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Abstract
Machine learning systems have become popular in
fields such as marketing, financing, or data mining.
While they are highly accurate, complex machine
learning systems pose challenges for engineers and
users. Their inherent complexity makes it impossi-
ble to easily judge their fairness and the correctness
of statistically learned relations between variables
and classes. Explainable AI aims to solve this chal-
lenge by modelling explanations alongside with the
classifiers, potentially improving user trust and ac-
ceptance. However, users should not be fooled by
persuasive, yet untruthful explanations. We there-
fore conduct a user study in which we investigate
the effects of model accuracy and explanation fi-
delity, i.e. how truthfully the explanation represents
the underlying model, on user trust. Our findings
show that accuracy is more important for user trust
than explainability. Adding an explanation for a
classification result can potentially harm trust, e.g.
when adding nonsensical explanations. We also
found that users cannot be tricked by high-fidelity
explanations into having trust for a bad classifier.
Furthermore, we found a mismatch between ob-
served (implicit) and self-reported (explicit) trust.

1 Introduction
The need for explanations of machine learning algorithms has
been identified in the past [Richardson and Rosenfeld, 2018;
Goodman and Flaxman, 2016] and led to the emergence of
the research field of explainable artificial intelligence (xAI).
Several researchers argue that explanations have a positive ef-
fect on user trust [Biran and Cotton, 2017; Glass et al., 2008;
Preece, 2018; Vorm, 2018] and that inappropriate trust im-
pairs the human machine interaction [Preece, 2018; Ribeiro
et al., 2016]. However, explanations do not necessarily have
to deliver accurate information about the machine learning al-
gorithm. Yet, untruthful explanations with low fidelity to the
machine learning model can appear plausible to the user [Lip-
ton, 2016]. It has not yet been established how characteristics
such as fidelity of an explanation impact user trust.
We therefore investigate how varying explanation fidelity in-
fluences the user’s trust into an automatic decision system.

Using the scenario of a “social media administrator” with the
task to detect offensive language in Tweets, we develop three
machine learning classifiers able to process textual input and
classify the texts into “offensive” and “not offensive” classes
at varying levels of accuracy. Furthermore, we implement
and validate the automatic generation of explanations at high
fidelity and low fidelity levels. We measure the trust and per-
ceived understanding in a user study with 327 participants
in order to compare different classifier-explanation combina-
tions. Our research was driven by the following questions:

RQ1: What influence does the accuracy of an automatic de-
cision system have on user trust?

RQ2: How do the presence and the level of fidelity of expla-
nations influence user trust?

Our key findings show that explanations affect user trust in
a variety of ways, depending on the overall accuracy of the
system, the fidelity level of the explanation, and the user’s
level of consciousness. In general, the systems’ accuracy lev-
els were most decisive for user trust: the higher the accuracy,
the higher the user’s trust. The influence of explanation fi-
delity differs depending on the model accuracy: We see that
for systems with medium accuracy, a high-fidelity explana-
tion does not harm user trust, while a low-fidelity explanation
does. Yet, for a system with high accuracy, any explanation
(high-fidelity as well as low-fidelity) leads to a decrease in
trust. We conclude that the interplay between explanation fi-
delity and user trust is more complex than pictured in liter-
ature to date. Furthermore, our findings show a discrepancy
between how users act and what users report, which should
be taken into account when evaluating user trust.
With our research, we contribute empirical evidence of the
relation between accuracy, fidelity, and user trust to the xAI
community. Other than related research, we focus on the
practical implications of explainability and their effect on the
relationship with the user. Furthermore, we test an observa-
tional measure of trust as an objective method complementing
traditional self-reported trust questionnaires.
In this paper, we first review the existing literature on expla-
nations and user trust in AI. We then derive the structure for
a user study (section 3 and 4) aiming to test the influence of
explanation fidelity and classifier accuracy on user trust. Fi-
nally, we present and discuss the results in section 5.
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2 Related Work
Artificial intelligence and machine learning algorithms are
nowadays employed in a variety of areas. In safety-critical
applications such as terrorism detection [Ribeiro et al., 2016]
or autonomous robotics [Richardson and Rosenfeld, 2018],
faulty behaviour needs to be avoided at all costs. Further-
more, machine learning systems treating sensitive data such
as credit ratings [Domingos, 2012] or health applications
[Goodman and Flaxman, 2016] need to communicate what
brought about a single decision. [Goodman and Flaxman,
2016; Wachter et al., 2017; Selbst and Powles, 2017] discuss
a “right to explanation” or “right to information” as a con-
sequence of the General Data Protection Regulation (GDPR)
introduced in the EU in 2018. Overall, those systems not only
need to be right in a high number of cases, but right for the
right reasons [Preece, 2018].

2.1 Explanations in AI
When being confronted with new information, humans in-
corporate them in mental models. Explanations are a tool to
build and refine inner knowledge models [Miller, 2018]. For
an engineer working on a machine learning system, under-
standing underlying principles and consequences of the sys-
tem’s behaviour is a necessary step in designing a system that
is “right for the right reasons” [Preece, 2018]. On the user
side, explanations have a positive effect for the ability to pre-
dict the system’s performance correctly [Biran and Cotton,
2017]. [Ribeiro et al., 2018] found that explanations increase
the user’s ability to predict the classifier decision, while de-
creasing the time needed to reach a judgement. Their within-
subject study design, however, could have led to familiarisa-
tion and hence an overrating of explanations.
In recent years, machine learning algorithms show a trend to-
wards increasing accuracy, but also increasing complexity. In
general, the higher the accuracy and complexity, the lower the
explainability [Chen et al., 2018; Richardson and Rosenfeld,
2018]. An interpretable machine learning system is either
inherently interpretable (e.g. decision trees, linear models
[Biran and Cotton, 2017]), or is capable of generating de-
scriptions understandable to humans [Lipton, 2016]. [Lipton,
2016] points out that a retrospectively added explanation does
not guarantee fidelity, “however plausible they appear”.
To achieve explainability, [Chen et al., 2018] developed an
add-on explanation system for texts based on mutual infor-
mation analysis and measure the explanations fidelity to the
underlying model with good results. [Feng et al., 2018] went
a step further with an image classification system and add-
on textual explanatory mechanism. However, they also show
that their high-fidelity explanations are nonsensical for hu-
mans. In human-human explanations, people tend to ques-
tion underlying principles of events by comparing it to known
concepts. “Why A, why not B?” is a common question dur-
ing this thought process [Miller, 2018]. [Chen et al., 2018]
suggests showing reference cases in automatic decision sys-
tems: similar cases with a different predicted class, or dis-
similar cases (counterfactuals) [Hendricks et al., 2018]. Ap-
proximating elements of an opaque system is another method
of achieving interpretability. [Domingos, 2012] argues that

most high-dimensional real-world application data is “con-
centrated on or near a lower-dimensional manifold” and sug-
gests dimension reduction techniques to reduce the complex-
ity of a system to a human-comprehensible level. [Chen et al.,
2018] suggests salience map masks on input features to point
the attention towards features that are decisive in a sample,
e.g. single words in texts. [Goodman and Flaxman, 2016]
suggests a “minimum explanation”, showing at least how in-
put features relate to the prediction of a classifier.
In summary, [Chen et al., 2018]’s model-agnostic explana-
tions combined with [Goodman and Flaxman, 2016]’s def-
inition of minimum explanations provide a basis for exam-
ining the influence of explanation fidelity and model accu-
racy. However, following [Lipton, 2016], explanation fidelity
needs to be validated computationally.

2.2 Trust in AI
Literature suggests that insights into the system functioning
and decision process increase trust [Biran and Cotton, 2017;
Glass et al., 2008; Preece, 2018; Vorm, 2018]. In the field of
computer science, most definitions agree in that trust relates
to the assurance that a system performs as expected [Moham-
madi et al., 2013]. Since trust is placed in an agent by another
agent, it is not an objective measure but a subjective experi-
ence of an individual [Mohammadi et al., 2013]. [Körber,
2018] developed a trust metric for automated systems based
on a model of human-human trust. It consists of 19 self-report
items measuring the trust factors reliability, predictability, the
user’s propensity to trust, as well as the attitude towards the
system’s engineers and the user’s familiarity with automated
systems.
For trust in automatic classification systems, misclassifica-
tions (i.e. the system’s prediction does not correspond to
the user’s prediction) play a special role, as they can lead to
a decrease in user trust [Glass et al., 2008]. [Vorm, 2018]
reports “willingness to accept a computer-generated recom-
mendation” as an observable sign for trust. [Yu et al., 2017]
found that users are able to detect the accuracy of a classifier
without being told explicitly, and adjust their trust accord-
ingly. [Cramer et al., 2008] tested the effects of transparency
on user perception, finding a correlation between perceived
understanding and trust, but no evidence for a direct influence
of transparency on trust. They hypothesise that transparency
also discloses system boundaries and unfulfilled preferences,
ultimately cancelling out any positive effects. [Langer et al.,
1978] found in a user study that the pure presence of an ex-
planation, regardless of the content, can make a difference in
how people react to requests. Without explanation, humans
complied significantly less with a request than in cases where
an explanation was given. They compared nonsensical and
meaningful explanations, but found only little difference in
their power of persuasion [Langer et al., 1978]. They explain
this behaviour with the state of “mindlessness”, triggering an
automatic script “comply if reason is given”, no matter the
given reason. The mindless state, however, is revoked if com-
plying leads to stronger consequences. In an attentive state,
the explanation does make a difference: People were more
likely to comply when an informative explanation was given,
as compared to a nonsensical one [Langer et al., 1978].
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Overall, evaluating trust implies measuring the subjective ex-
perience of users. Since [Langer et al., 1978] observed a dif-
ference in user trusting behaviour between a “mindful” and a
“mindless” state, trust should be evaluated both subjectively
and objectively, e.g. using a questionnaire and observation.

3 Study Design
As trust is a subjective experience, it must be evaluated in a
user study. We use the following scenario for a user study:
the social media presence of a company that targets teenagers
and young adults (15-20 years old). The use case task is to
identify offensive texts with the support of a machine learn-
ing system. To measure the influence of accuracy and expla-
nation fidelity on user trust, we establish 9 conditions: three
classifiers (high, medium, low accuracy), each with three ex-
planation types (high-fidelity, low-fidelity, no explanation),
see table 1. To avoid learning and familiarisation effects, we
use a between subject design, with each participant being as-
signed to one condition at the beginning of the survey. As
trust builds during repeated interaction [Rempel et al., 1985],
we show participants a subset of 15 Tweets. We construct 10
disjunct subsets (cf. sec 4), to reduce the impact of specific
wording or topics. At the start of the survey, each participant
is randomly assigned to one subset.

Classifier Accuracy
high medium low

E
xp

la
n. high-fidelity Chigh

0.97 Chigh
0.76 Chigh

0.03

low-fidelity Clow
0.97 Clow

0.76 Clow
0.03

no Cno
0.97 Cno

0.76 Cno
0.03

Table 1: Classifier-explanation conditions

Apparatus & Procedure
The user study is set up as an online study on the soSci plat-
form1. Participants are asked to access the survey via an
online link on their private device, with small screens (e.g.
smartphones) being excluded to ensure proper image scaling.
Consistent with the use case scenario, screenshots of a fic-
tive social media management platform show the input texts,
decisions and explanations. The screenshots have a ratio of
900px (width) to 253px (height).
The study consists of three blocks. In the first block, the par-
ticipant is asked to manually classify 15 Tweets as offensive
or not offensive. The second block introduces the automatic
decision system, asking to classify 15 “very similar” Tweets,
which are in fact identical to those in the first block. The
Tweets are pre-classified and displayed according to one of
the 9 conditions. Finally, the last block contains questions to
measure perceived understanding, trust (including an atten-
tion check), and the demographic background. The survey
was tested in a pilot with 11 participants.

1https://www.soscisurvey.de/en/index accessed on 24.02.2019

Measures & Analysis
We measure perceived understanding and trust quantitatively.
For perceived understanding, we ask three statements to be
rated on a 5-points Likert scale and take the average as a sin-
gle score per participant. To measure trust, we observe how
the system influences the participant’s judgement by compar-
ing the manual classifications of the first (without system) and
second block (with system). We define changing a classi-
fication in favour of the system’s prediction but away from
the truth as a sign for being convinced and trusting the sys-
tem. The opposite behaviour (changing towards the truth but
away from the system’s prediction) is interpreted as a sign
for mistrust. We normalise the number of changes by the
number possibilities to see the behaviour in question (e.g. a
highly accurate classifier offers only once the possibility to
contradict the truth in favour of its prediction). As a sub-
jective, self-reported trust measure, we use the questionnaire
of [Körber, 2018], taking the mean score over all 19 items
for a single trust score per participant. We use the two-sided
Mann-Whitney U test with Bonferroni correction to compare
two score samples.

Participants
Participants were recruited via the science crowdsourcing
platforms Prolific2 and SurveyCircle3. In total, 327 partici-
pants took part in the main user study with an average age of
29.4 years (SD=8.8), with 56% females and 43% males. Two
participants reporting the third gender. 57% self-assessed
their English as equivalent to a native speaker, but all par-
ticipants claimed to be fluent in English. 41 data points were
invalidated due to failed attention check and survey comple-
tion level, resulting in 286 valid cases.

4 Experiment
Dataset
We use a dataset of offensive language and hatespeech4 pro-
vided by [Davidson et al., 2017]. It contains Tweets la-
belled by at least 3 annotators, of which we use only those
data points with an inter-annotator agreement of 100%. The
final dataset contains 4324 Tweets with a class balance of
1:1. We randomly split the data set into training (80%) test
(20%). The Tweets are preprocessed with a conversion to
lower cases, common contraction solving (e.g. “we’re”),
deletion of retrospectively added signifiers (e.g. “RT” indi-
cating a Re-Tweet), deletion of non-alphabetic characters (all
besides hashtags), and replacement of URLs and user names
by dummy handles. The texts are tokenized on whitespaces.

Classifiers
For the system with high accuracy, we adopt the setup used
by [Chen et al., 2018]. They use a convolutional neural net-
work (CNN) for sentiment analysis. We implement the CNN
using the Keras5 Python library. C0.97achieves an accuracy of

2https://prolific.ac accessed on 24.02.2019
3https://www.surveycircle.com accessed on 24.02.2019
4https://github.com/t-davidson/hate-speech-and-offensive-

language accessed on 24.02.2019
5https://keras.io accessed on 24.02.2019
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0.97 on the test set. For the classifier with medium accuracy
(C0.76) we adapt the approach of [Davidson et al., 2017],
which uses logistic regression to identify offensive language
and hate speech, achieving an F1-score of 0.9 on their test
set. The logistic regression classifier is implemented with the
scikit-learn6 Python library, with an L-BFGS optimiser. We
adjust all positive coefficients of C0.76to a value of 1.0 and
all negative to -1.0 to reach the final (medium) accuracy of
0.76 on the test set. The low accuracy classifier is essentially
equal to C0.97, but trained on a training set with inversed la-
bels. C0.03’s accuracy on the test set with non-inversed labels
is 0.03.

Explanations
For generating explanations, we focus on input features (sin-
gle words) and influence on the prediction, as suggested in
the minimum explanation setup by [Goodman and Flaxman,
2016]. Following [Feng et al., 2018], we highlight the most
decisive words in the texts by colour. To convey just enough
explanation, we highlight between 1

3 and 1
4 of the texts. The

Tweets contain on average between 14 and 15 words, which
results in k = 4 highlighted words per Tweet. To gener-
ate high-fidelity explanations for C0.97and its inverse-label
counterpart C0.03, we use the L2X algorithm suggested by
[Chen et al., 2018] on top of the CNN to select the most
decisive features. For C0.76, we use the learned model co-
efficients. The low-fidelity explanations should not provide
useful information about the underlying model, but should
only be visually similar to the high-fidelity explanations. To
generate such nonsensical explanations, we draw words uni-
formly at random from the texts.
As the explanation is not tied to the classification result, the
system can also show no explanations by not highlighting
any word (k = 0) but still show the classifier’s prediction.

Subset Sampling
It is not feasible to show the complete dataset to the partici-
pants during the user study, we therefore display a subset of
15 Tweets. To avoid affects from specific wording or top-
ics in the subset, we generate subsets by drawing 15 Tweets
at random from the test set. The subset is only kept if it is
non-overlapping with previously drawn subsets, has a class
balance similar to the test set, and if the classifiers’ accura-
cies are equal to those on the test set. We then select the 10
subsets with the closest feature distribution compared to the
training set, using the Kullback-Leibler Divergence (KLD)
with Laplace smoothing (k=1).

Explanation Evaluation
For computer-generated explanations, it is possible that (1)
the explanations constructed to have a high fidelity are mean-
ingful to humans but are not faithful to the model, that
(2) low-fidelity explanations nonetheless convey information
about the classifier, and that (3) the explanations in the sub-
sets show a different fidelity as those in the whole test set.
To validate that the selected features are an actual represen-
tation of the classifier’s reasoning, we reduce the texts of the
test set to the k selected features and subsequently let the re-
spective classifier predict the label. If the explanations have a

6https://scikit-learn.org accessed on 24.02.2019

Chigh
0.97 Clow

0.97 Chigh
0.76 Clow

0.76 Chigh
0.03 Clow

0.03

k = 1 0.97 0.58 1.00 0.64 0.97 0.59
k = 4 0.98 0.74 1.00 0.77 0.97 0.72
k = all 1.00 1.00 1.00 1.00 1.00 1.00

x̄subs 0.97 0.74 1.00 0.64 0.97 0.74
ssubs 0.03 0.13 0.00 0.12 0.03 0.10

Table 2: Label agreements evaluating the fidelity of explanations.
Showing the accuracy of reduced texts when prediction of complete
text is set as ground-truth for test set (top) and subsets (bottom, k =
4). Class balance of 50:50 for both the test set and each subset.

high fidelity to the underlying model, the reduced texts should
lead to the same predictions as the original texts. We use the
prediction for the original texts as ground truth for the re-
duced texts to calculate the label agreement. We repeat the
evaluation for each subset to confirm that the fidelities of the
explanations in the subsets do not differ from those of the
complete test set. Table 2 shows that the high-fidelity ex-
planations are enough to reproduce the original prediction of
all three classifiers, even when reducing the texts to a single
word. The low-fidelity explanations, on the contrary, cannot
reliably reproduce the original predictions. We conclude that
(1) the high-fidelity explanations indeed faithfully represent
the underlying classifier, and that (2) a random selection of
words is not explanatory for the classifiers.
On average, the mean fidelities (x̄subs) of the subsets
cor2respond to those on the complete test set. Only few sub-
sets show differing fidelities, e.g. for Clow

0.97, two sets have a
fidelity lower than the average (0.53), while one subset shows
a higher fidelity level (0.93). The standard deviation of the
subset fidelities (ssubs) are higher for randomly selected ex-
planations than for high fidelity explanations, which was to
be expected.

Graphical User Interface
For testing the effect of explanations of an automatic deci-
sion tool on users, we create an authentic and modern web
interface with a minimalistic design, as to not distract the
user from the main task. Figure 1 shows the “Administration
Tool”, a software tool to support a social media administrator
in detecting offensive content.

5 Results and Discussion
Table 3 reports the mean scores and their standard devia-
tions for self-reported trust, perceived understanding, and

Figure 1: Screenshot of the graphical user interface in the survey
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Figure 2: Comparison of self-reported trust scores ordered by mean
(x̄), value reporting difference of means (x̄row − x̄column ), asterisk
reporting significance (* significant at α = 0.05

9
, ** significant at

α = 0.01
9

)

perceived predictability (an individual item from the self-
reported trust questionnaire). Figures 2-3 show the differ-
ences in means between all conditions and the significance
of the sample comparisons (denoted with an asterisk) for self-
reported trust and observed trust trust. All significance scores
use Bonferroni correction to account for the multiple compar-
isons bias. Table 4 presents the results of observed trust in
changes towards or away from the truth and the classifier’s
prediction, respectively.

5.1 Model Accuracy
Our results suggest that model accuracy has a stronger influ-
ence on user trust than explanation fidelity. Figure 2 shows
that when ordered by trust score, no system of C0.03 is ranked
higher than any system of C0.76 or C0.97, and no system of
C0.76 is ranked higher than any system of C0.97. These find-

self-rep. perceived
Condition trust underst. predict.
C0.97 high 2.7 ± 0.4 3.9 ± 0.9 3.0 ± 0.8
C0.97 low 2.7 ± 0.5 3.7 ± 0.9 2.9 ± 0.8
C0.97 no 3.0 ± 0.5 4.1 ± 0.7 3.2 ± 0.7
C0.76 high 2.6 ± 0.5 3.8 ± 0.8 2.9 ± 0.6
C0.76 low 2.2 ± 0.5 2.9 ± 1.0 2.3 ± 0.8
C0.76 no 2.6 ± 0.5 3.7 ± 0.7 2.7 ± 0.8
C0.03 high 1.9 ± 0.4 2.5 ± 1.2 2.0 ± 0.6
C0.03 low 2.0 ± 0.4 2.5 ± 1.1 1.8 ± 0.7
C0.03 no 2.0 ± 0.5 2.9 ± 1.2 2.1 ± 0.8

Table 3: Means and standard deviations for self-reported trust, per-
ceived understanding, and predictability scores.

Figure 3: Comparison of observed trust scores (relative changes to-
wards classifier away from truth) ordered by mean, value reporting
difference of means (x̄row − x̄column ), asterisk reporting signifi-
cance (* significant at α = 0.05

9
, ** significant at α = 0.01

9
)

ings are in line with the research of [Yu et al., 2017]. It also
aligns with the “expectation mismatch” described in [Glass
et al., 2008]: A classifier with high accuracy leads to fewer
mismatches with the user’s expectations, which in turn does
not decrease the trust. We observe the same trend for user
ratings of predictability: low accuracy systems are rated to be
less predictable than high accuracy systems. Both classifiers,
however, are objectively equally predictable, since they be-
have exactly the same (C0.03always returns the opposite label
from C0.97; their results hence have equal entropy). This sug-
gests that user’s perception is heavily influenced by accuracy
levels.

5.2 Explanations
In our experiment, the presence of an explanation did not have
a positive effect on self-reported trust in any of the conditions
(figure 2). Adding an explanation to the system decreased the
trust in the case of C0.97 and did not influence trust in C0.03.
For C0.76, the type of explanation was crucial for its influence
– a high-fidelity explanation did not decrease trust levels sig-
nificantly, while a low-fidelity explanation did.
For C0.97, Cno

0.97 shows better results than Chigh
0.97 and Clow

0.97.
With Cno

0.97, there is no “expectation mismatch” as no expla-
nation is given and accuracy is high. The explanations of
Chigh

0.97 , however, are built on statistical rather than causal re-
lations, while Clow

0.97’s explanations are random. As humans
make sense of new observation by using previously learned
knowledge, i.e. assuming human-like reasoning strategies
even for an algorithm, seeing any of those two explanations
leads to a deceptive experience. Contrarily, the observed
trust measure (figure 3) shows a significantly lower score for
Cno

0.97 than for Chigh
0.97 , meaning that participants show a higher

willingness to accept the predictions of Chigh
0.97 than for Cno

0.97.
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Truth
Towards Away

C
la
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ifi

er
Pr

ed
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tio
n

Chigh
0.97

Towards 0.32 0.36
Away 0.00 0.02

Clow
0.97

Towards 0.19 0.17
Away 0.00 0.03

Cno
0.97

Towards 0.26 0.06
Away 0.00 0.02

Chigh
0.76

Towards 0.27 0.12
Away 0.09 0.01

Clow
0.76

Towards 0.19 0.13
Away 0.19 0.05

Cno
0.76

Towards 0.33 0.11
Away 0.05 0.01

Chigh
0.03

Towards 0.17 0.07
Away 0.11 0.07

Clow
0.03

Towards 0.25 0.07
Away 0.10 0.00

Cno
0.03

Towards 0.33 0.09
Away 0.04 0.00

Table 4: Influence of systems on user labelling behaviour: relative
changing frequencies when confronted with system prediction, per
classifier, normalised over opportunities.

[Langer et al., 1978] noticed a difference between a “mind-
less” (non-attentive) and a “mindful” (attentive) state, which
could be the explanation for the difference between a self-
reported (attentively) and an observed (non-attentively) mea-
sure. Users do not report different trust levels for Chigh

0.97 and
Clow

0.97, but they more often follow Chigh
0.97 ’s recommendation

than Clow
0.97’s (table 4) – their behaviour is hence influenced by

the level of truthfulness.
Unlike C0.97, C0.76 shows an equal self-reported trust score
for Chigh

0.76 and Cno
0.76 and a significantly lower score for Clow

0.76.
Making three to four mistakes on each subset, it is imaginable
that users are more conscious about the classifier’s behaviour
than they are with C0.97 due to the higher error rate. Hav-
ing at least an indication of the reasons for misclassifications
(Chigh

0.76 ) could in turn increase the trust. For Clow
0.76, the “ex-

pectation mismatch” is twofold, bringing together misclassi-
fications and nonsensical explanations. Looking at the ob-
served trust, Chigh

0.76 has the highest trust rate, while Clow
0.76 has

the highest rate of mistrust.
C0.03 did not show evidence of diverting self-reported trust
scores for any of the three explanation types. The same ho-
mogeneity is found in the observed trust scores, for both trust
and mistrust. This suggests that users are not fooled by a bad
classifier and do not trust it, no matter the explanation given.

5.3 Objective Trust Measure
Self-reporting requires users to have the ability to reflect on
and process their relationship with the system. Using an ob-
jective measure for trust avoids the necessity of this ability.
In our results, we see that the observed (hence potentially
unconscious) trust scores do not always align with the self-

reported trust scores. Although users of Cno
0.97 have the high-

est self-reported trust score, they are not as easily “lured”
towards a wrong classification as users of Chigh

0.97 . If this is
due to an actual gap between actions and reflections of users,
the observation measure could be interesting for xAI practi-
tioners as it shows how users actually interact with a system.
However, as our results of the observed trust measure are am-
biguous and have high variance, the measure should be vali-
dated in future research.

5.4 Limitations
In this study, we make use of minimum explanations which
show the relation between the input and output but do not
deliver information about the inner structure of a classifier.
The influence of the task (difficulty) and explanation visuali-
sation (detailedness) should be further investigated. It should
also be tested in future research whether users accept only
high-fidelity explanations, or likewise accept explanations
that look meaningful to a human but are not faithful to the
underlying machine learning algorithm. The study results are
furthermore limited by the cultural background of the par-
ticipants (mainly Caucasians). The results therefore cannot
be generalised across cultural backgrounds and the connected
general attitude towards technology.

6 Conclusion
This paper presents empirical evidence for the impact of
model accuracy and explanation fidelity on user trust. We
generated minimal explanations with high and low fidelity for
three systems with different performance levels. We then val-
idated the explanations’ fidelity level and tested differences
in nine conditions (3 model accuracy levels x 3 explanation
fidelity levels) in a user study.
Our findings show that explanations affect user trust in a va-
riety of ways, depending on the overall accuracy of the sys-
tem, the fidelity of the explanation, and the user’s level of
consciousness. Participants showed the most trust in systems
without explanations, i.e. minimum explanations can poten-
tially harm, but not improve user trust. We argue that the act
of reconciling conflicting information of the mental model
and the given explanations counts as a deceptive experience
and therefore affects the user’s trust negatively. If an expla-
nation is added to a system (e.g. for increasing user’s under-
standing of the system), its fidelity is crucial for user trust.
We saw that for systems with a medium accuracy (C0.76),
a high-fidelity explanation does not harm user trust, while a
low-fidelity explanation decreases trust. Overall, the model’s
accuracy levels showed the most impact on trust levels. We
furthermore found that users’ awareness level influences their
perception of trust. The results found from self-reported trust
measures show a different picture than when objectively ob-
serving trust via the participant’s actions.
Further research with more rich explanations and a detailed
investigation of trust factors is needed to examine potential
positive effects of explanations on user trust. The develop-
ment of trust over time should also be researched in the future,
to give practical directions to xAI practitioners implementing
explanations in productive systems.
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