PARALLEL SEARCHING FOR A FIRST SOLUTION ${ }^{1}$

Bożena BARTOSZEK ${ }^{\text {a }}$, Zbigniew J. CZECH ${ }^{\text {b }}$ and Marek KONOPKA ${ }^{\text {c }}$
${ }^{a}$ Computing Laboratory, University of Kent, Canterbury, CT2 7NF, England ${ }^{2}$
${ }^{\mathrm{b}}$ Institutes of Computer Science, Silesian Technical University and
Polish Academy of Sciences, ul. Bałtycka 8, 44-100 Gliwice, Poland
${ }^{\text {c }}$ Institute of Computer Science, Silesian Technical University, ul. Pstrowskiego 16, 44-100 Gliwice, Poland

Abstract

A parallel algorithm for conducting a search for a first solution to the problem of generating minimal perfect hash functions is presented. A message-based distributed memory computer is assumed as a model of parallel computations. A data structure, called reversed trie (r-trie), was devised to carry out the search. The algorithm was implemented on a transputer network. The experiments showed that the algorithm exhibits a consistent and almost linear speedup. The r-trie structure proved to be highly memory efficient.

1. INTRODUCTION

Consider a static ${ }^{3}$ set W of m finite length words over an ordered alphabet. A hash function is a function $h: W \rightarrow I$ that maps the set W into some given interval of integers I, say $[0, k-1]$, where $k \geq m$. The hash function computes for each word from W an address (an integer from I) for the storage and retrieval of that word. If $k=m$ and h is an injection, then we say that h is a minimal perfect hash function (MPHF). Usually for a given set W many MPHFs exist. We are interested in finding only one of these functions.

MPHFs are used for memory efficient storage and fast retrieval of items from a static set, such as reserved words in programming languages, command names in operating systems, commonly used words in natural languages etc.

Various algorithms for constructing MPHFs have been proposed. Many of them involve an exhaustive search which terminates when a first solution is found. In this paper we present a parallel algorithm for conducting such a search. We assume a message-based distributed memory computer as a model of parallel computations.

The paper is organized as follows. Section 2 contains an outline of the sequential algorithm which was a basis for our work. In section 3 we give an overview of some parallel search

[^0]algorithms. In section 4 we present our parallel algorithm and two implementations. Section 5 describes the experimental results, and section 6 contains conclusions.

2. A SEQUENTIAL ALGORITHM FOR FINDING MPHF

Czech and Majewski [1] proposed a linear time algorithm for finding MPHFs. It searches for the MPHF of the form:

$$
h(w)=\left(h_{0}(w)+g\left(h_{1}(w)\right)+g\left(h_{2}(w)\right)\right) \bmod m
$$

where h_{0}, h_{1} and h_{2} are auxiliary pseudorandom functions, and g is a function implemented as a lookup table, whose values are established during the exhaustive search.

The MPHF is constructed in three steps. First, the mapping step transforms a set of words into a set of triples of integers h_{0}, h_{1} and h_{2}. The second step, ordering, divides set W into subsets $W_{0}, W_{1}, \ldots, W_{k}$, such that $W_{0}=\emptyset, W_{i} \subset W_{i+1}$, and $W_{k}=W$, for some k. The sequence of these subsets is called a tower, each subset $X_{i}=W_{i}-W_{i-1}$ is called a level of the tower, and k is called a height of the tower. The third step, searching, tries to extend the function h from the domain W_{i-1} to W_{i} for $i=1,2, \ldots, k$.

Observe that allocating a place in the hash table for a word w requires selecting the value $U(w)=g\left(h_{1}(w)\right)+g\left(h_{2}(w)\right)$. There may exist a sequence of words $\left\{w_{0}, w_{1}, \ldots, w_{j-1}\right\}$, such that $h_{1}\left(w_{i}\right)=h_{1}\left(w_{i+1}\right)$ and $h_{2}\left(w_{i+1}\right)=h_{2}\left(w_{(i+2) \bmod j}\right)$, for $i=\{0,2,4, \ldots, j-2\}$. Once words $w_{0}, w_{1}, \ldots, w_{j-2}$ are allocated some places in the hash table, both $g\left(h_{1}\left(w_{j-1}\right)\right)$ and $g\left(h_{2}\left(w_{j-1}\right)\right)$ are set. Hence, word w_{j-1} cannot be allocated an arbitrary place, but it must be placed in the hash table at location

$$
h\left(w_{j-1}\right)=\left(h_{0}\left(w_{j-1}\right)+U\left(w_{j-1}\right)\right) \bmod m .
$$

In the sequence the words $w_{0}, w_{1}, \ldots, w_{j-2}$ are independent (i.e. they have a choice of a place in the hash table), whereas the word w_{j-1} is dependent (i.e. it has not such a choice). These words are called in [1] canonical and noncanonical, respectively. It is easy to see that

$$
U\left(w_{j-1}\right)=g\left(h_{1}\left(w_{j-1}\right)\right)+g\left(h_{2}\left(w_{j-1}\right)\right)=\sum_{p \in \operatorname{path}\left(w_{j-1}\right)}(-1)^{p} U\left(w_{p}\right)
$$

where $\operatorname{path}\left(w_{j-1}\right)$ is a sequence of words $\left\{w_{0}, w_{1}, \ldots, w_{j-2}\right\}$, and thus

$$
h\left(w_{j-1}\right)=\left(h_{0}\left(w_{j-1}\right)+\sum_{p \in \operatorname{path}\left(w_{j-1}\right)}(-1)^{p} U\left(w_{p}\right)\right) \bmod m .
$$

If the place $h\left(w_{j-1}\right)$ is occupied, a collision arises and no MPHF for selected values of g can be found.

In the searching step the following combinatorial problem is solved:
find $U\left(w_{i}\right) \in[0, m-1], i=1,2, \ldots, k$, where k is the height of the tower, such that values $h\left(w_{i}\right)=\left(h_{0}\left(w_{i}\right)+U\left(w_{i}\right)\right) \bmod m$ for canonical words $w_{i} \in W$, and $h\left(w_{j}\right)=\left(h_{0}\left(w_{j}\right)+\right.$ $\left.\sum_{p \in \operatorname{path}\left(w_{j}\right)}(-1)^{p} U\left(w_{p}\right)\right) \bmod m$ for noncanonical words $w_{j} \in W$ are all distinct, i.e. for any w_{1} and $w_{2} \in W, h\left(w_{1}\right) \neq h\left(w_{2}\right)$. The $U\left(w_{i}\right)$ s (or U-values) are found during the exhaustive search at every level X_{i} of the tower. The search starts with $U\left(w_{i}\right)=0$ for each canonical word
(a)

(c)

Figure 1: Fitting the pattern in the hash table
w_{i}, i.e. an attempt is made to locate it at the position $h_{0}\left(w_{i}\right)$ in the hash table. Once the hash value for the canonical word w_{i} on a given level of the tower is found, the value of $U\left(w_{i}\right)$ is known. It enables to compute the hash values for the noncanonical words on that level. The set of the hash values of words on a given level X_{i} of the tower is called a pattern. If all places defined by the pattern are not occupied, the task on a given level is done and the next level is processed. Otherwise, the pattern is moved up the table modulo m until the place where it fits is found. Except for the first level of the tower, this search is conducted when the table is partially filled. Thus, it may happen that no place for the pattern is found. In such a case the searching step backtracks to earlier levels, assigns different hash values for words on these levels, and then again recomputes the hash values for successive levels.

Example 1. Let tower T consists of the following sets (levels): $X_{1}=\left\{w_{1}\right\}, X_{2}=\left\{w_{2}, w_{3}\right\}$, $X_{3}=\left\{w_{4}\right\}, X_{4}=\left\{w_{5}, w_{6}, w_{7}\right\}$. Assume that the first words specified in each set are canonical. Let h_{0} values be:

w_{i}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}
$h_{0}\left(w_{i}\right)$	2	5	12	9	2	4	9

There is no problem with placing the first three levels of T in the hash table by setting $U\left(w_{1}\right)=$ $U\left(w_{2}\right)=U\left(w_{3}\right)=0$. The black boxes in Fig. 1a show the assigment of addresses to words w_{1} to w_{4}. The words on level 4 form the pattern $\left(h_{0}\left(w_{5}\right), h_{0}\left(w_{6}\right), h_{0}\left(w_{7}\right)\right)=(2,4,9)$. This pattern cannot be placed in the table with $U\left(w_{5}\right)=0$ so we move it up the table, first by one (Fig. 1b) and then by two positions (Fig. 1c) where it finally fits. Thus, $U\left(w_{5}\right)=2$.

In [2] Czech and Majewski proposed backtrack pruning to speed up the search. Consider two words w_{a} and w_{b} on level i of the tower for which $h\left(w_{a}\right)=\left(h_{0}\left(w_{a}\right)+\right.$ $\left.\sum_{p \in \operatorname{path}\left(w_{a}\right)}(-1)^{p} U\left(w_{p}\right)\right) \bmod m=h\left(w_{b}\right)=\left(h_{0}\left(w_{b}\right)+\sum_{q \in \operatorname{path}\left(w_{b}\right)}(-1)^{q} U\left(w_{q}\right)\right) \bmod m$. Let
$P=\left\{w_{p} \mid p \in \operatorname{path}\left(w_{a}\right)\right\}$ and $Q=\left\{w_{q} \mid q \in \operatorname{path}\left(w_{b}\right)\right\}$, and let level $(w), w \in P \cup Q$, be a function that returns a tower level of w. After having discovered a conflict for words w_{a} and w_{b} instead of decreasing i by 1 , the search is continued on level $d=\max \{\operatorname{level}(w) \mid w \in P \cup Q\}$, such that if $w \in P \cap Q$, $\operatorname{level}(w)=d$, then the $U(w)$ values have different signs in $h\left(w_{a}\right)$ and $h\left(w_{b}\right)$.

As we have already mentioned, although there can be many solutions to the problem of generating MPHFs, we are interested in finding any one of these solutions.

The exhaustive search applied in the third step of the algorithm has a potentially worst-case time complexity exponential in the number of words to be placed in the hash table. The time to perform the search depends on the size of table g. It has been proved that if $|g|=2 m$, then the time to perform the search is negligible and is dominated by the time to perform the mapping and ordering steps [1]. However, when the table size is decreased, the time taken by the search grows exponentially (see Table 1). Since the g table contains the description of the MPHF, it is desirable for g to be as small as possible.

3. PARALLEL SEARCH ALGORITHMS

The exhaustive search can be formulated as a search of a state-space usually structured as a tree. A single state, or node, of the tree is transformed to successor states by using operators. These transformations correspond to arcs between nodes and their successors in the tree. The simplest approach to parallelization of the search is to apply at any node the operators to obtain successor nodes, and then to search the subtrees beneath each node in parallel by different processors. However, if we search only for a single solution and it is found in the first subtree, the work done in the other subtrees is wasted. As a consequence, such a parallel search can give a sublinear speedup or even a decrease in speedup with an increase in the number of processors. It is also possible to obtain a superlinear speedup, when for example a solution is found relatively quickly in the p-th subtree, where p is the number of processors. These anomalous results were first observed and discussed by Lai and Sahni [3].

Kalé and Saletore [4] suggested two criteria to evaluate parallel search schemes:
(1) The time required to find a solution. A scheme must be able to consistently generate a solution faster than the best sequential scheme. The speedup should be possibly close to p, and must increase monotonically with the addition of processors.
(2) The amount of memory required to conduct the search. This amount depends on the search scheme and may vary from linear to exponential function of the depth of the tree.

In [4] Kalé and Saletore proposed a priority based parallel depth-first search. The idea is to mimic the behavior of the sequential algorithm and to search the tree left-to-right. As a result, the wasted work done to the right of the first solution is minimized, which is desirable if a consistent linear speedup is to be achieved. The priority bit-vectors, defined as the sequences of bits of arbitrary length, are used. Priorities which are compared lexicographically are dynamically associated with nodes when they are created. A zero-length priority vector is associated with the
root of the search tree. The priority of a descendant node is obtained by appending its number - given by the ranking of descendant nodes from left-to-right - to the priority of its parent. The active nodes are kept in a shared priority queue defining the order in which the nodes are searched.

The worst-case queue length for the prioritized search is $O(p d b)$. This length can be reduced by making use of two techniques: binary decomposition and delayed-release [4]. We describe shortly the latter one, as it is adopted in our algorithm. The idea behind the delayed-release technique is that when a node is expanded, the descendants are not immediately available to other processors. Only the first descendant is inserted into the queue. This is applied to every node until a leaf node is reached. Then, all the nodes are released as active nodes and may be picked up by other processors. As a result, the intermediate levels of the tree are skipped and the tree is explored from its bottom.

The authors claim [4] that those techniques virtually eliminate the wasted work and decrease the demanded memory to the amount of $O(p+d)$.

4. AN R-TRIE BASED PARALLEL SEARCH

In our parallel search algorithm we use the technique of the processor farm. The basic concept of farming consists of having a central controller - the Master process - that hands out pieces of work to be processed by the members of a pool of Worker processes. The Master stores the active nodes of the search tree that represent the partial solutions to the MPHF problem. A solution is defined by a sequence of U-values, one value for each level of the tower. The nodes are sent to the Workers which do the search by placing successive levels of the tower in the hash table and reporting the results to the Master.

The partial solutions are kept in a specially devised data structure that we called a reversed trie (r-trie). The name comes from its resemblance to the trie structure discussed by Knuth in [5]. An r-trie is essentially a b-ary tree, whose nodes correspond to the U-values. The nodes on level l represent the set of partial solutions that begin with a certain sequence of U-values. In a single node of an r-trie we hold: a level number, a U-value for that level, a flag indicating whether the node is assigned to a Worker or not, and a pointer to the parent node. We denote a node by a pair (level number, U-value), and (1,0) is the root of an r-trie. A partial (or complete) solution is restored by traversing the nodes of an r-trie from a leaf up to its root. The active nodes in an r-trie are arranged into a doubly-linked list named ActiveNodes. This list is used for selecting nodes and handing them out to Workers.

Example 2. Fig. 2 b shows the r-trie. The nodes on level 3, e.g., represent partial solutions given by the following sequences of U-values: $(0,5,2)$ and $(0,5,3)$. \sqsubset

The advantage of the r-trie structure over the approach by Kale and Saletore is that we do not need to compute priority vectors. Also, no priority queue has to be maintained. To find a node to assign for a Worker we scan the ActiveNodes list inspecting at most $p-1$ of its elements.

4.1. Parallel-C implementation

4.1.1. Worker processes

A Worker process receives two types of messages from the Master:
New. This message contains a new partial solution for carrying on the search. It consists of a level number where the new partial solution begins, a number of levels in the solution, and the U-values, one value for each level.

Continue. This message has no components. Upon receiving the Continue message a Worker continues its search with the currently available partial solution.

Let i be the number of the last level placed by a Worker, and let the New message it received from the Master contain the n-level partial solution beginning from level j. (Since the Master keeps track of the progress of each Worker, $j \leq i$ always holds.) In response, the Worker frees all the places in the hash table occupied by the words on levels $j, j+1, \ldots, i$. Then it places the words from levels $j, j+1, \ldots, j+n-2$ by making use of the U-values received, and continues the search from level $j+n-1$. Denote this level as k_{0}. The idea of delayed-release is adopted in our algorithm. Thus, placing of successive levels of the tower in the hash table is continued until:

Case 1. The Worker encounters a leaf in the search tree, i.e. a level that cannot be placed as an extension to the current solution. Suppose that the Worker must backtrack to level k. If $k<k_{0}$, then the Worker sends a message DeepBack to the Master along with the value of $k . k \geq k_{0}$ means that the Worker has placed some levels of the tower. A minimum number of levels which the Worker must place before communicating with the Master is a parameter to the algorithm. This parameter can be viewed as a grain size or granularity of search work. We denote it by s. If $k \geq k_{0}+s$, i.e. the Worker has placed a required number of levels, then it sends to the Master the U-values for the placed levels. Otherwise ($k<k_{0}+s$ holds) it continues the search.

Case 2. The Worker placed the last level of the tower in the hash table. In such a case the Worker sends to the Master the U-values for the placed levels and the information that the solution has been found.

To accelerate the initial phase of the search, all the Workers after placing the first level with $U[1]=0$ continue the search until a backtrack occurs. Then, the first Worker sends to the Master a message containing the number of placed levels and the corresponding U-values. Each Worker backtracks then a number of levels equal to its number and resumes the search, i.e. the first Worker backtracks one level, the second Worker two levels etc. If a Worker is to backtrack below the second level, it frees all places in the hash table except for the places occupied by the words on the first level, and waits for a New message.

4.1.2. Master process

The Master holds partial solutions and assigns work to Workers. It stores pointers to last nodes processed by each Worker and keeps track of idle Workers. When active nodes become available, they are sent to idle Workers. Once a node is assigned to a Worker its assign flag is set. The Master receives three types of messages from Workers:

PartialSuccess. This message is sent when a Worker placed successfully some levels, and then encountered a level which cannot be placed. It contains the number of levels placed along with the corresponding U-values. Suppose that the Worker placed n levels beginning from level i, and on level $i+n$ it backtracked to level $i+n-1$. Let the U-values received be $U[i], U[i+1]$, $\ldots, U[i+n-1]$. If the last node processed by the Worker was the first node on the ActiveNodes list, the Master sends the Continue message to the Worker. Then it changes the U-value of the last node processed by the Worker to $U[i]$, and inserts nodes $(i+1, U[i+1]),(i+2, U[i+2])$, $\ldots,(i+n-1, U[i+n-1])$ in the r-trie. The Master also adds to the r-trie new active nodes $(i, U[i]+1),(i+1, U[i+1]+1), \ldots,(i+n-2, U[i+n-2]+1)$. These are alternatives for expansion. If the Worker did not process the first node on the ActiveNodes list, such a node is found and its corresponding partial solutions is computed. This solution is compared with the one received from the Worker. The fragment in which they differ is sent back to the Worker as a New message.

DeepBack. This message is sent when a Worker executed backtrack pruning (see sec. 2). It contains the level number to which the Worker backtracked. Let this number be i, and let the last node processed by the Worker be $(j, U[j])$. The Master traverses the r-trie starting from node $(j, U[j])$ until node ($i, U[i]$) is encountered. Then it removes from the r-trie all not assigned active descendants of node $(i, U[i])$, and creates and sends a New message to the Worker.

TotalSuccess. This message is sent when a Worker placed successfully the last level of the tower. It contains the U-values for the levels placed.

Example 3. Consider an example search carried out by Workers P_{1}, P_{2} and P_{3}, and the Master. Initially, the r-trie consists of two nodes: $(1,0)$ and $(2,0)$ (Fig. 2a). Suppose that during the search the following messages are sent to the Master:

Message no.	Message type	from Worker	U-values
1	PartialSuccess	P_{1}	$(5,2,6)$
2	PartialSuccess	P_{1}	$(8,1,5)$
3	DeepBack	P_{2}	to level 2
4	PartialSuccess	P_{3}	$(7,5)$

In response to message 1 the Master changes the U-value of node $(2,0)$ to 5 and inserts in the r-trie new nodes $(3,2),(4,6),(2,6)$ and $(3,3)$. Nodes $(4,6),(3,3)$ and $(2,6)$ become active (Fig. 2b). As mentioned earlier, P_{1} backtracks one level so it continues the search from node $(4,6) ;$. P_{2} continues from node $(3,3)$, and P_{3} from node $(2,6)$. Suppose that P_{1} has placed
successfully the next three levels (message 2). The Master sends to P_{1} a Continue message since the node $(4,6)$ is the first node on the ActiveNodes list. Then it changes the U-value of node $(4,6)$ to 8 and inserts nodes $(5,1),(6,5),(4,9)$ and $(5,2)$ as active nodes in the r-trie. Now suppose that P_{2} sends message 3. Having received it the Master removes from the r-trie node $(3,3)$ and sends to P_{2} a new partial solution (by making use of a New message) beginning from level 3 with U-values (2,8,2). Thus, P_{2} will continue the search from level 5. Suppose that P_{3} has placed successfully the next two levels (message 4). The Master changes the U-value of node $(2,6)$ to 7 and inserts in the r-trie nodes $(3,5)$ and $(2,8)$. Now the first active node not assigned yet is $(4,9)$. The Master sends to P_{3} a new partial solution beginning at level 2 with U-values (5, 2, 9). Thus P_{3} will continue the search from level 4 . Fig. 3 shows a state of the r-trie at that moment. Active nodes $(6,5),(5,2)$ and $(4,9)$ are assigned.

Figure 2: (a) Initial state of the r-trie; (b) The r-trie after message 1 has been processed

Figure 3: The r-trie after message 4 has been processed

4.2. Occam implementation

Here we discuss the major differences between the occam implementation of the algorithm and the Parallel-C implementation presented above.

4.2.1. Worker processes

A Worker process receives one extra message from the Master, the End message. This has no components and is sent when the solution has been found.

This implementation has no backtrack pruning, thus with the DeepBack message a Worker sends no k value.

4.2.2. Master process

The Master process receives only two types of messages from the Worker processes:
Success. This is exactly the same message as the PartialSuccess message. When the Master receives the Success message with the last level placed, it sends a single End message to the Workers.

DeepBack. This message is sent when a Worker backtracks one level below the start level. It has no components, as mentioned above.

4.2.3. The farming harness

In the occam implementation a farming harness was written specifically for the application. Such a harness consists of two processes:

Splitter. This process performs the distributon of jobs from the Master to the farm. As the jobs are numbered for specific Workers, the Splitters direct each one accordingly.

Merger. This process collects results from the Workers and passes them back to the Master. In times of choice the Mergers give priority to the results from the Worker not the neighbouring Merger.

These processes run at high priority so that messages (jobs and results) destined for other processors can be passed on immediately.

Fig. 4 shows a farm of three transputers.

Figure 4: An example farm

5. EXPERIMENTAL RESULTS

The parallel algorithm was implemented in Parallel-C under control of the Express Parallel Programming Environment and in occam on UKC's Meiko Surface. We ran the algorithm on a transputer system with ten T800 20 MHz transputers configured into a linear array. The Master was run on the first transputer, and the Workers were run on the remaining transputers. The experiments were conducted for the six sets of words of sizes $m=50,60, \ldots, 100$. For these sets tables 1 and 2 show the execution times of the sequential search (using only one transputer) in Parallel-C and occam. Fig. 5 and fig. 6 show the speedup of the Parallel-C and occam implementations respectively, as a function of the number of processors. The granularity of search work, s, is a parameter to the graphs. Each point of a graph was computed as an average over the 36 results measured for all the sets and the values of parameter $\beta=0.45,0.46, \ldots, 0.5$.

m	$\beta=0.45$	$\beta=0.46$	$\beta=0.47$	$\beta=0.48$	$\beta=0.49$	$\beta=0.5$
50	180.818	85.126	63.051	25.91	8.893	3.239
60	183.126	116.579	48.067	19.989	5.82	3.188
70	218.984	128.58	99.849	51.777	33.204	6.387
80	312.699	83.06	56.375	25.222	11.843	5.492
90	174.454	126.423	76.583	51.919	13.223	4.778
100	329.219	201.531	63.777	39.217	13.407	4.052

Table 1: Sequential search times in seconds (Parallel-C), $|g|=\beta m$

m	$\beta=0.45$	$\beta=0.46$	$\beta=0.47$	$\beta=0.48$	$\beta=0.49$	$\beta=0.5$
50	227.658	195.883	112.862	84.468	58.293	21.217
60	382.592	260.768	80.682	73.845	44.657	10.769
70	385.010	250.005	144.504	66.800	57.800	13.147
80	318.291	200.772	205.961	45.931	29.858	17.782
90	402.634	322.956	181.241	123.641	55.215	14.851
100	865.847	445.430	244.551	115.510	57.919	44.709

Table 2: Sequential search times in seconds (occam), $|g|=\beta m$

6. CONCLUSIONS

We presented the parallel algorithm for conducting a search for a first solution to the problem of generating MPHFs. The algorithm uses the technique of the processor farm, and adopts the idea of delayed-release [4]. The special data structure, called reversed trie (r-trie), was devised to carry out the search. The experiments showed that the parallel algorithm exhibits a consistent and almost linear speedup (cf. Figs. 5 and 6). As a grain size of the search work increases, a superlinear speedup can be obtained (cf. Fig. 5). The r-trie structure proved to be highly memory efficient.

Figure 5: Speedup versus number of processors (Parallel-C)

Figure 6: Speedup versus number of processors (occam)

REFERENCES

[1] Z.J. Czech and B.S. Majewski, A linear time algorithm for finding minimal perfect hash functions, The Computer Journal 36 (4) (1993).
[2] Z.J. Czech and B.S. Majewski, Generating a minimal perfect hash function in $O\left(M^{2}\right)$ time, Archiwum Inform. Teoret. i Stos. 4 (1-4) (1992) 3-20.
[3] T.H. Lai and S. Sahni, Anomalies in parallel branch-and-bound algorithms, Comm. ACM 27 (6) (1984) 594-602.
[4] L.V. Kalé and A. Saletore, Parallel state-space search for a first solution with consistent linear speedups, Intern. Journ. of Parallel Program. 19 (4) (1987) 251-293.
[5] D.E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching (AddisonWesley, New York, 1973) 481-499.

[^0]: ${ }^{1}$ M. Konopka and Z. J. Czech were supported by the Polish Committee for Scientific Research under the grant BK-608/RAu2/93. B. Bartoszek was supported by the European Committee under the Tempus grant.
 ${ }^{2}$ On leave from the Silesian Technical University.
 ${ }^{3}$ By static we mean a set that is essentially unchanging, i.e. it is not subject to insertions or deletions of elements.

