents an extensive literature review of the vibration of wave 

propagation in rail, and also demonstrates the results of rail vibration measurements 
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performed with accelerometers during the passage of operational trains over the 

instrumented rail section.  

Chapter 3 presents the results of the tests performed with an LDV placed on a rail 

car which was performed to demonstrate the feasibility of placing LDVs on moving rail 

cars. This chapter is based on the following journal publication: 

¶ K Kaynardag , G Battaglia, A Ebrahimkhanlou, A Pirotta, S Salamone 

ñIdentification of bending modes of vibration in rails by a laser doppler vibrometer 

on a moving platformò, Experimental Techniques, 45 (1), 13-24, 2021 

Chapter 4 presents the proposed damage detection system, as well as the results of 

simulations of the system which were carried out to examine the interaction of the train-

induced guided waves with TDs through two damage features, with the purpose of 

exploiting such interactions to locate the location of TDôs using a multi-variate statistical 

analysis-based damage index. This chapter is based on the following journal publication: 

¶ K Kaynardag, C Yang, S Salamone ñThe numerical simulations to examine the 

interaction of train-induced guided waves with transverse cracksò, Transportation 

Research Record, (available online), 2022. 

Chapter 5 presents the theoretical background of speckle noise in LDV 

measurements, explains the laboratory tests which were carried out to perform scanning 

LDV measurements, and presents the approach which was proposed to obtain the 

representative speckle noise of the damage detection system by using the scanning LDV 

measurements. A publication regarding this chapter is not available currently. But a journal 

article regarding the work presented in this chapter will be prepared soon and will be 

submitted to a journal. 

Chapter 6 introduces the selected approach to filter the time-varying mean in the 

recorded signals and the developed impulsive noise filter, as well as evaluates the 
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performance of the impulsive noise filter through a synthetic signal which was obtained by 

combining (i) the accelerometer measurements from rail head performed in Chapter 2 (thus 

this signal represents the rail vibration component of an LDV signal which could be 

recorded by the damage detection system) and (ii) the representative speckle noise signal 

of the damage detection system obtained in Chapter 5 by using the scanning LDV 

measurements (thus this signal represents the pure noise component of an LDV signal 

which could be recorded by the damage detection system). This chapter is based on the 

following journal publications: 

¶ K Kaynardag, C Yang, S Salamone ñAn impulsive noise filter for rail vibration 

measurements performed through a laser doppler vibrometer placed on a moving 

platformò, Mechanical Systems and Signal Processing, (in revision). 

¶ K Kaynardag, C Yang, S Salamone ñA rail defect detection system based on laser 

doppler vibrometer measurementsò, NDT & E International, (accepted). 

Chapter 7 explains the final configuration of the damage detection system and the 

developed damage detection framework associated with the system, and presents the 

results of the first field test of the system which was carried out at the Transportation 

Technology Center, Pueblo, CO. This chapter is based on the following journal publication: 

¶ K Kaynardag, C Yang, S Salamone ñA rail defect detection system based on laser 

doppler vibrometer measurementsò, NDT & E International, (accepted). 

Chapter 8 presents the results of the second field test of the system that was carried 

out in Cleburne, TX in collaboration with BNSF railroad company. A publication regarding 

this chapter is not available currently. But a journal article regarding the work presented in 

this chapter will be prepared soon and will be submitted to a journal. 
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Chapter 9 summarizes the work conducted in this research, emphasizes the main 

outcomes, as well as makes recommendations for future tasks to improve the developed 

damage detection system. 
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CHAPTER 2: REVIEW AND MEASUREMENT OF VIBRATIONS 

OF WAVE PROPAGATION IN RAIL  

This chapter (i) reviews elaborately the research studies in the literature that were 

conducted to better understand and model the vibrations of wave propagation in rail, and 

also (ii) presents the results of field tests that were carried out to gain further experimental 

information on the vibrations of wave propagation in rail. The goal of such an extensive 

review of the literature and the rail measurements is to have an excellent understanding of 

the vibrations of wave propagation in rail to develop a robust damage detection system.  

The interested reader can find more information on the personal webpage of the 

author of this thesis (www.wavesanddata.com) about the followings: (i) an explanation of 

how all vibrations are caused as a result of wave propagation, and (ii) a precise explanation 

and illustration of how vibrations of different types of beam structures (e.g., multi-span 

beams, infinitely long periodically supported beams such as rail) change as a result of 

different wave propagation phenomena at different frequency ranges, which might be 

considered as a very broad summary of the literature review presented in the sub-sections 

below.  

2.1 REVIEW OF VIBRATIONS OF WAVE PROPAGATION IN RAIL  

In literature, vibrations of rail were investigated for different frequency ranges 

using different modeling approaches. This is because (i) the level of detail of railôs 

analytical and numerical models depends on the frequency range of interest and (ii) rail 

vibrations are governed by different dynamic phenomena at different ranges. It was shown 

that, as the frequency range of interest increases, the models incorporating the details of 

the rail cross-section should be adopted instead of the models that use simple beam 
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elements to represent the entire cross-section of the rail. This is because, as the frequency 

increases, the cross-sectional deformation of the rail becomes more complex.  

One of the common frequency ranges considered in the literature is between 0 to 7 

kHz since it was demonstrated that wheel-rail interaction forces are considerable up to 

approximately 6-7 kHz. Such forces cause rails to vibrate at levels such that the noise 

radiation from the rail can be problematic. The more corrugated the rail surface is, the 

higher such forces are. However, some studies used frequencies higher than 7 kHz in their 

analysis (up to approximately 20-25 kHz). Therefore, in this chapter, the frequencies 

between 0 and 25 kHz are called the Low Frequency (i.e., LF) range. The studies focusing 

on the LF range used usually analytical models and sometimes the semi-analytical finite 

element (i.e., SAFE) method. Furthermore, these studies on LF can be grouped into two 

categories based on the dynamic mechanisms governing the rail vibration: (i) the studies 

that modeled the rail in terms of free wave propagation (ignoring the effect of discrete 

supports), and/or also computed the force-response functions (i.e. receptance functions) of 

rails (both considering and ignoring the effect of discrete supports), and (ii) the studies 

investigating the pass and stop bands of the wave propagation in rails (considering the 

effect of discrete supports). Pass bands are the range of frequencies in which the waves can 

travel freely along a periodically supported rail, while stop bands are the range of 

frequencies in which waves are attenuated. Such bands represent the real wave propagation 

phenomena in rails in the LF range. Therefore, even though the second group of studies 

models the vibrations of wave propagation in rails more realistically, the studies in the first 

group were also important to understand the basic dynamic phenomenon of rail using more 

simplistic models. 

At higher frequencies, the waves in the rail localize at different sections of the rail 

such as rail head, web, and foot. Therefore, the waves propagating in the rail, especially 



 37 

the ones propagating in the rail head and web, are investigated in terms of free wave 

propagation. To capture the complex displacement distribution of the waves along the rail 

cross-section, the semi-analytical finite element (i.e., SAFE) method or FEM was adopted 

rather than analytical models. Such studies usually considered rail vibration after 25 kHz, 

which is the approximate frequency at which waves in the rail start to localize at different 

sections of the rail. Therefore, in this chapter, the frequencies after 25 kHz are called the 

High Frequency (i.e., HF) range. 

Consequently, this chapter groups the studies focusing on the vibrations of wave 

propagation in rail into three categories:  

1. Free wave propagation and rail force-response functions (i.e., receptance functions) 

with and without discrete supports in the low-frequency range. 

2. Pass and stop bands of the wave propagation in rails considering the effect of 

discrete supports. 

3. Free wave propagation at high-frequency range.  

2.1.1 An Overview of The Vibrations of Wave Propagation in Rail  

Before performing the detailed summary of the studies in the three categories, an 

overview of the vibration of waves that propagate in rail is performed herein: 

Figure 4 (a) shows a typical dispersion curve of rail (which is infinitely long and 

has no periodic supports). The figure shows that, as the frequencies increase, the number 

of propagating waves increases. Up to approximately 15-25 kHz [67], [68], the cross-

sectional deformation of the propagating waves is global (i.e., all the parts of the cross-

section of the rail deform together). This dispersion curve was obtained using the semi-

analytical method since analytical methods are capable of modeling dispersion curves of 
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rails only up to 4-5 kHz (this is because analytical models have a few degrees of freedom, 

so they can model only a few waves having simple cross-sectional deformations). 

 As an example, Figure 4 (b) shows the vertical bending wave propagating in a rail 

that is periodically supported by fasteners. This waveôs wavelength satisfy the boundary 

conditions at the fastener connections that there are no vertical displacements at these 

points. If the rail had only one span (i.e., rail section between 2 consecutive sleepers), and 

was supported at the ends by fasteners (so that the rail is now like a finite-length beam 

supported at two ends), this wave would reflect from supports and create the first bending 

mode of the finite-length rail that is supported at two ends. At higher frequencies in which 

the wavelength of the vertical bending mode again satisfies the boundary conditions, there 

would be 2nd, 3rd, é resonance modes of the finite-length rail that is supported at two ends. 

Therefore, resonance frequencies are the frequencies in which the waves can propagate 

along the finite-length rail supported at two ends due to satisfying the boundary conditions.  

However, when the rail is infinitely long, the waves can propagate further instead 

of just reflecting from supports. Accordingly, in this case, there are more waves whose 

wavelengths can satisfy the boundary conditions. It turns out that the frequency of the 

waves whose wavelengths can satisfy the boundary conditions appear at different zones 

along the spectrum (i.e., pass bands). The spectrum in Figure 4 (c) (a representative 

spectrum that was not obtained based on computations) shows the pass bands for the 

vertical bending wave in the rail (which is infinitely long and periodically supported by 

fasteners). This figure also shows how the beginning and ending frequencies of each pass 

band are related to the resonance modes of a one-span-long rail with different boundary 

conditions. The frequency zones out of the pass bands are denoted as stop bands. Figure 4 

(d) shows an example of the waves that can propagate in the first pass bands of an 
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infinitely-long periodically supported beam due to satisfying the boundary conditions (this 

figure is taken from [69]) 

In this example, only the vertical bending wave was shown. There are many 

different waves that can propagate in the rail (see the dispersion curve in Figure 4 (a)). 

Approximately after 2-3 kHz, it is not possible to call the waves simple names such as 

bending, torsional, and longitudinal. This is because the waves exhibit more complex cross-

sectional deformations as the frequency increases.  

Accordingly, the main purpose of the studies summarized in the remaining of this 

chapter under the first two categories (i.e., 1. Free wave propagation and rail force-response 

functions with and without discrete supports in the LF range, and 2. Pass and stop bands 

of the wave propagation in rails considering the effect of discrete supports) is to model and 

understand the railôs dynamic behavior up to approximately 15-25 kHz which was 

summarized herein and displayed in Figure 4. 
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Figure 4:  Propagating Waves in Rail In The Low-Frequency Range: (a) A Dispersion 

Curve of a Typical Rail (B) Visualization of The Vertical Bending Wave (c) 

A Representative Spectrum Depicting The Pass Bands (d) An Example of The 

Waves That Can Propagate in the First Pass Bands of an Infinitely-Long 

Periodically Supported Beam Due To Satisfying the Boundary Conditions. 
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When the waves having frequencies higher than 15-25 kHz are considered, waves 

start to localize at different sections of the railôs cross-section[67], [68]. The waves 

localized in the head and web of the rail can propagate freely as they do not interact with 

fastener connections that are located at the foot of the rail. However, the waves propagating 

at the rail foot interact with fasteners, so they cannot propagate freely. Figure 5 (a) again 

demonstrates the dispersion curve of a typical rail, and the localized waves in rail are 

visualized in Figure 5 (b).  

Accordingly, the main purpose of the studies summarized in the remaining of this 

chapter under the last category (i.e., 3. Free wave propagation at high-frequency range) is 

to model and understand the railôs dynamic behavior at frequencies higher than 15-25 kHz 

which were summarized herein and displayed in Figure 5. 

 

 

Figure 5:  Propagating Waves in Rail in the High-Frequency Range: (a) A Dispersion 

Curve of A Typical Rail (b) Visualization of the Localized Waves in Rail. 
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2.1.2 Free Wave Propagation and Force-Response Functions with and without 

Discrete Supports at Low Frequencies 

A review of previous studies (up to 1993) and further detailed investigation on the 

wheel-rail interaction, wheel vibration, and rail vibration were presented in a series of 

studies [70]ï[72]. The first study presented two wheel-rail interaction models that 

accounted for coupling in a direction other than just vertical direction [70]. The first one 

was based on introducing a relative displacement between the rail and the wheel while the 

second one was based on using the excitation of the contact point by an absolute 

displacement (relative to a fixed frame of reference, without allowing any relative 

displacement). The models required the receptance functions of the wheel and the rail. The 

receptance functions of the wheel were obtained using finite element model results as well 

as measurements carried out in a subsequent study [71]. To obtain the rail receptance 

functions, the cross-section of a rail was modeled as finite elements while periodic structure 

theory was used to model the rail in the rail running direction (using numerous small 

periodic rail sections without considering supports) [72]. The receptance functions of the 

rail on support were also calculated. The modeling of the foundation demonstrated that the 

effect of the foundation was at frequencies lower than 1 kHz. The results were also 

compared with experimental measurements and the main difference between calculated 

rail receptence functions and the measured ones was found to be the pin-pin modes (i.e. 

resonance frequencies of a rail span located between two consecutive sleepers). The study 

also obtained the dispersion curves of rail up to 6 kHz using a FEM model restrained at 

both ends. Such a model gave the frequencies for the waves whose wavelengths were 

integer fractions of the length of the FEM model. Examination of mode shapes showed 

that, as the frequency increases, (i) lateral wave at low frequencies transforms to the 

rocking movement of the foot, (ii) torsional wave at low frequencies converts to lateral 
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movement, (iii) vertical bending wave has a considerable foot movement, and (iv) for other 

waves, more complicated movement of different parts of the rail occurs. Consequently, the 

study stated that the descriptions of ñsimple bendingò and  ñtorsionò at higher frequencies 

are not possible. 

Another review of literature on the dynamic modeling of railway tracks (up to 1993) 

was performed in [73]. The important outcomes of the review for rail vibration were that 

(i) modeling of rail with discrete support can capture the pin-pin modes while modeling of 

rail with continuous support cannot, (ii) rail should be modeled with a high level of detail 

to capture the different type of modes that occur at higher frequencies, and (iii) the effect 

of sleepers and ballast are at frequencies lower than the first pin-pin mode of rail. As a 

conclusion of the review, the study made several suggestions for the modeling of railway 

tracks. 

A comparison of three different models was carried out to point out the differences 

in the results of different modeling approaches [74]. The first model was a continuously 

supported Timoshenko beam, the second one was a periodically supported Timoshenko 

beam, and the third one was a continuously supported beam model in which the beam is 

modeled with finite elements. Investigation of frequency response functions demonstrated 

that (i) the first and second models showed three common modes up to 1 kHz (i.e., a 

resonance at which the entire track bounds on the ballast, an anti-resonance at which 

sleepers vibrate on the ballast and rail pad, and a resonance at which the rail bounces on 

the rail pad stiffness, respectively), (ii) the second model showed more peaks compared to 

first one, corresponding to the first and higher pin-pin modes, (iii) the third modelôs 

response was similar to first modelôs response, but showed more modes after 2 kHz due to 

increase in the detail of modeling. The investigation of the models in terms of wave 

propagation in rail showed similar results: (i) the wave propagation characteristic of the 
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first and second models were similar, but the second model had additional dips and peaks 

in the wavenumbers (due to periodicity), and (iii) the third model demonstrated more 

propagating waves due to increase in the detail of modeling.  

One attempt to increase the detail of the modeling of the rail was made by using the 

finite-strip method (i.e., FSM), which is based on integrating harmonic wave assumption 

into the principle of virtual work solution (which is used to formulize FEM). Consequently, 

analytical equations for the longitudinal direction in FSM could be used to reduce the 

computational complexity. The dispersion curves of propagating waves in rail (up to 15 

kHz) were computed with FSM as well as a three-dimensional FEM approach (for 

comparison of results) [75]. The finite element method adopted in the study used plate 

elements to model rail head, web, and foot. It was demonstrated that a structure could be 

divided into sections of the same length in the longitudinal direction and that each section 

could be modeled as a FEM model to study the vibrations of an infinite, regularly 

discretized structure. It was noted that the disadvantage of FSM was that it could not be 

used to model wave propagation in periodically discretized structures. The comparison of 

computed guided waves (obtained from each approach using infinite continuous free rail 

as well as with the ones from a previous experimental study) demonstrated that the FSM 

method produced more accurate results due to the improvement in the modeling of the foot. 

In addition to two models, the study also adopted a FEM model in which the rail head, 

web, and foot were modeled as beams. The results obtained from this model demonstrated 

consistency only up to 2.5 kHz, showing the fact that simple beam elements are not 

adequate to model rail vibration at higher frequencies. Furthermore, the study elaborately 

explained the cross-sectional displacement behaviors of the guided wave modes. 

A similar FEM approach, in which only the cross-section of a rail was discretized 

and a complex exponential was used to prescribe wave motion in the longitudinal direction, 
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was used to obtain the dispersion curve of propagating waves in rail up to 5 kHz [76]. 

Triangular and rectangular isoperimetric finite elements were used in the discretization of 

the cross-section. In total, 124 finite elements were used. The solution for the matrix 

equation of motion of the discretized waveguide could result in real, imaginary, and 

complex eigenvalues. Since the complex ones represented the exponentially decaying 

waves as well as the waves increasing in magnitude, which can not occur in conservative 

waveguides, the complex solution was arranged in a way to eliminate waves increasing in 

magnitude. It was mentioned that some of the waves can be propagative for all excitation 

frequencies. Therefore, they have zero cut-off frequencies. Some waves which are 

evanescent at low frequencies can be propagating at higher frequencies when the frequency 

coincides with their cut-off frequency. It was also noted that, at a cut-on frequency, the 

wavelength is infinite and all the points along the waveguide vibrate in phase (i.e., rigid 

body motion). Furthermore, the displacement of the waves over the cross-section (i.e., 

mode shapes) was investigated in detail. The dispersion curve showed that there were 3 

axial, one vertical, one lateral, and one torsional wave, as well as two waves that could not 

be described using the analogies with simple beam waves. The investigation of mode 

shapes showed that (i) axial modes exhibit foot-flapping as the frequency increases, (ii) 

vertical mode exhibits foot-flapping as well, and the displacement of rail head diminishes 

as the frequency increases, (iii) the horizontal mode exhibits small rotation due to coupling 

even at low frequencies, the rotation of feet increases while the translational movement of 

the feet decreases as the frequency increases, and the vibration of the head diminishes at 

the highest frequencies, (iv) the torsional mode exhibits rigid body rotation at low 

frequencies, then the head vibrates less while the foot continues the rotational movement 

as the frequency increases, and the head moves horizontally while the foot continues to 

rotate at highest frequencies, creating an s-shape deformation of the cross-section, and (v) 
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other two modes, that could not be described, exhibit different kinds of deformations as 

well at different frequency ranges. 

Similar to previous studies, to model the rail vibrations accurately, a new tapered 

plate rail model, in which rail head, web, and foot were represented using a beam, a plate 

with constant thickness, and a tapered plate respectively, was proposed [77]. In this model, 

vibrations in the longitudinal direction were modeled also using complex exponential. The 

comparison of the dispersion curves obtained with the proposed method, as well as with 

the ones obtained from a simpler beam model and a FEM model demonstrated that the 

proposed method could estimate the rail vibrations accurately up to 7 kHz. 

To eliminate the computational time required in FEM-based methods, a double 

Timoshenko beam rail model was used to compute the dispersion curves of an infinite rail 

and a rail supported on a continuous foundation. The model was also used to calculate point 

receptance functions (i.e., rail force-response relation measured at the same point) of 

continuously and discretely supported rail [78]. In the model, one infinite beam was used 

to model both the rail head and web whereas only one infinite beam was used to model the 

rail foot. The results were presented up to 6.5 kHz. Results obtained from the dispersion 

curves were compared with the ones obtained from the FEM model while the receptance 

functions obtained from the discretely supported rail were compared with the ones obtained 

from the measurements. Results were also compared with the results obtained from a 

simple beam model. The main outcomes of the study were (i) rail foot vibrations occur at 

higher frequencies, (ii) continuous support affects vibrations mostly in lower frequencies, 

(iii) pin-pin resonance modes occur when the rail is modeled using discrete supports, and 

(iv) the proposed model was able to estimate rail vibrations up to 6.5 kHz. 

To investigate the guided waves experimentally, a modal analysis method was 

modified to obtain experimentally the propagating waves having the same frequencies [79]. 
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The modified method was based on placing accelerometers on the cross-section of rails 

and providing excitations at different points that were equally spaced from each other. The 

advantage of the proposed method over the traditional spatial Fourier transform was that 

the wavenumbers were not restricted to have specific values, and that the decaying waves 

could be observed as well in addition to the propagating waves. However, the maximum 

wavenumber that could be measured was restricted by the spacing between excitation 

points. Using the proposed experimental method, dispersion curves for lateral and vertical 

waves were presented and the energy of each wave was incorporated into these plots. 

Furthermore, the cross-sectional deformations of the measured waves were compared with 

the ones obtained from FEM models. The results showed that (i) the proposed method was 

effective at measuring propagating waves, (ii) the cross-sectional deformation of the 

propagating waves was similar to the ones reported in previous studies, and (iii) rail 

fasteners have an effect on the decay of the propagating waves. 

A comprehensive literature review can be found in [80], where a rail model was 

developed to study vertical, lateral, and torsional vibrations and their coupled behavior. 

The model was based on the modified version of a static beam model developed for the 

stability of beam-columns, which accounts for bending in the vertical and lateral directions 

(using Timoshenko beam theory), shear center eccentricity, and nonuniform torsion. The 

model also used an axial rod in extension and a torsional rod. The modifications allowed 

for considering internal effects and elastic support at an arbitrary location relative to the 

centroid (to represent the foundation). The results of the study demonstrated that (i) the 

inclusion of torsional behavior in the models has a crucial effect on the dynamic response 

of the rail, especially in the lateral direction. (ii) the effect of warping is not significant in 

the forced response of a supported rail, (iii) the effect of curvature is minimal on realistic 

curvatures of mainline and tram tracks, and straight rail models could be adequate for rail 
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curvatures whose radii are greater than 20 meters, (iv) the foundation reaction forces have 

a significant effect on the rail response, especially for the lateral and torsional response, 

and (v) the vertical response is mainly responsible for rolling noise (i.e. vibrations of the 

railway track), and the lateral response can be responsible for rolling noise as well if the 

rail is supported by stiffer rail pads. However, the validity of the developed model was up 

to 1-3 kHz for different directions and rails.  

A dynamic formulation of the SAFE method obtained under external loading was 

combined with the forces caused by the continuous foundation in order to compute the 

dispersion curves of a rail with a continuous foundation [81]. Parameters required for 

modeling of supports (i.e., stiffness and damping of rail pads and ballast) were obtained by 

formulating the vertical track decay rates with a Timoshenko beam model having two 

continuous layers of damped springs (i.e., each spring representing the rail pad and ballast), 

and then minimizing the differences between the calculated vertical decay rates and the 

measured ones by changing the parameters of springs. The dispersion relations of free rail 

showed that the number of propagating waves was more than the ones calculated by the 

Timoshenko model-based rail model and that predicted waves by two approaches were 

similar for vertical waves, while some discrepancies existed for the lateral waves. The 

dispersion relations of rail with one and two-layer of support showed that (i) the waves 

predicted by the two-layer support model showed more fluctuations in lower frequencies, 

(ii) the waves predicted by the models having one and two-layer of supports were different 

from the ones obtained from the Timoshenko model-based rail model (e.g., the inclusion 

of supports have predominant effects below 1 kHz), (iii) Timoshenko model-based rail 

model could predict the propagating waves in a vertical direction up to 2 kHz. Mobility 

functions (i.e., calculated by adding a factor of Ὥύ to the receptance function, where Ὥ is 

the imaginary number and ύ is the angular frequency) calculated for rail headôs top center, 
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rail footôs bottom center, and rail footôs edge demonstrated that (i) cut-on frequencies of 

the waves and the frequency at which the rail bounces on the rail pad (if one layer model 

was used), or the frequency at which rail and rail pad bounce on ballast (if two-layer 

support model was used) appeared as peaks in the mobility functions, (ii) models generated 

with the SAFE based method demonstrated more complex rail cross-sectional 

deformations (i.e., similar to the results in previous studies). It was also observed that the 

effect of frequency-independent structural and viscous damping was limited to the 

frequency regions located around peaks in the mobility functions. 

One study carried out a parametric investigation to minimize the sound radiated 

from a railway track [82]. First, the effects of rail vertical impedance, rail geometry, rail 

shape, damping ratio and stiffness of rail pads, mass and area of sleepers, and use of 

external damping on track sound radiation were evaluated. The track sound radiation was 

formulated in terms of radiated sound power, the equivalent radiating length of the rail, 

and the product of the radiation efficiency of the rail (this quantity is directly related to the 

rail shape). Then, since adjusting the rail pad stiffness and placement of external damping 

(dynamic absorbers with a mass of 5 kg every sleeper bay) are parameters feasible to apply 

on existing railway tracks, the effect of these two was further assessed. 

To consider the effect of the change in rail pad stiffness (due to a wheel being on 

the rail) on the dynamic response of rail, an extended wave finite elements (i.e., WFEs) - 

finite elements (i.e., FEs)  coupling method (i.e., WFE-FE) was presented in [83]. In the 

method, the rail spans which were affected by the change in the support stiffness (i.e., 

central part) were modeled as a combination of heterogenous zones (i.e., rail with fasteners) 

using FEs and internal waveguides modeled using WFEs. The rail spans which were not 

affected by the change in the support stiffness were considered semi-infinite parts placed 

at the end of the central part. The coupling of these different sections was performed using 
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waveshape amplitudes by formulating the dynamic equilibrium at each FE-WFE interface. 

The receptance functions computed up to 5 kHz were compared with the experimental ones 

and consistent results were obtained. It was demonstrated that softening of fasteners had a 

bigger impact on the dynamic response of rail rather than stiffening. The study also studied 

the effect of anti-vibration supports using the proposed WFE-FE coupling method. 

Furthermore, the effect of variations in the track parameters (especially sleeper 

spacing) was examined in several studies. In one study, the effect of rail pad stiffness, 

ballast stiffness, dynamic ballast-subgrade mass, and sleeper spacing on the maximum 

contact force between rail and a moving wheel, the maximum amplitude of wheelsetôs 

acceleration, and maximum sleeper displacement were carried out [84]. The statistical 

information about the considered variables was obtained through field tests and laboratory 

tests. The perturbation method was used along with a numerical train-track interaction 

analysis. In the perturbation method, as long as some smoothness conditions are met, the 

functions and operators are expanded in the Taylor series about their mean values. So, the 

solution is approximated by first few terms in the expansion. Considering a linear 

relationship between the variables and the response results in the first-order perturbation 

approach. However, this method requires small variations in the considered variables. The 

results demonstrated that the effect of the rail pad stiffness is highest for the contact force 

and vertical wheelset acceleration. In another study, the effect of random sleeper spacing 

on the magnitude of the rail response at pin-pin frequency was investigated through the 

perturbation method and numerical analysis [85]. The results of the numerical analysis 

showed that the response is magnified when a small deviation exists in the sleeper spacing 

while it is decreased when a large deviation exists in the sleeper spacing. The results of the 

perturbation approach validated the known fact that this method could be applicable only 

when small deviations exist in the sleeper spacing. To examine the larger statistical 
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variations in the sleeper spacing, a numerical model was used in [86]. Regular spacing, 

random spacing (obtained through measurements from two railway tracks), and optimal 

spacing (i.e., 5 sleeper spans of 0.6 m spacing and 5 sleeper spans of 0.7 m spacing) were 

considered. The analysis demonstrated that optimal spacing led to the lowest frequency 

response and acceleration levels as well as sound radiation at the pin-pin resonance mode. 

The sound radiated by the rail as a result of its vibrations was studied in [87], where 

the wavenumber boundary element method was combined with WFE, and its solution was 

computed using the inverse Fourier transform. It should be noted that WFE yields the same 

formulations as the SAFE method. The study considered the rail pad as a continuous 

foundation and hence included the rail pad in the two-dimensional discretized cross-section 

of the rail that is required in the WFE method. The stiffness of the rail pad was taken as a 

constant value, ignoring the change in this stiffness with respect to different frequency 

ranges. The study computed the dispersion curve, point mobility (i.e., velocity divided by 

the total point on a point at the top of the rail head), deformational shapes of the rail, 

normalized powers, and radiation efficiency of the rail. It was shown that the normalized 

power and radiation efficiency increase approximately linearly up to 1000 Hz, and then 

peaks and dips appear after 1000 Hz due to the interferences of waves in the rail head and 

foot. The results obtained with the combined WFE-boundary element method were also 

compared with some more simplistic approaches presented in the literature. The 

comparisons showed that the simplified approaches managed to capture the total behavior 

of sound radiation well after 200 Hz. 

The sound radiation characteristics of rail were also examined in [88] by using an 

analytical model that was capable of modeling vertical/lateral interactions, accounting for 

vertical, lateral, axial, and torsional deformations as well as corrections for shear 

deformation, shear center eccentricity, and warping. At first, for validation, the dispersion 
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curves obtained from the analytical model were compared with the ones obtained from the 

WFE method and the FEM method, where also the effect of considering the stiffness as 

continuous support under the rail was also examined. After the validation of the proposed 

analytical model, (i) the point mobility functions obtained from the proposed analytical 

model, a simple Timoshenko beam model, and the WFE method, (ii) the cross mobility 

functions (i.e., the response of the rail at lateral direction due to a force in the vertical 

direction on the same rail cross-section area) obtained from the proposed analytical model 

and the Timoshenko beam model, and (iii) the decay rates obtained from the proposed 

method and the Timoshenko beam model were compared. The results demonstrated that 

(i) point and cross mobility functions from the proposed method and the WFE method 

matched well except for some peaks due to cut-on frequencies of some waves, (ii) the 

inclusion of torsion in the proposed method had a big influence of the mobility functions 

after 2 kHz, (iii) the decay rates generally exhibited good agreement. The frequency range 

considered in the study was approximately 6 kHz. In addition, at the final stage of the study, 

measurements from field tests were compared with the proposed analytical model and the 

Timoshenko model, where satisfactory agreements between the proposed method and the 

measurements were obtained in terms of track decay rates and mobility functions. The 

decay rates in the vertical direction demonstrated good agreement for a larger frequency 

range since cross-sectional deformations in lateral directions were not captured after 

approximately 2 kHz.  

2.1.3 Pass and Stop Bands of Wave Propagation in Rails Considering the Effect of 

Discrete Supports 

The rail is considered as a periodically or nearly periodically supported beam since 

fasteners restraint the movement of the rail at periodically or near periodically spaced 
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points (small deviations in the periodicity lead to near periodicity). In such beams, wave 

propagation is governed by pass and stop bands.  

In literature, the wave propagation and dynamics of periodically or nearly 

periodically supported beams were studied extensively. Therefore, first, a review of the 

selected studies on periodically and nearly periodically supported beams is presented. This 

review consists of beams with finite and infinite lengths. Then, the review of the studies 

that examined rail vibrations considering the periodic (or nearly periodic) structure of rail 

is presented.  

In almost all the studies focusing on periodicity and near periodicity of beams, 

propagation constants, and transfer matrices were used to relate the displacement and 

forces at one side of the periodic element to the ones at the other side, and they were 

obtained through different approaches. Propagation constants with only the imaginary part 

or imaginary values of the eigenvalues of a transfer matrix between two spans represented 

the propagating waves which had no decay in amplitude but had changes in the phase (i.e., 

the waves in the pass bands), while propagation constants with the real part or real values 

of the eigenvalues of a transfer matrix between two spans represented only the decaying 

waves which did not have any changes in the phase (i.e., the waves in the stop bands). 

Studies also showed that (i) complex-valued propagation constants (or complex-valued 

eigenvalues) exist if the structure of interest has damping, and (ii) natural modes occur if 

the periodic (or nearly periodic) beam has a finite length. As a result, the studies used the 

imaginary parts of the propagation constants (or eigenvalues) to compute the pass bands 

and natural modes (if exist). 

A graphical method to find the natural frequencies of multi-span finite periodic 

beams was developed in [89]. Moments (caused by waves propagating in the positive and 

negative directions) at the supports were written in terms of the moments at the end of each 
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span to obtain the propagation constants required to compute pass and stop bands. 

Considering the boundary conditions in terms of rotations and moments for free-free, fixed-

fixed, and free-fixed end conditions, the equations needed to be satisfied for specific 

propagation constants (i.e., natural frequencies) were established. It was found out that (i) 

natural frequencies lie in propagation zones and the total number of natural frequencies in 

the pass band equals ὲ-1, where ὲ is the number of span numbers, and (ii) if the end 

conditions of the beam are free, the ὲôth natural frequency is located at the lower bounding 

frequencies of each pass band while the opposite is true for fixed end conditions. 

A finite element approach to find the pass bands of infinitely long periodic systems 

with multiple coupling points was presented in [90]. The energy of the wave motion was 

also studied through receptance functions. Waves with purely imaginary propagation 

constants indicated energy flow while waves with purely real propagation constants 

indicated no energy flow. Afterward, the potential and kinetic energy of propagating waves 

were studied and the Rayleigh-Ritz method was extended to find propagation constants 

and the corresponding propagating waves corresponding to the constants. When damping 

was introduced, it was shown (i) that all propagation constants become complex, but (ii) 

real parts of constants associated with propagating waves are smaller than the real parts of 

constants associated with non-propagating waves. 

In another study, the equations to obtain pass bands of infinitely long periodic 

multi-span beams having simple supports or linear vertical elastic supports (both of which 

have additional rotational springs at supports) were established through receptance 

functions [69]. The study displayed the mode shapes of the beam (having simple supports 

and rotational springs) at lower and upper bounding frequencies of the first pass band, and 

also at a frequency in the first stop band. It was demonstrated that the imaginary part of the 

propagation constants in a pass band are multivalued, which means both positive and 
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negative direction-going waves consist of an infinite number of positive and negative 

direction-going waves. Therefore, it was shown that these waves are made of a wave group. 

For example, for a positive direction-going wave, its negative direction-going wave 

components in its wave group indicate the waves reflected from supports. The apparent 

wave shape of the wave group was denoted as pseudo-wavelength. It was also shown that 

the component wavelengths within the wave groups are not exact multiples or fractions of 

the support spacing, nor one wavelength is a simple multiple of another, except in special 

cases where the imaginary part of the propagation constant is zero or even multiples of “ 

(i.e. fundamental modes). In these cases, the wave components correspond to positive and 

negative direction-going waves having equal magnitudes. As a result, they looked like 

standing waves. It was also found that, in the ὲôth pass band, the ὲôth fastest propagating 

wave component dominated the wave motion. 

Receptance functions were also used to obtain pass and stop bands of mono-

coupled periodic beams (i.e., one degree of freedom at connection points of beams) [91]. 

The study showed that the frequencies of a finite beam can be located also in and out of 

the pass bands besides at bounding frequencies if periodic beam elements are 

unsymmetrical. Natural frequencies of finite periodic mono-coupled systems fixed at the 

ends were also studied and it was demonstrated that ὲ-1 natural frequencies lie within pass 

bands while the ὲôth one lies at the upper bounding frequency for an ὲ element periodic 

beam. In addition, characteristic wave receptance (i.e., defined as the ratio of the harmonic 

dynamic response at one of the coupling coordinates to the unit harmonic force at that 

coordinate) was used to compute the natural frequencies of finite periodic mono-coupled 

structures with different boundary conditions, as well as to examine the reflection and 

phase change of waves from the boundaries. The study also described that no attenuation 
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or amplification of the wave amplitude occurs for the waves having the natural frequencies 

of the multi-coupled periodic beams. 

The features of wave propagation presented in the previous study were extended to 

multi-coupled periodic beams in a subsequent study [92]. It was demonstrated that 

bounding frequencies of multi-coupled periodic beams correspond to natural frequencies 

of single symmetric elements when one type of degree of freedom is fixed while the other 

type is free (e.g., simply supported beams). The study also showed the following important 

outcomes: (i) specific relationships between the displacements and forces caused by the 

wave propagation in the pass and stop bands exist for periodic structures that are made of 

symmetric elements, (ii) reflection from the boundaries of multi-coupled periodic beams 

converts the incident wave to another type of waves if the incident wave consists of only 

one type of wave, and (iii) no attenuation or amplification of the wave amplitude occurs 

for the waves having the natural frequencies of the multi-coupled periodic beams as the 

case in mono-coupled periodic beams. 

The pass bands of infinitely long periodic multi-span beams were obtained using 

the infinite system point direct receptance function (which equates the displacement at one 

support to the forces at all the supports) [93]. Since such forces are periodically apart from 

each other and they differ from each other by a constant phase in pass bands, the derived 

receptance functions were considered as a phased array of forces. By considering the 

displacement-force relation at different kinds of supports, equations were developed to 

calculate the pass and stop bands. Harmonic response at a location of the beam to a 

harmonic force was calculated using the infinite system receptance functions. Examples 

using a Timoshenko beam model demonstrated that (i) the frequencies of pass bands of 

Timoshenko beams are lower than the ones of Bernoulli beams, and (ii)  propagation 
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constants with infinite attenuation occur for Timoshenko beams at higher frequencies due 

to the thickness-shear mode.       

The responses of single and multi-span finite-length uniform Euler-Bernoulli 

beams to harmonic force excitations were analyzed in [94]. The responses were considered 

as a combination of free and forced wave components. The forced waves consisted of 

waves generated due to external harmonic forces as well as harmonic forces imposed by 

the supports, while the free waves were considered as the reflections from the extreme ends 

of the finite-length multi-span beams. The waves generated due to external harmonic forces 

were obtained as the solutions to the wave propagation in infinite beams caused by external 

forces, while free waves were solved as the solutions to the free wave propagation in finite 

beams with different boundary conditions. In the provided examples, frequency response 

functions were derived for 3 and 6 multi-span beams to compute the natural frequencies of 

such beams under different end boundary conditions (such as free, simply supported, 

clamped, as well as translational and rotational springs with different stiffness values). 

To obtain the frequency response functions, the support forces for the supports that 

were located at both sides of the loaded beam (i.e., the beam span where the load was 

applied) as well as the support forces for the remaining supports were considered [95]. 

Equations for reaction forces in terms of the applied harmonic forces were obtained and 

they were solved using the compatibility and equilibrium conditions of the supports. 

Depending on the number of degrees of freedom at support points, different numbers of 

compatibility and equilibrium conditions were used. Using the forces and responses, 

receptance functions were obtained. In the examples, it was demonstrated that changes in 

the translational spring values affected the second bounding frequency of pass bands while 

the changes in the values of rotational springs affected the first bounding frequency of pass 

bands. 
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A review study about the research conducted on wave propagation in periodic and 

nearly periodic structures between 1964 and 1995 was carried out in [96]. The methods 

were reviewed under the following categories: receptance function-based methods, direct 

solution, transfer matrix, method of space harmonics, and energy-based methods. 

However, when the periodicity of multi-span periodic beams is distorted due to 

small deviations in the span length or support stiffnesses, it was shown that (i) each beam 

span has a similar but slightly different pass band, and (ii) waves whose frequencies 

correspond to the frequencies in the differences between pass bands attenuate due to 

reflections from supports since stop bands shifts to these frequencies [97]ï[100]. 

Consequently, some portion of the wave energy is confined at each span due to distortion 

in the periodicity. It was also shown that, if the periodicity of only one element gets 

distorted, wave localization takes place in that particular span [98], [101]ï[109]. Usually, 

transfer matrix approaches and Lyapunov exponents were used to calculate the decay in 

the wave amplitude in nearly periodic beams, while the transfer matrix approach, 

receptance functions, as well as Rayleigh-Ritz formulation integrated with the perturbation 

method were used to study the effect of distortion in the periodicity of only one element of 

periodic multi-span beams. 

One early study that investigated the wave propagation in rails with periodic 

supports did not demonstrate the pass and stop bands, but computed the receptance 

functions using the procedure developed to compute eigenvalues (i.e., equivalent to 

complex wave propagation constants) and eigenvectors (i.e., equivalent to complex wave 

propagation shapes) of a transfer matrix [110]. First, a modeling technique of rail similar 

to the FSM was developed exploiting the virtual work principle by using a kinematic 

description for a rail cross-section defined with arbitrary functions. The dispersion curves 

obtained using this method were compared with the ones obtained using finite element 
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discretization of the railôs cross-section and it was shown that the proposed technique can 

be used for frequencies up to 3 kHz. Then, the effect of periodic support was tried to be 

incorporated by using a transfer matrix of coupling coordinates (i.e., two adjacent spans 

and the support in between them). However, it was shown that severe ill-conditioning of 

the transfer matrix occurred due to the presence of the decaying waves. Therefore, a new 

method that used spansô local wave coordinates was proposed. This method allowed for 

generating a transfer function with two components in which one component was 

responsible for ill-conditioning. Therefore, in the solution of the new matrix, using the 

summation of the matrix with its inverse, it was possible to separate the calculated 

eigenvalues and vectors representing the propagating waves. The calculated receptance 

functions using the computed propagating waves showed consistency with the 

measurements. However, this method omitted the length of the support in the longitudinal 

direction. 

A similar procedure to the one developed in the previous study was used to obtain 

the pass and stop bands of a rail as well as receptance functions [111]. First, a transfer 

matrix formulation using the impedance of a rail span (formulated as Euler and 

Timoshenko beam) and the support were formulated. The summation of the matrix with its 

inverse was again proposed to avoid ill-conditioning. However, the results were consistent 

only up to 1200 Hz, due to not including higher cross-sectional modes in Euler and 

Timoshenko beam models. Therefore, a method in which the beam deformations were 

formulated in terms of kinematic motion basis. To achieve good results in higher 

frequencies, additional rigid body modes were included using static calculations on a FEM 

model of the rail, in addition to the basic set of rigid body modes. Afterward, the 

formulation of the transfer matrix using the new method was demonstrated. Pass and stop 

bands of the vertical and lateral waves up to 5 kHz were displayed and it was shown that, 
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especially for lateral waves, the waves could not be labeled as notations that are used to 

describe simple motions such as bending and torsion. The difference in the stiffness of rail 

supports at different frequencies was also incorporated into the analysis. The comparison 

of receptance functions with the experimental ones showed good consistency except that 

the experimental ones showed more peaks at higher frequencies. 

The pass and stop bands of rail up to 6 kHz using a mathematical model based on 

the Timoshenko beam were computed in [112]. Green functions which relate the applied 

force vector with the resulting displacements were adopted. Timoshenko beam model was 

used in the derivation of the green functions. The resulting governing equation was a Green 

matrix, which related the forces and the displacement in all directions. The matrix was 

computed by using Hamiltonôs principle considering a force distribution along a line 

parallel in the longitudinal direction and by using Fourier Transform considering a point 

force applied on the beam. Then, the total dynamic response of the rail was formulated as 

the linear combination of responses due to the forces from support points and an external 

point force using the Green function matrix. Next, using (i) the relation that the forces at 

the support points are related to the displacements using the impedance of the supports and 

(ii) Blochôs Theorem stating that free waves in a periodic beam have a constant spatial 

dependence between adjacent spans, a matrix consisting of the linear set of equations which 

describes the characteristics of the wave propagation was established. The propagation of 

longitudinal, torsional, vertical, and horizontal bending waves was investigated using the 

eigenvalues of the established matrix. The pass and stop bands computed considering the 

supports that were modeled as only mass showed that (i) the pin-pin resonances correspond 

to the beginning frequency of pass bands, (ii) at low frequencies, there is a pass band, (iii) 

the total length of a pass and stop band is constant, and (iv) the width of stop bands increase 

at higher frequencies. The pass and stop bands computed considering the supports that were 
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modeled as only spring showed that (i) there is a beam-spring resonance frequency in each 

direction. (ii) above the resonance frequencies, pin-pin modes correspond to the ending 

frequency of pass bands, and the width of pass bands increases at higher frequencies, and 

(iii) two curves each representing a vertical strongly decaying wave are not clearly 

separated anymore from the curves representing the vertical propagating waves.  

An approach initially developed to calculate the response of periodic multi-span 

beams to moving loads [113] was used to obtain the pass and stop bands of rail in [114]. 

The method presented in [113] is based on formulating the response of rail caused by 

periodic supports and moving load in terms of dynamic equations used in SAFE, moving 

load amplitude and amplitude of one of the support forces, and then equating these 

responses evaluated at support locations with the responses of supports formulated in terms 

of receptance functions of the supports and periodic support forces. The method used 

transformation from frequency and wavenumber domains to perform the computations. In 

[114], the responses caused by the moving loads were discarded, and a dynamic matrix 

consisting of the SEMI dynamic equation and receptance matrix of the supports was used 

to obtain the propagation zones. Next, rail was formulated using the Timoshenko beam 

model, and pass and stop bands were computed up to 3500 Hz. The computed pass and 

stop bands showed that (i) when the propagation constant is zero, vibration at one support 

of a rail span is equal to that at another support of the span, (ii) when the propagation 

constant is “, vibration at one support of a rail span is equal in magnitude but opposite in 

direction to that at other support of the span, (iii) the deformation patterns at bounding 

frequencies of pass bands can be obtained by either fixing rotational degree of freedom or 

translational degree of freedoms, therefore bounding frequencies can be found using a 

single span, (iv) the peak representing the pin-pin mode in receptance function obtained 

under static load is splited into two different peaks when moving load is considered in the 
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calculation of the receptance function, and the distance of the new two peaks is governed 

by the speed of the moving load and the span length.  

One study did not compute the pass and stop bands, but mobility functions and 

decay rates of rails with stiff and soft rail pads were computed using the receptance 

coupling method [115]. Receptance coupling method is based on calculating the dynamic 

response of a structure, that consists of a source structure (i.e., rail), a receiver structure 

(i.e., sleeper), and flexible isolators connecting the source and receiver structures (i.e., rail 

pads), using the receptances between the applied force and rail, between rail and forces 

induced by rail pads, between the sleeper and forces induced by rail pads, and between the 

rail pads and the forces experienced by rail pads. Overall, 131 rail supports connected to 

sleepers and rail were considered to model the infinite rail (i.e., avoiding reflection from 

ends of rail). The parameters needed to model the rail pad, and sleepers were obtained from 

the measurements. Ballast under the sleepers was also considered in the study. The 

comparison with the experimentally obtained mobility functions and decay rates up to 8 

kHz demonstrated that the proposed methodôs performance was satisfactory.  

Another formulation for pass bands of rail was presented in [116]. The formulation 

was based on correlating the state vectors (i.e., the displacement and forces) at one side of 

the adjacent spans by combining (i) the relation used for state vectors of adjacent spans at 

support points and (ii) the transfer matrix of the rail span that related the wave propagation 

at one side of the span to the other side, and then by using Bloch theorem which related the 

correlation at one side of the adjacent spans through Ὡ , where Ὧ is the characteristic 

wave number and ὰ is the span length. Opposite to the propagation constant used in other 

studies, the real part of Ὧ represents the change in phase (i.e., no decay in amplitude, hence 

pass bands) while the imaginary part of Ὧ indicates the attenuation (i.e., stop bands). 

However, one and two-layered Euler beam model was used for the rail, and therefore pass 
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and stop bands were computed only up to 2.5 kHz. The effect of support stiffness, sleeper 

mass, and temperature on the pass and stop bands was also investigated. The study also 

investigated the periodically supported rail as photonic crystals, in which Bragg band-gaps 

and locally resonant band gaps exist together. It was demonstrated that the Bragg-gap was 

located at the ñpin-pinò frequency and determined by the stiffness and spacing of the 

fasteners, while the locally resonant band gap existed in the very low-frequency range due 

to vibrations of rail pads and sleepers.  

The same approach presented in [116] was also applied in [117]. However, 

Timoshenko model-based rail model was used in the study. Therefore, pass and stop bands 

were identified only up to 1500 Hz. The study also studied the effect of randomly 

disordered periodic spans (due to small deviations in the rail span length or/and in the 

stiffness of fastener connections) on the pass and stop bands. It was demonstrated that the 

attenuation of waves increased in the pass bands and decreased in the stop bands when the 

disorder was caused by small changes in the length of spans. The same phenomena were 

observed also when the disorder was caused by changes in support stiffness. However, in 

this case, the pass bands whose starting frequency was a pin-pin mode was not affected. 

The study also conducted field tests to measure the attenuation of waves through vibration 

transfer coefficient. The results demonstrated that (i) frequency range of pass and stop 

bands were consistent with the analytical results and (ii) random disorder in the measured 

railway track caused waves to attenuate at the bounding frequency of the pass bands. 

2.1.4 Free Wave Propagation at High Frequencies 

Since there was a little study on bars with complicated cross-sectional shapes (such 

as rail) for the purpose of non-destructive evaluation, [118] generated the phase and group 

velocity dispersion curves of a rail using the SAFE method up to 100 kHz. In addition, the 
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study compared the computed results with the experimental results for the purpose of 

validation. First, the study formulated the SAFE method to obtain the dispersion curves as 

well as phase and group velocities. Then, an experiment using a rail piece was carried out 

where measurements from the top rail surface were obtained with 10 mm resolution in the 

longitudinal direction in order to obtain the dispersion curves experimentally. The 

analytically computed dispersion curves were replotted by considering the displacement 

value of the waves on the top rail surface so that analytical and experimental results could 

be compared. The results showed that the experimental and analytical results were in good 

agreement.  

In order to account for the material damping, the SAFE method was modified in 

[119], leading to the calculation of energy velocity instead of group velocities. The 

incorporation of the material damping was performed by using a linear viscoelasticity 

matrix that had complex components. The study demonstrated the solution to the SAFE 

method both with real and complex viscoelasticity matrices. When damping was not 

considered, the eigenvalues of the propagative modes had real values while the eigenvalues 

of the evanescent modes had imaginary values. However, when the damping was included, 

the eigenvalues of both types of modes had imaginary values. The SAFE solution with 

material damping was applied to different kinds of structures including rail with a typical 

cross-sectional shape. For the rail, dispersion curves in terms of phase velocity, energy 

velocity, and attenuation (which was obtained due to the incorporation of the material 

damping into the SAFE method) were provided up to 50 kHz.  

In order to examine the guided waves in rail up to 80 kHz, dispersion curves were 

created in [67] using two methods. In the first method, a finite element model of the rail 

whose length is half the length of a typical rail span was formed and modal analysis was 

performed. Correlating the frequency of the modes of the model with wavenumber, 
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dispersion curves were created. In the second method, SAFE was used, and similar 

dispersion curves were computed. In both approaches, the damping induced by the rail 

pads was incorporated into finite element and SAFE models using a continuous foundation 

as this approach was a good approximation of the effect of rail pads in frequencies higher 

than 20 kHz. The dispersion curves showed that (i)  many waves are propagating 

simultaneously in the rail (ii) some wave modes exchange their cross-sectional deformation 

shapes with each other when these modes get very close to each other on the dispersion 

curves, and (iii) most of the waves change their cross-sectional deformations at different 

frequencies (from global cross-sectional deformation to local cross-section deformations 

as the frequencies increase). Dispersion curve in terms of group velocity showed that the 

wave speeds approach a fixed value as the frequencies increase. In order to demonstrate 

which waves can be measured from the rail when measurement points are on different 

sections of the rail cross-section, the dispersion graphs were replotted using highlighting 

the energy of waves at different points on the rail. The considered points were the top and 

side of the rail head, the side of the web, and the top of the rail foot. Next, to verify these 

results, experiments were conducted. A rail was excited by an impact hammer as well as 

an ultrasonic transducer. The recorded time-frequency spectrums were converted to group 

velocity and frequency graphs and then were compared with the ones obtained using SAFE.  

It was observed in both approaches that a localized vertical bending wave propagates after 

15 kHz in the rail head, and after 32 kHz, other vertical waves also appear in the rail head.  

 Since previous studies did not include the decay rates of propagating waves in the 

rail head up to very high frequencies such as 80 kHz, and they did not also consider the 

damping introduced by the rail pads, [68] carried out analytical formulations using Wave 

Finite Element method (similar to SAFE method) as well as experimental work. In the 

analytical work, rail pads were considered as continuous foundation (since this approach 
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is a good approximation of energy loss due to rail pads in high frequencies). Consequently, 

a rail on a continuous foundation was modeled. Using Taylor series approximation in a 

complex stiffness matrix (which accounted for material damping and the damping due to 

rail pads), damped wave numbers were computed and the decay rate was obtained using 

the imaginary part of the wave numbers. Loss factors (not depending on frequency) were 

used for the damping values. The lowest decay rates were observed between 10 and 20 

kHz, and it was also observed that decay rates were not affected much by the rail pads at 

frequencies higher than 20 kHz due to waves being localized at different sections of the 

railway track such as rail head, web, and foot. Next, impact hammer tests were carried out 

in order to estimate the loss factor of rail and it was found out the experimental values were 

not very different than the ones used in the analytical model. The results of the analytical 

models with the updated loss factor demonstrated that the minimum decay rates occur 

between 20 kHz and 40 kHz. Afterward, the waves demonstrating more energy at three 

different locations on the rail cross-section were highlighted on the dispersion and decay 

rate curves. It was observed that the waves with minimum decay rates were the vertical 

bending waves locally propagating in rail head. In the final step, measurements from a 

railway track were obtained during the passage of several operating trains using 

accelerometers attached on one side and under the rail head, as well as on one side of the 

rail web. Decay rates were obtained from the difference in magnitudes of acceleration 

levels between two train positions. It was shown that the measured decay rates matched 

the analytical ones. One additional observation in this study was that the wheel-rail 

interaction was able to excite the waves up to 90 kHz. 

Since the dispersion curves of rail exhibit mode repulsion and crossing, which could 

be difficult to distinguish, [120] introduced a term called ñrepulsion numeratorò. This term 

exhibits a very high peak value for two modes that repel each other at the particular 
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frequency in which the repulsion occurs. This term is zero for two modes that cross each 

other. To introduce the term, the study used SAFE and the second derivative of eigenvalues 

with respect to wavenumber and the first derivative of eigenvectors with respect to 

wavenumber. The main outcomes of this study were as follows: (i) for a symmetric rail, 

only the symmetric and antisymmetric modes can cross each other while the same type of 

modes can only repel each other, (ii) the mode shapes exchange within each other during 

the repulsion, and (iii) if the rail is antisymmetric, only the mode repulsion occurs. An 

experimental study in which ultrasonic transducers excited the specific modes that 

exhibited repulsion showed that the analytical results matched the experimental results. 

The comparison of these results was performed using time-frequency plots of the waves 

obtained from the tests and the dispersion curves.  

To better investigate the mode shapes of the guided wave modes and determine the 

regions of the rail with high vibrational energy, [121] presented an image-based graphical 

method where three-dimensional displacement matrix of the mode shapes is converted into 

2-dimensional RGB images. For this conversion, the displacement values of points in the 

meshed triangles which were obtained by SAFE were interpolated using shape functions, 

then all the displacement values were converted to 2-dimensional RGB images. Histogram 

processing, where the histograms of three RGB colors (each has 255 values) are plotted 

separately, was suggested to evaluate the directions of the displacements that were shown 

as vibrational energies on the 2-dimensional RGB images. Image Gradient and 

Binarization were suggested to only plot the high energy areas of the 2-dimensional RGB 

mode shape images that exceed a threshold. Furthermore, since it is difficult to classify the 

wave modes of rails at higher frequencies using simple deformation terms such as 

longitudinal, torsional, and bending, the study used the K-means clustering algorithm to 

automatically classify the behavior of mode shapes. As an example, the study classified the 
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20 mode shapes at 35 kHz into 5 categories using the K-means clustering algorithm: (i) 7 

modes where the all rail cross-section deforms, (ii) 5 modes where the rail foot deforms, 

(iii) 3 modes where the rail head deforms, (iv) one mode where the rail web shows torsional 

deformation, and (v) 4 modes where mostly the rail web deforms (non-torsional).  

To account for the effect of axial load on the dispersion curves of rail, [122] adopted 

SAFE which is modified to include the axial loads. This modification was performed by 

including the additional terms that are proportional to the mass matrix in the eigenvalue 

formulation of the SAFE method. The wavenumber versus frequency and group velocity 

versus frequency plots (including no axial stress and 200 MPa axial stress) were plotted as 

well as the absolute and relative wavenumber sensitivity (to the axial stress) versus 

frequency plots. These plots (computed up to 100 kHz) demonstrated (i) a small influence 

of axial load on the dispersion curves, and (ii) the two low-frequency flexural waves and 

the modes with the higher frequency exhibited the highest sensitivity. In addition, an 

experiment conducted in the study also supported the outcomes of SAFE results by 

measuring the change in the group velocities in a rail considering the axial stress. 

Another study [123] also analyzed the sensitivity of rail to axial stress using a 

method called AE-SAFE where the acoustoelastic theory is combined with the SAFE 

method. The dispersion curves presented in terms of the phase velocity change of the 

symmetric and antisymmetric modes due to 400 MPa axial stress (computed up to 50 kHz) 

demonstrated that the change in the phase velocities due to axial stress is generally negative 

and that the antisymmetric modes are not sensitive to axial stress. 

2.2 MEASUREMENT OF RAIL VIBRATIONS UNDER MOVING RAIL CAR EXCITATION  

The most efficient approach to examine rail vibrations under wheel-rail excitations 

can be considered to be in-situ testing [124]. However, the studies focusing on rail vibration 
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measurements under moving loads are limited [20], [68]. Consequently, in order to 

experimentally observe rail vibrations and propagating waves in the rail induced by the 

wheel-rail interaction, in-situ tests were performed in Temple, TX with the collaboration 

of BNSF Railway Company. In these tests, measurements from rail head were collected 

during the passage of an operating train. The considered frequency range was between 0 

and 70 kHz, covering both LF and HF ranges. The maximum considered frequency was 

limited by the maximum frequency of the accelerometers. The tests were carried out on a 

rail supported by spike-type fasteners. The frequency spectrums and mode shapes were 

obtained using Frequency Domain Decomposition (FDD) method [125].  

There are two main goals for performing these in-situ tests. The first one is to 

examine if propagation zones and resonance modes are formed in the LF range in such 

tracks since spike-type fasteners usually lose contact with rail under operational conditions, 

eliminating the periodic stiffness contribution induced by the fasteners. The second goal is 

to examine if the wheel-rail interaction was capable of creating freely propagating waves 

in the rail head in the HF range. 

Overall, three types of tests were carried out. Section 1.2.1 explains these tests, 

Section 1.2.2 explains the details of the FDD method, Section 1.2.3 presents the results, 

and Section 1.2.4 summarizes the main outcomes obtained from the tests. 

2.2.1 Test Set-Ups 

The railway track consisted of wooden sleepers, spike-type of fasteners, and 

A.R.E.M.A 136 lb rail as shown in Figure 6 (a). A picture of the test field is shown in 

Figure 6 (b). Overall, three different tests were performed. In each test, vibrations were 

collected from sections located between consecutive sleepers (i.e., rail spans) using 

accelerometers under moving train excitations. To investigate the dynamic responses up to 
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70 kHz, high-frequency accelerometers (PCB 532A60) were employed. The 

accelerometers used in the tests are labeled in the format TNtANa where T stands for the 

test, Nt is the number of the test, A stands for accelerometer and Na is the number of the 

accelerometer. 

 

 

Figure 6:  Pictures of: (a) The Railway Track (b) The Test Field (c) A Train Passage. 

The details of the tests are as follows: 

Test 1: The goal of this test is to observe the frequencies and mode shapes of a rail 

span using nine accelerometers under moving train excitation. Figure 7 (a) shows the 

configuration of accelerometers along the rail span while Figure 7 (b) shows the cross-

sectional view of the instrumented span. Figure 7 (c) shows the picture of the 

accelerometers and Figure 7 (d) shows the passage of a train over the instrumented span. 
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Figure 7:  Test 1: (a) Configuration of Accelerometers (b) Cross-Sectional View of the 

Instrumented Span (c) Passage of a Rail Car over the Instrumented Rail Span. 

Test 2: The purpose of this test is to examine the mode shapes and frequencies of 

three consecutive rail spans. Therefore, two accelerometers were placed at the first and 

third quarters of each span as shown in Figure 3 (a). The length of the first span (S1), 

second span (S2), and third span (S3) were 21, 27, and 19 inches, respectively. S2 was the 

span used in Test 1. Figure 3 (b) shows the picture of the accelerometers while Figure 3 (c) 

shows the passage of a rail car over the instrumented spans. 
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Figure 8:  Test 2: (a) Configuration of Accelerometers (b) Picture of Accelerometers (c) 

Passage of a Rail Car over the Instrumented Rail Spans. 

Test 3: The goal of this tests is to observe the cross-sectional mode shapes of the 

rail. For this purpose, six accelerometers were placed on the rail cross-section of the span 

S2; two under the rail head (T3A1 and T3A4), and four on the rail foot (T3A2, T3A3, 

T3A5, T3A6), as shown in Figure 4 (a). The picture of accelerometers (T3A4, T3A5, and 

T3A6) is shown in Figure 4 (b). 

 

 

Figure 9:  Test 3: (a) Configuration of Accelerometers (b) Picture of The 

Accelerometers. 
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2.2.2 Frequency Domain Decomposition Method 

In this research, a frequency domain decomposition (FDD) technique [125] was 

used to identify the modal parameters (i.e., natural frequencies and mode shapes) of a rail 

span during the passage of a vehicle. The FDD is a non-parametric technique used for the 

modal identification of output-only systems, i.e. in the case where the modal parameters 

must be estimated without knowing the input exciting the system. This technique estimates 

the vibration modes from the spectral densities calculated, in the condition of a white noise 

input (i.e., broadband excitation), and a lightly damped structure. For this purpose, the 

relationship between the cross-power density of outputs and inputs of a structure is used:  

 

                       Ὓ Ὢ  Ὄ ὪὙ ὪὌ Ὢ                                      (2.1) 

 

In this equation, Ὓ  and Ὑ  are the power spectrums of the input and output, Ὄ is 

the frequency response matrix of a structure, Ὢ is a particular frequency, superscripts Ͻ  

and Ͻ  denote the conjugate transform and transpose, respectively. If the excitation 

spectrum is flat (i.e., the input is assumed to be white noise), then Ὑ  is constant for all Ὢ. 

Hence, the characteristic of output is not affected by the input. Consequently, Ὓ  contains 

information only related to the frequency response of the system and it is calculated as: 

 

Ὑ ὶ Ὁὢὸ ὶὣὸ                                       (2.2) 

 

Ὓ Ὢ ὊὙ ὶ                                           (2.3) 

 

where X(t) and Y(t) are the data recorded by any two sensors, t is the time, r indicates the 

difference in time, ὉϽ is the statistical expectation, ὊϽ is the Fast Fourier Transform 
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(FFT), and Ὢ corresponds to a particular frequency. Averaging and windowing are 

performed during the cross-power spectrum calculation in order to eliminate noise. In the 

second stage, the singular value decomposition (SVD) of this matrix gives the frequencies 

and mode shapes for each frequency:  

 

ὟὛὟ Ὓ  Ὢ                                            (2.4) 

 

In this equation, Ὗ is a matrix containing the mode shapes, Ὗ  is the conjugate 

transpose of Ὗ, and Ὓ is a diagonal matrix containing the spectral amplitudes for each 

frequency Ὢ. The plot of Ὓ versus Ὢ produces the spectral density graph. Peaks of this 

graph specify the dynamic modal frequencies of a structure. Afterward, mode shapes of the 

modal frequencies are extracted from the matrix Ὗ.  

2.2.3 Results 

2.2.3.1 Test 1 

The signal recorded from the accelerometer T1A5 (the accelerometer at the mid-

point of the instrumented rail span) is shown in Figure 10 (a). The passage of the first wheel 

and the last wheel of the train over the span are also specified in the figure. From this signal, 

four different 3 seconds-long segments (called Seg 1-1, Seg 1-2, Seg 1-3, and Seg 1-4, 

respectively) were selected and are further shown in Figure 5 (b), (c), (d) and (e). Seg 1-1 

corresponds to the time before the passage of the first wheel while Seg 1-2 and Seg 1-4 

correspond to the time during the passage of several wheel passages. The time instants 

corresponding to the passage of the wheels over the instrumented spans were indicated 

with ñWPò on the figures. Seg 1-3 corresponds to the time when the magnitude of the signal 

was much higher than the average. Such a high magnitude response of the instrumented 
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rail span could result from the passage of a heavier cargo car. The reason for selecting 

segments from different regions of the recorded signal is to examine the rail dynamic 

response under excitations induced by different sections of the trains. Consequently, more 

insight into the behavior of rail under moving operational trains can be gained.   

From Seg 1-1, Seg 1-2, Seg 1-3, and Seg 1-4, half-second-long segments were 

further chosen (called Seg 1A, Seg 1B, Seg 1C, and Seg 1D, respectively) and displayed 

in Figure 10 (f), (g), (h) and (i). Seg 1A corresponds to the time before the passage of the 

first wheel over the instrumented span, Seg 1B and 1D corresponds to the time between 

the passage of two consecutive wheels, and Seg 1C corresponded to one of the high-

magnitude response peaks.  

In order to obtain the frequency spectrums and mode shapes, signals recorded from 

all the accelerometers are analyzed simultaneously. Consequently, analogous time 

intervals of Seg 1A, Seg 1B, Seg 1C, and Seg 1D were used to analyze all the accelerometer 

signals. 
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Figure 10:  Test 1 ï Recorded Signals: (a) Entire Signal (b) Seg 1-1 (c) Seg 1-2 (d) Seg 

1-3 (e) Seg 1-4 (f) Seg 1A (g) Seg 1B (g) Seg 1C (i) Seg 1D. 

Signals Seg 1A, Seg 1B, Seg 1C, and Seg 1D (obtained from accelerometer T1A5) 

and the frequency spectrums obtained from all the accelerometer signals are shown in 

Figure 11. The spectrums were plotted up to 60 kHz since the behavior between 60 kHz 

and 70 kHz was similar (this is valid for all the frequency spectrums presented in the results 
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section). The figure shows that the spectrum of Seg 1A, Seg 1B, and Seg 1D are similar: 

having high magnitude responses at low frequencies and frequencies between 6 kHz and 

20 kHz. The highest response between 6 kHz and 20 kHz was observed around 8 and 11 

kHz. The spectrum of Seg C demonstrated high responses between 8 kHz and 20 kHz, with 

the highest response being around 13 kHz. Consequently, it might be concluded that the 

response between 6 kHz and 20 kHz is the most sensitive to the excitation mechanism and 

frequency content of the forces induced by rail -wheel interactions. 

 

 

Figure 11:  Test 1 ï Analyzed Signal Segments and Their Frequency Spectrums: (a) Seg 

1A (b) Seg 1B (c) Seg 1C (d) Seg 1D. 

Due to the high amplitude responses accumulated at specific frequency ranges in 

the spectrums shown in Figure 11, the behavior of the spectrums at other frequencies is not 
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visible. Therefore, Figure 12 shows separately four different regions (0 - 5 kHz, 5 kHz - 25 

kHz, 25 kHz - 45 kHz, 45 kHz - 60 kHz) of the spectrums. Based on Figure 12, it is 

concluded that the wheel can excite the rail up to very high frequencies. To examine the 

mode shapes, the spectrum of Seg 1D was chosen (mode shapes obtained from other signal 

segments exhibited similar behavior). Four peaks between 0 and 5 kHz, six peaks between 

5 kHz and 25 kHz, seven peaks between 25 kHz and 45 kHz, and three peaks between 45 

kHz and 60 kHz were chosen. The chosen peaks are marked as óoô in Figure 12 (d).  
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Figure 12:  Test 1 ï Zoomed Sections of the Frequency Spectrums Obtained from the 

Signals: (a) Seg 1A (b) Seg 1B (c) Seg 1C (d) Seg 1D. 

Figure 13 displays the first ten mode shapes which correspond to the frequencies 

up to 25 kHz while Figure 14 displays the last ten mode shapes which correspond to the 

frequencies after 25 kHz. The frequencies of the mode shapes are also specified in these 

figures. None of the mode shapes resembles any expected resonance mode shapes (e.g. 

mode shapes of the 1st, 2nd, 3rd, é modes). This is due to the fact that the spike type of 
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fasteners did not impose any force on the rails. Consequently, the rail did not behave like 

a multi-span beam whose spans were restricted by the fasteners. As a result, the waves 

induced by the wheel could propagate freely without forming any resonance frequencies at 

the rail spans. For example, let us consider the mode shape at 1574 Hz. This mode shape 

should have been close to the shape of a first mode if the rail span was restrained by the 

fasteners. However, this mode shape resembles the shape of a wave propagating freely. It 

is expected that the fluctuations of the mode shapes should increase at higher frequencies 

since the waves at higher frequencies have lower wavelengths. Therefore, all the twenty 

mode shapes were plotted with the purpose of finding a pattern in the mode shapes. 

However, the mode shapes seem to have no specific pattern. This can be attributed to the 

fact that 9 accelerometers were not enough to capture the increasing fluctuating behavior 

of mode shapes at higher frequencies.  
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Figure 13:  Test 1 ï Mode Shapes Up To 25 kHz Obtained from the Frequency 

Spectrum of Seg  1D. 
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Figure 14: Test 1 ï Mode Shapes Between 25 kHz and 60 kHz Obtained from the 

Frequency Spectrum Of Seg 1D. 
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2.2.3.2 Test 2 

The signal recorded from the accelerometer T2A3 is shown in Figure 15 (a). The 

passage of the first wheel and the last wheel of the train are again specified in the figure. 

From this signal, four different 3 seconds-long segments (called Seg 2-1, Seg 2-1, Seg 2-

3, and Seg 2-4, respectively) were selected and are further shown in Figure 15 (b), (c), (d) 

and (e). Seg 1-1 corresponds to the time before the passage of the first wheel while Seg 2-

2 and Seg 2-4 correspond to the time during the passage of several wheel passages. The 

time instants corresponding to the passage of the wheels over the instrumented span (S2) 

were again indicated with ñWPò on the figures. Seg 2-3 was chosen to have a signal 

segment in which the magnitude of the signal was much higher than the average.  

From Seg 2-1, Seg 2-2, Seg 2-3, and Seg 2-4, half-second-long segments were 

further chosen (called Seg 2A, Seg 2B, Seg 2C, and Seg 2D, respectively) and displayed 

in Figure 15 (f), (g), (h) and (i). Seg 2A corresponds to the time before the passage of the 

first wheel over the instrumented span, Seg 2C and 2D correspond to the time between the 

passage of two consecutive wheels, and Seg 2B corresponded to one of the high-magnitude 

response peaks. 

The process applied in Test 1 was again used for obtaining the frequencies and 

mode shapes from accelerometer signals recorded in Test 2: analogous time intervals of 

Seg 2A, Seg 2B, Seg 2C, and Seg 2D were used to analyze all the accelerometer signals. 
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Figure 15:  Test 2 ï Recorded Signals: (a) Entire signal (b) Seg 2-1 (c) Seg 2-2 (d) Seg 

2-3 (e) Seg 2-4 (f) Seg 2A (g) Seg 2B (g) Seg 2C (i) Seg 2D. 

Since the responses were collected from three different rail spans in this test, the 

spectrum of each span was analyzed to investigate if the rail spans exhibited different 

frequency responses. For this purpose, the spectrums (obtained from two accelerometer 

signals for each span) were plotted together. Figure 16 (a), (b), (c), and (d) show four 
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different regions of the spectrums for clear visibility. The time of the analyzed signals 

corresponds to the analogous time interval of Seg 2D (the results obtained using the time 

intervals of other segments exhibited similar behavior). Figure 16 shows that even though 

the magnitude of responses seemed to be different for some spans at some frequency ranges 

(e.g. between 9-11 kHz for span 3), the behavior of the spectrums is similar (high amplitude 

responses of each span appear at same frequency regions). If rail spans were restricted by 

the fasteners, each span would have its high amplitude responses at different regions of the 

spectrums since the resonance frequencies would be different due to different lengths of 

each span. This concludes that (i) the fasteners did not affect the frequency behavior of the 

spans and (ii ) the rail behaved like a continuous beam where waves could propagate freely. 

This outcome validates the results of Test 1, which also concluded that the rail was not 

affected by the fastener connections. In Test 1, such a conclusion was reached by using the 

mode shapes while it was reached in Test 2 by using the frequency spectrums obtained 

from three consecutive rail spans (each having different lengths).  
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Figure 16:  Test 2 - Frequency Spectrums of Each Span Obtained Using the Signal Seg 

2D: (a) 0- 8 kHz (b) 8 kHz ï 20 kHz (c) 20 kHz - 35 kHz (d) 35 kHz ï 60 

kHz. 

Since it was validated that the rail behaved like a continuous beam, the signals 

obtained from all the accelerometers (placed on three spans) were analyzed simultaneously 

to investigate the frequency response of the rail for different time segments. Signals Seg 

2A, Seg 2B, Seg 2C, and Seg 2D and the frequency spectrums obtained from all the 

accelerometer signals are shown in Figure 17. The figure shows that the spectrum of Seg 
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2B and Seg 2C are similar: having high magnitude responses at low frequencies and 

frequencies between 8 kHz and 19 kHz, with the highest peaks being observed around 8 

and 10 kHz. The spectrum of Seg A demonstrated high responses between 12 kHz and 20 

kHz and between 23 kHz and 27 kHz with the highest peak being around 16 kHz. This 

might be attributed to the fact that the locomotive section of the train (the first section of 

the train passing over the instrumented span) excited different frequencies more 

considerably compared to the other sections of the train.  The spectrum of Seg C 

demonstrated periodic high amplitude peaks (at 9 kHz, 18 kHz, 27 kHz, and 36 kHz). Such 

a periodic excitation might be due to an engine or another machinery component passing 

over the instrumented span.   

 

 

Figure 17:  Test 2 ï Analyzed Signal Segments and Their Frequency Spectrums: (a) 

Seg 2A (b) Seg 2B (c) Seg 2C (d) Seg 2D 
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Due to the high amplitude responses accumulated at specific frequency ranges in 

the spectrums shown in Figure 17, the behavior of the spectrums at other frequencies is not 

visible. Therefore, Figure 18 shows separately four different regions (0 - 5 kHz, 5 kHz - 25 

kHz, 25 kHz - 45 kHz, 45 kHz - 60 kHz) of the spectrums. Based on this figure, it is 

concluded again that the wheels can excite the rail up to very high frequencies. To examine 

the mode shapes, the spectrum of Seg 2D was chosen (mode shapes obtained from other 

segments exhibited similar shapes). Four peaks between 0 and 5 kHz, six peaks between 5 

kHz and 25 kHz, seven peaks between 25 kHz and 45 kHz, and three peaks from 45 kHz 

and 60 kHz were chosen. The chosen peaks are marked as óoô in Figure 18 (d).  
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Figure 18:  Test 2 ï Zoomed Sections of the Frequency Spectrums Obtained from the 

Signals: (a) Seg 2A (b) Seg 2B (c) Seg2 C (d) Seg 2D. 

Figure 19 displays the first ten mode shapes which correspond to the frequencies 

up to 25 kHz while Figure 20 displays the last ten mode shapes which correspond to the 

frequencies after 25 kHz. The frequencies of the mode shapes are also specified in these 

figures. None of the mode shapes resembles any expected resonance mode shapes (e.g. 

mode shapes of the 1st, 2nd, 3rd, é modes).  This outcome is expected as it was already 
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validated in Test 1 and Test 2 that the rail behaved like a continuous beam. All twenty 

mode shapes were plotted with the purpose of finding a pattern in the mode shapes. 

However, the mode shapes seem to have no specific pattern similar to the mode shapes 

obtained in Test 1.  

 

 

Figure 19:  Test 1 ï Mode Shapes Up To 25 kHz Obtained from the Frequency 

Spectrum of Seg  2D. 
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Figure 20: Test 2 ï Mode Shapes Between 25 kHz And 60 kHz Obtained from the 

Frequency Spectrum of Seg 2D. 
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2.2.3.3 Test 3 

The signal recorded from the accelerometer T3A2 is shown in Figure 21 (a). The 

passage of the first wheel and the last wheel of the train are again specified in the figure. 

From this signal, four different 3 seconds-long segments (called Seg 3-1, Seg 3-1, Seg 3-

3, and Seg 3-4, respectively) were selected and are further shown in Figure 21 (b), (c), (d) 

and (e). Seg 3-1 corresponds to the time before the passage of the first wheel while Seg 3-

3 and Seg 3-4 correspond to the time during the passage of several wheel passages. The 

time instants corresponding to the passage of the wheels over the instrumented span were 

again indicated with ñWPò on the figures. Seg 3-2 was chosen to have a signal segment 

where the magnitude of the signal was much higher than the average.  

From Seg 3-1, Seg 3-2, Seg 3-3, and Seg 3-4, half-second-long segments were 

further chosen (called Seg 3A, Seg 3B, Seg 3C, and Seg 3D, respectively) and displayed 

in Figure 21 (f), (g), (h) and (i). Seg 3A corresponds to the time before the passage of the 

first wheel over the instrumented span, Seg 3C and 3D correspond to the time between the 

passage of two consecutive wheels, and Seg 3B corresponded to one of the high-magnitude 

response peaks.  

The process applied in Test 1 and Test 2 was again used for obtaining the 

frequencies and mode shapes from accelerometer signals recorded in Test 3: analogous 

time intervals of Seg 3A, Seg 3B, Seg 3C, and Seg 3D were used to analyze all the 

accelerometer signals. 
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Figure 21:  Test 3 ï Recorded Signals: (a) Entire Signal (b) Seg 3-1 (c) Seg 3-2 (d) Seg 

3-3 (e) Seg 3-4 (f) Seg 3A (g) Seg 3B (g) Seg 3C (i) Seg 3D. 

Signals Seg 3A, Seg 3B, Seg 3C, Seg 3D and the frequency spectrums obtained 

from all the accelerometer signals whose time intervals correspond to the time interval of 

Seg 3A, Seg 3B, Seg 3C, and Seg 3D are shown in Figure 22. The figure shows that the 

spectrum of Seg 3A and Seg 3C are similar: having high magnitude responses at low 
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frequencies and frequencies between 6 kHz and 20. The spectrum of Seg 3D has high-

magnitude responses at low frequencies as well. However, the second region of high 

responses is located between 5 and 10 kHz. The spectrum of Seg 3B contains high 

responses at around 22, 26, and 29 kHz. Consequently, it can be again concluded that the 

response between 6 kHz and 20 kHz is most sensitive to the excitation mechanism and 

frequency content of the forces induced by wheel-rail interactions. 

 

 

Figure 22:  Test 3 ï Analyzed Signal Segments and Their Frequency Spectrums: (a) Seg 

3A (b) Seg 3B (c) Seg 3C (d) Seg 3D. 

 

Due to the high amplitude responses accumulated at specific frequency ranges in 

the spectrums shown in Figure 22, the behavior of the spectrums at other frequencies is not 
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visible. Therefore, Figure 23 shows separately four different regions (0 - 5 kHz, 5 kHz - 25 

kHz, 25 kHz - 45 kHz, 45 kHz - 70 kHz) of the spectrums. Based on Figure 23, it is again 

concluded that the wheel can excite the rail up to very high frequencies. To examine the 

mode shapes, the spectrum of Seg 3D was chosen (mode shapes obtained from other 

segments exhibited similar shapes). Four peaks between 0 and 5 kHz, six peaks between 5 

kHz and 25 kHz, seven peaks between 25 kHz and 45 kHz, and seven peaks from 45 kHz 

and 60 kHz were chosen. The chosen peaks are marked as óoô in Figure 23 (d).  
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Figure 23: Test 3 ï Zoomed Sections of the Frequency Spectrums Obtained from the 

Signals: (a) Seg 3A (b) Seg 3B (c) Seg 3C (d) Seg 3D. 

Figure 24 demonstrates the cross-sectional mode shapes at 25 different frequencies 

(top right accelerometerôs connection was faulty). These mode shapes show that (i) there 

are waves propagating at the rail foot and head up to 70 kHz, (ii ) the cross-section exhibits 

global deformation patterns in the LF range (up to 10 kHz), and (iii ) the cross-sectional 

deformations are localized on either rail foot or the rail head as the frequency increases.  
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Figure 24:  Test 3 ï Mode Shapes Obtained from the Frequency Spectrum of Seg 3D. 
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2.2.4 Summary 

The results of the in-situ tests carried out in Temple, TX were presented. High-

frequency accelerometers were used in the tests to collect measurements from an 

operational railway track. In the first test, a rail span was instrumented with nine 

accelerometers along the span, in the second test, three consecutive rail spans having 

different lengths were instrumented with 2 accelerometers. In the third test, the cross-

section of the rail is instrumented with six accelerometers at the mid-point of the rail span. 

Four different signal segments were analyzed in each test to gain insight into rail dynamics. 

Each segment corresponded to the passage of different sections of the operational trains. 

The main outcomes of these tests are as follows: 

1. The spike type of fasteners does not restrain the rail, consequently, resonance 

frequencies and mode shapes are not formed in railway tracks consisting of spike-

type fasteners. 

2. The wheel-rail interactions can excite rail up to 70 kHz. Actually, such interactions 

can excite rail even at frequencies higher than 70 kHz since frequency spectrums 

including frequencies higher than 70 kHz exhibited frequency content after 70 kHz. 

However such spectrums were not presented here since their amplitude and phase 

information after 70 kHz might not be precise due to exceeding the maximum 

frequency of the accelerometers. 

3. There are propagating waves in the rail head around up to 70 kHz, the waves at 

lower frequencies exhibit global cross-sectional deformations, while the waves at 

higher frequencies exhibit localized cross-sectional deformations.   

4. The vibrations and waves induced by the rail-wheel excitations can be used to 

develop a damage detection system. 
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CHAPTER 3: PRELIMINARY TESTS OF RAIL VIBRATI ON 

MEASUREMENTS WITH A LASER DOPPLER VIBROMETER 

(LDV) PLACED ON A MOVING PLATFORM  

This chapter presents the preliminary tests performed at TTCI, Colorado with the 

purpose of assessing the feasibility of recording rail vibrations through an LDV placed on 

a moving rail car. Accordingly, the results could be used to motivate the potential use of 

LDVs in a rail defect detection system.  

In particular, an LDV is used to record the vibrations induced by the wheel-rail 

interaction forces from a moving rail car. Normally, the wheel-rail interaction forces are 

unknown, thus the modal identification has to be carried out only based on the responses 

(i.e., output-only system). For this purpose, a linear identification method based on FDD 

(introduced in Section 2.2.2) is used to determine the modal parameters of a rail span from 

measurements collected by the LDV. The reason for using modal parameters of the rail to 

compare the LDV measurements with accelerometer measurements is that such parameters 

(e.g., first, second, and third pin-pin mode frequencies) are the only common parameters 

that can be obtained from the frequency spectrum of both the LDV and accelerometer 

measurements since they appear as peaks located at particular frequency values in the 

spectrums. Mode shapes, damping ratios, and wave propagation characteristics could not 

be used for the comparison since (i) mode shapes and damping ratios could not be obtained 

with one LDV that was moving over the rail, (ii) the distance between the LDV and the 

wheels of the rail car was not far enough to clearly show the pass band zones in the 

spectrum since the waves whose frequencies are in stop bands could not be attenuated as 

they did not travel over several rail spans, and (iii) the waves having high frequencies 

propagate freely without resulting in any distinct features in the frequency and time-domain 

which can be used for comparison. 
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Furthermore, in order to identify the LDV time segments corresponding to rail 

spans, a positioning system based on the sleeper passing frequency is introduced. The 

results obtained from the LDV on the moving rail car were compared with the ones 

obtained from the accelerometers which were in contact with the rail.  

Section 3.1 introduces the positioning system based on sleeper passing frequency. 

Field tests are described in Section 3.2. Results are presented in Section 3.3. Finally, the 

summary of the results is discussed in Section 3.4. 

3.1 LDV  POSITIONING BASED ON SLEEPER PASSING FREQUENCY 

Consider a bogie instrumented with an LDV system, moving along a sleeper-

supported rail at a steady speed v, as shown in Figure 25 (a). When a rail car wheel passes 

over the sleeper, it is subjected to a dynamic force. Assuming a constant bogie speed and 

the same distance between sleepers, the amplitude of the acceleration caused by the 

dynamic force varies cyclically at the so-called sleeper passing frequency [126]:  

 

Ὢ                                                           (3.1) 

 

where Ὠ is the distance between two consecutive sleepers (i.e., rail span). In 

particular, the maximum acceleration induced by the dynamic force occurs when the wheel 

passes over the sleepers, as shown in Figure 25 (b).  
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Figure 25: A Rail Car Bogie Moving Along a Discretely Supported Rail: (a) LDV 

System Placed on the Bogie (b) Vertical Acceleration of the Back Wheel of 

the Bogie Filtered at the Sleeper Passing Frequency. 

In order to identify the LDV measurements corresponding to a rail span, a 

procedure that utilizes the sleeper passing frequency is proposed. The procedure consists 

of two steps. In the first step, the time segment corresponding to the passage of the back 

wheel over a rail span is obtained from the vertical acceleration measured at the LDV 

location. This is accomplished by placing an accelerometer on the LDV. The accelerometer 

signal (see Figure 26 (a)) is bandpass filtered at Ὢ. The filtered signal is displayed in Figure 

26 (b). Then, the filtered signal is shifted forward by a phase, as shown in Figure 26 (c). 

The value of this phase depends on the distances ὒ, ὒ, Ὀ, and the vertical accelerations 

induced on the back and front wheels by the cyclic dynamic forces (i.e., ώ and ώ). The 

time segments between two peaks of the shifted signal correspond to the passage of the 

back wheel over rail spans. Finally, in the second step, these segments are shifted by a 

second phase, as shown in Figure 26 (d). The value of this second phase depends on the 

distance ὒ. These new time segments are the output of the proposed positioning approach 

and they correspond to the passage of the LDV location over rail spans. The combination 
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of these segments with the LDV signal allows the identification of the LDV measurements 

corresponding to rail spans (Figure 26 (e)). 

 

 

Figure 26: Proposed Positioning Approach and Identification of LDV Measurements 

Corresponding to Rail Spans. 
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In the first step, ώ is obtained from the accelerometer signal assuming the bogie is 

rigid: 

 

ώ ὒȾὒώ ὒȾὒώ                                          (3.2) 

 

In this equation, ὒ/ὒ and ὒ/ὒ are the weighting factors depending on the location 

of the LDV along the bogie. Signals ώ and ώ have the same frequency of Ὢ but a different 

phase (i.e ὥ): 

 

        ώ  ὣίὭὲς“Ὢὸ                                                (3.3) 

 

ώ ὣίὭὲς“Ὢὸ ὥ                                             (3.4) 

 

In these equations, ὣ and ὣ are the amplitudes of ώ and ώ, respectively. The 

reason that ώ and ώ have different phases is because of the distance between the wheels, 

which is not equal to an exact multiple of the span length (see Figure 25 (a)). For simplicity, 

the phase of ώ is assumed to be zero. Since the period of the signal corresponding to the 

passage of the wheel over the rail span is 2“, the phase  is equal to ς“ὈȾὨ. Further,  

is positive since the front wheel passes over sleepers before the back wheel. Using Eq. 3.2, 

the weighted sum of ώ and ώ yields: 

 

ώ  ίὭὲς“Ὢὸ •                                               (3.5) 

 

In this equation, • represents the phase of ώ. To find ώ, the accelerometer signal 

is passband filtered at the Ὢ calculated by using Eq. 3.1. To obtain ώ, • should be 
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calculated. Since the phase difference between ώ and ώ is •, ώ is found by shifting 

ώ forward by a phase of •. The calculation of • is carried out by using the superposition 

of two same-frequency waves (specifically ώ and ώ) that have a phase difference of  

[127]:  

 

• ÁÒÃÔÁÎ 
Ⱦ

Ⱦ Ⱦ
                                      (3.6) 

 

If ὣ and ὣ are not measured, an estimation of the minimum and maximum ratios 

of ὣ and ὣ can be made. In this case, • attains its minimum value (• ) if ὣ>ὣ, and 

maximum value (• ) if ὣ>ὣ. To obtain ώ corresponding to the maximum and 

minimum wheel force ratios, one has to shift ώ by •  and • , respectively. The 

actual acceleration signal ώ is located somewhere in between these two shifted signals. If 

only the time segment common in one period of these shifted signals is considered, it 

always corresponds to a portion of a rail span (see Figure 27). Consequently, this procedure 

creates uncertainty and eliminated time segments corresponding to the passage of the back 

wheel over rail spans. As shown in Figure 27, such a segment can be found by discarding 

a segment corresponding to the phase:    

 

 •  - •                                                  (3.7) 

 

from the end of each period of the signal shifted by • . 
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Figure 27:  Calculation of Uncertainty Eliminated Time Segments Corresponding to the 

Passage of the Back Wheel over a Rail Span. 

In the second step, the uncertainty-eliminated segments are shifted backward by 

another phase: 

 

 ς“                                                       (3.8) 

 

to find the time segments corresponding to the passage of the LDV location over rail spans 

(See Figure 26 (d)). These new time segments are the output of the proposed positioning 

approach and they can be combined with the LDV signal to identify measurements 

corresponding to rail spans (see Figure 26 (e)).  
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3.2 EXPERIMENTS  

Field tests were conducted at Transportation Technology Center (TTC) in Pueblo, 

CO. The railway tracks consisted of concrete sleepers and fast clip fasteners. The rail 

section was a 136 lb (61.68 kg) A.R.E.A. (American Railway Engineering Association) 

and the length of rail spans was 0.6 m (1. 96 ft). Two experimental setups were designed. 

First, accelerometers were used to measure the dynamic response on a rail span during the 

passage of a vehicle along the track. Then, the response of the rail span was measured by 

using an LDV mounted on the moving vehicle. 

3.2.1 Measurement with Accelerometers 

During the first set of tests, three accelerometers (i.e., PCB 352C65) were placed 

under a rail span and connected to a data acquisition system (i.e., PXI 4462). A custom-

made LabVIEW (National Instrument) code running on a laptop was used to control the 

data acquisition system. The accelerometers were placed with an equal distance between 

each other and fasteners, as shown in Figure 28. The sampling frequency was set to 10 

kHz, in order to identify vibration modes up to 5 kHz. Vibration measurements were 

conducted on the instrumented span during the passage of a vehicle at four different speeds, 

which are 8 km/h (5 mph), 16 km/h (10 mph), 24 km/h (20 mph), and 32 km/h (30 mph).  
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Figure 28: Experimental setup: instrumented rail span during the passage of a vehicle. 

3.2.2 Measurement with an LDV on Moving Rail Car 

During the second set of tests, rail vibrations were measured by using an LDV (i.e., 

Polytech OFV-505) mounted on the moving vehicle. Four different test speeds were 

considered: 8 km/h (5 mph), 16 km/h (10 mph), 35 km/h (22 mph), and 45 km/h (28 mph). 

The railway vehicle used during the tests consists of four bogies, as shown in Figure 29. 

The LDV was mounted on the bogie, hereinafter referred to as ñbogie no.1ò. 

 

 
 

Figure 29:  Schematic of the Railway Vehicle During the Field Tests. 

An accelerometer (PCB 352A60) was placed on the laser head in order to: (1) 

eliminate the vibrations of the LDV from the recorded signals, and (2) to find the relative 

location of the LDV along rail spans. An additional accelerometer (PCB 352A60) was also 
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mounted on the LDVôs holder with the aim of monitoring the vibration levels of the holder. 

Moreover, a camera was used to identify any physical damage occurred to the LDV during 

testing. An overview of the experimental setup is shown in Figure 30. 

 

 

Figure 30:  Experimental Setup: LDV Mounted on the Rail Vehicle. 

Both the LDV and accelerometers were connected to the same data acquisition 

system. The controller of the LDV and data acquisition systems were located inside the car 

cabin during the moving LDV tests. Figure 31 shows the entire configuration diagram. The 

sampling frequency was set to 40 kHz. Tracking filter was used in the settings of the LDV 

controller to minimize the effects of speckle noise [128]. This is a type of noise that occurs 

because the laser is not stationary with respect to its target surface. Without this filter, 

speckle noise results in artificial peaks in the recorded signals [129]. Such artificial peaks 

can cause a loss of signal segments that are required for the analysis.  
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Figure 31:  Overview of the Data Acquisition System Setup: (a) Data Acquisition 

System Inside the Rail Vehicle, (b) Schematic of the Experimental Setup (c) 

LDV Controller Inside the Vehicle. 

3.3 RESULTS 

This section presents the results of the accelerometer and LDV measurements. 

3.3.1 Accelerometer Measurements 

The results obtained with the first experimental setup (see Figure 28) are here 

reported. Figure 32 shows a sample time history recorded by the accelerometer placed at 

the mid-point of the rail span. The signal was recorded during the passage of the vehicle at 

the speed of 32 km/h (20 mph). Eight peaks can be observed in Figure 32 (a). Each peak 

corresponds to the passage of a wheel over the rail span. A segment of the signal 

corresponding to the passage of the bogie instrumented with the LDV is shown in Figure 

32 (b). 

The signal used to identify the bending mode is shown in Figure 32 (c). This signal 

corresponds to the time segment if it was recorded by an LDV mounted on the bogie no.1. 

It was calculated based on the location of the LDV relative to the wheels of the bogie no.1. 

It is important to use this accelerometer signal segment for the identification. This is 

because the effects of the additional mass and forces (induced by the moving rail car) on 
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the identification results stay approximately consistent in the accelerometer and LDV tests. 

Consequently, the results from both tests can be compared. 

 

  

 

Figure 32:  Signal Recorded by the Accelerometer Located at Mid-Point of the Rail 

Span (Rail Car Speed: 32 km/h Corresponding to 20 mph): (a) During the 

Passage of Rail Car (b) During the Passage of the Bogie No.1 (c) During 

The Passage of LDV. 

In order to obtain the modal frequencies and shapes, the FDD method was adopted. 

This method requires the input to have broadband frequency content (i.e., this is different 

from the broadband noise component of the speckle noise). In the current study, the input 

was provided by the forces induced on the rails by moving wheels. However, measuring 

these forces is a challenging task [130], which was not carried out in this paper. Therefore, 

to investigate the excitation spectrum induced by the wheels, the response of the rail span 

was analyzed by time-frequency analysis. In particular, a continuous wavelet transform 

(CWT) based on a complex Morlet mother wavelet was used [131], and the results are 

shown in Figure 33. It can be observed that all of the frequencies up to 5 kHz were excited 

during the wheel passages.  



 111 

 

Figure 33:  CWT Coefficients of the Signal Recorded from the Accelerometer Located 

at the Mid-Point of the Rail Span During the Rail Car Passage (32 km/h 

Corresponding to 20 mph). 

Afterward, the signal segment shown in Figure 32 (c) was analyzed using FDD, 

and the resulting spectrum is shown in Figure 34. 

 

 

Figure 34:  FDD Spectrum of the Signals Obtained by Three Accelerometers during the 

Passage of the LDV. 
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Since the current study focuses on only the first three bending modes, the spectrum 

presented in Figure 34 displays the results separately bandpass filtered around these modes. 

Specifically, the filter was an eight-order Butterworth with a bandwidth of 15 Hz. To 

identify the first three bending modes, mode shapes were used (see Figure 35). Based on 

the mode shapes, the first three pin-pin bending frequencies were found at 1147, 2966, and 

4223 Hz, respectively. These identified modes were found to be in agreement with other 

studies [132], [133]. 

 

 

Figure 35:  Identified Mode Shapes: (a) 1st Mode (b) 2nd Mode (c) 3rd Mode. 

To validate the fact that the modal frequencies and shapes could be acquired by a 

linear system identification method, a time-frequency analysis is performed again using 

CWT. Initially, as in the previous step, the signal shown in Figure 32 (c) was bandpass 

filtered around the 1st, 2nd, and 3rd pin-pin mode frequencies identified by FDD. Afterward, 

CWT was carried out on the filtered signals, as shown in Figure 36. 
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Figure 36:  Time-Frequency Analysis of Signal Recorded by the Accelerometer Located 

at Mid-Point during Rail Car Passage (32 km/h equals to 20 mph): (a) 1st 

Mode (b) 2nd Mode (c) 3rd Mode. 

Results show that the frequencies of each mode stayed constant during the duration 

of the recorded signals. As a result, it was concluded that the rail span behaved linearly 

during the passage of the LDV. Therefore, the application of the linear system 

identification method (i.e. FDD) was suitable to determine the bending modes. 

3.3.2 LDV Measurements 

In the moving LDV tests, since the LDV was connected to the rail car by a holder 

frame, it recorded the vibrations of the rail car as well as rail vibrations.  

In order to eliminate the rail car vibrations from the LDV measurements, an 

accelerometer was mounted on the LDV. First, the LDV signals were differentiated to 

obtain accelerations because the LDV could provide just velocity measurements. Then, the 

accelerometer signal, shown in Figure 37 (a), was subtracted from the differentiated LDV 

signals. Figure 37 (b) shows a snapshot of the differentiated LDV signal as well as the rail 




