Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

Solving a combinatorial problem by transformation of
abstract data types

Eerke A. Boiten

Department of Informatics, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen
email: eerke@cs.kun.nl

Abstract

Techniques from the area of formal specification are shown to be useful in the analysis of
combinatorial problems. A problem description is given, using an abstract data type. By
gradual elimination of the equivalences on the data types a unique representation of the
type is derived which reduces the new problem to a known one.

Keywords

Abstract data types, bracketing problems, permutations, problem reduction.

This research has been sponsored by the Netherlands Organization for Scientific Research
(NWO), under grant NF 63/62-518 (the STOP — Specification and Transformation of
Programs — project).

https://core.ac.uk/display/63667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
psview.php?id=ebf0dc84&page=1

1 Introduction

In 1965, C.H.A. Koster [Kos65] described an operator for creating permutations of strings.
It is denoted by []|', and has the well-known interpretation from proof reading: [a]s]
denotes the string be, and [pp)lsl)| denotes the string ezample. Koster used the [] |
operator for the description of transducers using affix grammars. Recently [Kos80], he
posed the gquestion whether the set of permutations that can be generated using only [
in 2 nested fashion (Koster calls these inversions; we follow van Leijenhorst [vL90] in
calling them K-permutations) differs significantly from the set of (ordinary) permutations
of a string. For example, [2,4,1,3] and [3,1,4,2] are (the only) two permutations of
[1,2,3,4] that are not K-permutations of [1,2, 3, 4].

An answer to this question appears in [vL90]: it is shown there how the number of
K-permutations of a string consisting of n distinct elements is bounded by 9.9179® and
therefore much less than n!, using formal power series and estimates of integrals. A more
recent analysis [vL91] of these results leads to an upper bound of & 7.1%. We will present
a very simple proof that 8" is an upper bound, and a reduction to normal form of K-
permutations by way of abstract data tvpe transformations. From this, an exact formula
counting the number of K-permutations is derived.

2 Preliminaries

The usual BMF (Bird-Meertens Formalism) notation for sets and lists is used [Bir87,
MeeB9a]. The reader is referred to [Bir87] for formal definitions of the BMF operators
used in this paper. Informally, they can be characterized by:

[a1,- - anHHbL, - b)) = [81s- - @ay b1y oo, By
[Hz=z4[] = =
Frlon,... a0 = [fead,....f a
&f[ar,...,04) = a1 ®...Da,
(e®)r = e®=
(Ba)xr = xda
adb = bda
[21,- -y 0a] Xg [b1ye - 0] = [01@Bb1,..., 0, @b, ..., 0B by,..., 00 Dby
(foglx = (fa)@(ga)

Using this notation, the set of permutations of a list is given by:

perms[] = {[]}
perms[a] = {[a]}
perms (Htm) = U/{{perms) Xo {perms m))
where
[lom = {m}
me[] = {m}

10r alternatively |

psview.php?id=ebf0dc84&page=2

(leHH) © (blm) = (eHH) = (o ({fH4m) U
{[EHF) * (([a]4-4) @ m)

(the operator © takes two lists and merges them in all possible ways).
‘We also use the inverse operator:

fTe={y|fy==}

3 K-permutation patterns
First we present an informal specification, more or less as given by Koster:
A K-permutotion of a string can be constructed as follows:

e choose fwo arbitrory adjacent nonemply subsirings;
e interchange these.

o Repeot this as necessary within the chosen substrings, or in the unchanged
part of the string.

This can be straightforwardly translated into a formal specification of the type Kperm,
which is an extension of the type List of nonempty lists. The element type is denoted by
o. We will write ¢ [] |b for [e]s], occasionally using brackets for disambiguation.
o a,b : Kperm{c) a, b : Kperm{co)
[#] : Kperm{c) aft-b 1 Kperm{c) a[]]b: Kperm(a)

Because we consider Kperm as a extension of List, the 4 operator of List is used here
as well, and its associativity is also assumed. So one law certainly holds for Kperm:

{oH-b) e = afH- (o). {1)

This allows to leave out brackets in expressions with multiple occurrences of .
The intended interpretation of a []]b is, of course, #H}-a. It is possible to add this as
an equivalence on the type Kperm:

a[]]b=Hfa (2)

However, doing so would result in the loss of important structure from the type Kperm,

viz. what string a Kperm term “is a permutation of”. This information is retained by

including no laws that allow changing the order of the basic elements in Kperm terms.
Formally, this can be described as follows.

Definition 3.1 (iven two® functions F : o — 4 and G : & — v, the {F, ()-induced
equivalence =g ¢ (on) is defined by

s=naye (F2)=(Fy) Al)= (C).

*The generalization to different numbers of functions is obvious.

psview.php?id=ebf0dc84&page=3

We add laws L to Kperm such that x =;0 y < x =r y, where [and O are functions that
give for a Kperm term the “original” list and the “interpretation”, i.e. the permutation
that is represented. The “original” list is obtained by replacing all occurrences of [|
by 4}, and the string that is actually represented by the K-permutation is obtained by
replacing all occurrences of] by JF. The homomorphisms O {for Original) and I {for
Interpretation) are given by:

Old] = [q]
O(Hm) = Hm
O[] m) = Hm

fla] = [d]
H{iH4m) = Hm
I{{[]m) = mfL

Ag mentioned before, agsociativity of |- is assumed. Another equivalence that must be
added to have (1, 0)-induced equivalence on Kperm is associativity of []:

(@19 [Te=el1]{[1le) (3)

(since both have the same elements, read from left to right, and both denote the string
eff-tf-@). This is the point where van Leijenhorst’s analysis [vL.90] is non-optimal: in the
grammar he uses, associativity of - is {(implicitly) used, whereas associativity of []| is
not.

Note that the definitions of O and T are sound for Kperm with the two associativity
laws 1 and 3, since |- is associative; if equation 2 were added as an equivalence, soundness
of O would imply that IH-m = mAH! for all [and m {since O(I[] |m) = IHm, O{mH) =
mA-{). This has the undesired effect of reducing the result type of O from lists to bags.

4 All K-permutations of a list

Now that functions O and [have been defined, the problem posed by Koster can be
formally specified. The set of all K-permutations of a list { is

{m | 3In: {0 n)=1IA(n)=m},
or, more concisely
I+ (0.

Then the problem of determining whether there exist a sizable number of permutations
that cannot be generated using []| can be specified as follows:
Investigate f[1..n] where

= (#-perms) =(# - I +-07").

One way to continue the analysis would be by finding a more efficient program for f.
In this case, however, a further analysis on the data structure side will prove to be more
useful.

psview.php?id=ebf0dc84&page=4

5 Determining the number of K-permutation pat-
terns

Using the formal specification given above, we can now give an upper bound for the
number of K-permutations by considering K-permutation patterns.

Consider a string [of length n. Between each two successive elements of that string one
can imagine a concatenation operator {so, n—1 in total). The O operation above consists
of two steps: first, all [| | operators are replaced by 4. The second step is more implicit:
because -} is associative, all bracketing in the result is irrelevant and can be eliminated.
So, arbitrary elements from O~'{ can be constructed by reverting this process: first, an
arbitrary complete bracketing of / is chosen, and then some -} operators are replaced by

[l
Now it is easy to count the number of K-permutation patierns (i.e., the ways of placing
brackets and - or [| operators, without cansidering equivalences amang those):

¢ As mentioned by van Leijenhorst [vL90], the number of complete binary bracketings
of a string of length n is given by the Catalan number [Cat38]

1f2n-2
Cu=! (n -) .
¢ Of (n — 1) {}-operators, an arbitrary number is replaced by [1]; this can be done
in 27! ways.

e Thus, the number of K-permutation patterns of a string of length n is given by

gn—1 _
Ky =271, = (-2) .
n

n—1

Since the Catalan numbers are known to be bounded by C,, < 4%®, this gives an upper
bound of 8" on the number of K-permutation patterns, and thus alse on the number of
K-permutations.

6 Lists and rose trees with append and reverse

An upper bound for the number of K-permutations has been given, by considering an
abstract data type, disregarding equivalences on that type. In order to investigate more
precisely the exact number of K-permutations, the data type involved must be as simple as
possible. The description using Kperm is highly symmetric: there are two “concatenation”
operators, both associative. This can be corrected by a translation from Kperm to a data
type with one binary operator {concatenation) and one unary operator {reverse). This is
the type Revlist, with introduction rules:

ria a,b: Revlist{ar) a : Revlist(cx)
[#] : Revhist{or) a{}-b : Reuvlist{e) @ : Revlist{cx)
The transition from Kperm to Reviist is given by the translation function T, defined by:
Tla] = o]

T(Hm) = (T 4T m)

T[] |m) = @ DT m).

psview.php?id=ebf0dc84&page=5

For Reulist, the “interpretation” and “original” homomorphisms I’ and O are given by:

I'le] = [q]
i) = (DI m)

I'm = rew(I' m)
O'lo] = [d]

O'fitm) = (O IO m)
Om = O'm

where rev is a suitably defined reverse-function on List.
The following laws are assumed:

o] = [d
(HrmMn = Himdn),

where the first two laws can be used as directed equivalences, for normalization of Revlist
terms. Le., except for the associativity of append, we can assume a unique normal form
for Revlist. Note that the equivalence induced by these laws is exactly {I', 0')-induced
equivalence.

Theorem 6.1
If x = y according to the laws of Kperm, then (T") = (T y) according to the laws of
Reuvlist.

Proof 6.1
Trivially, using associativity of 4}, one can prove that T({({Htm)4bn) = T({H-(mkn)).
We tacitly use asscciativity in the other half of the proof:

TUT{mn) =gefiniton 7y (T OHT(m[]|n)
=(detinttion 7} (L O)HH{T m)4-(T n)
=fm=m} (T OAT m)A(T n)
=fm=m} (T AT m)H(T n)

=(detintsion T} T [|m)HH(T n)
={defimition T} T[] |m) [|n).0

Theorem 6.2
The interpretation and original homomorphisms I* and O’ on Revlist are equivalent to f
and O on Kperm, respectively:

1.1=r.7
2. 0=0"T

psview.php?id=ebf0dc84&page=6

Proof 6.2

1. By structural induction on Kperm, using the property of rew:

rew((rev z)-{-(rev y)) = yt=.

I'(Ta]) =per. 7y I'la]
={det. I'} [e]
={def. I} 1 [0'1
FT(Hm) —e 7y I DT m)

=finduction} ({ O)H-{F m)
={def. I} I{{fm)
PO) —wen P IHT W)
ey (T DT)
={det. I'} rev(rev(I’ (T 1) rev(I’ (T m)))
=(oroperty re} (I'(T" m)) (' (T 1))
=(induction} (I m)H(
={det. I} I Jm)o

2. Analogously.

Theorem 6.3
T is total, injective and surjective, and thus an isomorphism between Kperm and Revlist
(with laws).

Proof 6.3

e Obviously, T is total, since it is defined inductively over all the constructors of
Kperm.

o Injectivity of T follows from the fact that the equivalences induced by the introduced
laws are the (7, O)-induced and the {I', 0")-induced equivalence, respectively.

¢ Surjectivity of T can be proved by induction on the length (i.e., the number of basic
elements) of the Reviist, considering normalized terms only.

Hypothesis VRevlist z : length(z) < n = (AKperm y : (I' y) = x). This will be
verbalized as “for every x a T-original exists”.

Base case For n =1, obviously [a] = T|a).

Induction Any Reulist with length > 1 is of one of two forms: Ht-m or pg.
{ and m have T-originals I and m/, by induction hypothesis, and thus [H}-m
has a T-original, viz. {'4-m’.
We may assume that p = p’ and ¢ = ¢’ because of the law = = m. By
induction, ¥’ and ¢’ have T-originals " and ¢”, and thus p}-¢ has a T-original,
viz. g’ []¢". O

psview.php?id=ebf0dc84&page=7

In order to arrive at a unique representation of K-permutations, we use yet another
data type, which may be called a rose tree [Mee89b]. In this type the associativity of
is factored out. We assume the existence of a type Plisi of lists with > 2 elements. The
types RT and RT are defined by:

{Z} : %&3 @1 RBT(o) @i RT(a)

The notations @ and @ have no formal meaning in this context. They do, however,
serve the intuition. A node of type @ represents all its sons from left to right, a node of
type @ represents all its sons from right to left.

The transition from Reuvlist to BT can best be specified by its inverse T7:

T'la] = [d]
T = /T«
@ = WO T+L

which is correct since T is surjective and injective.

Returning to combinatorics, we can now see that the problem of counting all K-
permutations is closely related to Schrider’s generalized bracketing problem [Sch70] as
presented in [Com74]. There, the problem is to determine the number ¢, of different rose
trees with > 2 branches at each inner node and n leaves. A recursive formula is given®
for ¢,

(n+1eapr = 3(2n—en— (R —2)ea—y forn>2
, 00 =€y = 1.

Since the types (viz. () or @) of the subtrees at all levels of a RT/RT tree are completely
determined by the type of the root, for each rose tree with a given number of leaves there
are exactly two RT/RT trees with that number of leaves, viz. one with a (I root and one
with a @ root. Thus, we can conclude that the number of K-permutations of a string of
length » equals 2¢,, for n > 2. This improves the results as given in [vL90, vLO1].

7 Concluding remarks

It has been shown how techniques from the area of formal specification may be profitably
used in the analysis of combinatorial problems. The formal “game” we played may be
relevant for other problems as well. In short, it may be described as follows:

¢ given an abstract data type A without laws, and two functions 4 and O,4, add laws
L, that construct the equivalence classes w.r.t. I, and O, i.e. for terms x and y,
z =g, y should hold iff I4{x) = I4{y) A Oa{x) = Oaly);

» while the type A has laws, do the following:
define a new data type A’, and a function T from the (terms of the) previous data

3The formula in [Com74] actually is incorrect: it has (n — 1)cpyy a8 its left hand side. The formula
above does conform with the table of ¢, values presented in [Com?74]. This error has been discovered by
Hans Zantema, who refereed this chapter for CSN "91.

psview.php?id=ebf0dc84&page=8

type A to A’, such that T'(z) = T(y) = # =, y. Define functions [and Oy,
such that [4{z) = L4{T(x)) and O4{x) = Ox{T(z)). Then add laws for A’ that
construct equivalence classes w.r.t. [y and O 4.

A suitable choice for such a function 7" is one such that maps two or more laws from
L, to one and the same law in the new type (like associativity of 4 and of []] in
Kperm were both mapped to associativity of 4 in Reulisf). This may happen if T
is not injective on ferms of A.

o if a data type without laws is obtained, one has a unigue normal form for the original
data type A {(w.r.t. I, and O,).

On a more abstract level, this means that for an abstract data type A and functions 7
and O, we construct the quotient type of A w.r.t. (7, 0)-induced equality, by adding laws
to that effect, and eventually construct a “free” data type for the quotient.

If this process could be carried out in reverse, this would have interesting applications
in the area of implementation of abstract data types, since then abstract data types with
laws could be implemented by free types with an explicit equality function.

If one were to consider a data type with []|, {} and —, one would find that some
nice equivalences hold on this data type, resembling the well-known De Morgan-laws in
Boolean algebras. D. Turner describes this in [Tur90).

A remaining interesting problem, for which no better than a trivial exponential algorithm
has been given, is the correspondence problem for K-permutations, i.e. given strings z
and y, does a K-permutation z exist, such that (O z) =z A ({ z) = y? This may be the
subject of further studies.

Acknowledgement

Daniél Tuijnman is thanked for the numerous discussions we had on this subject, his
scrutiny of my ideas, and for investigating the relevant literature on combinatorics. Dick
van Leijenhorst provided useful comments on the combinatorial aspects of this problem.
Kees Koster is thanked for providing this interesting preblem; he, Norbert Volker and
Helmut Partsch added occasional |1’s and gave useful criticism on drafts of this note.
I would like to thank one particular CSN '91 referee for many useful suggestions for
improvements.

References

[Bir87] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Coleuli of Discrete Design. NATO AST Series Vol F36,
pages 5-42. Springer-Verlag, Berlin, 1987.

[Cat38] Catalan. Note sur une équation aux différences finies. J.M. pures appl., 3:508-
516, 1838.

psview.php?id=ebf0dc84&page=9

[ComT4]

[Kos65]

[Kas90]

[Mee89a)

[Mee89b)

[Sch7]
[STO8Y]

[Tur90]

[vL90]

[vLo1]

L. Comtet. Advanced Combinatorics - The art of finile and infinite exponsions.
Reidel, Dordrecht, 1974.

C.H.A. Koster. On the construction of ArcoL-procedures for generating,
analysing and translating sentences in natural languages. Technical Report
MR 72, Mathematisch Centrum, Amsterdam, February 1965.

C.H.A. Koster, November 1990. Personal communication.

L.G.L.T. Meertens. Lecture notes on the generic theory of binary structures.
In STOP International Summer School on Constructive Algorithmics, Ameland
[STO89)]. Lecture notes.

L.G.L.T. Meertens. Variations on trees. In STOP Internotional Summer School
on Constructive Algorithmics, Ameland [STO89]. Lecture notes.

Schrider. Vier combinatorische Probleme. Z. fiir M. Phys., 15:361-376, 1870.

STOP. STOP Internotional Summer School on Constructive Algorithmics,
Ameland, September 1989. Lecture notes.

D.A. Turner. Duality and De Morgan principles for lists. In W.H.J. Feijen,
A J.M. van Gasteren, D. Gries, and J. Misra, editors, Beguty is our business -
A Birthday Salute to Edsger W. Dijkstra, chapter 47, pages 390-398. Springer
Verlag, Berlin/Heidelberg/New York, 1990.

D.C. van Leijenhorst. On a ternary bracketing problem from the theory of
formal languages. Technical Report 90-24, KUN, December 1990.

D.C. van Leijenhorst, January 1991. Addendum to [vL90].

psview.php?id=ebf0dc84&page=10

