
The analysis of very small samples of repeated measurements

II: A modified Box correction
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There is a need for appropriate methods for the analysis of very small samples of continuous repeated

measurements. A key feature of such analyses is the role played by the covariance matrix of the

repeated observations. When subjects are few it can be difficult to assess the fit of parsimonious

structures for this matrix, while the use of an unstructured form may lead to a serious lack of power.

The Kenward-Roger adjustment is now widely adopted as a means of providing an appropriate

inferences in small samples, but does not perform adequately in very small samples. Adjusted tests

based on the empirical sandwich estimator can be constructed that have good nominal properties,

but are seriously underpowered. Further, when such data are incomplete, or unbalanced, or non-

saturated mean models are used, exact distributional results do not exist that justify analyses with

any sample size. In this paper, a modification of Box’s correction applied to a linear model based

F -statistic is developed for such small sample settings and is shown to have both the required

nominal properties and acceptable power across a range of settings for repeated measurements.

Keywords: ANOVA; Box correction; covariance matrix; linear model; repeated measures; Scheffés

method; small samples

1. Introduction

The preceding companion paper to this [1] highlights the need for appropriate methods for
the analysis of repeated measurements when the sample size is very small. In particular,
deficiencies in conventional approaches to inference from such samples are highlighted where
data are unbalanced or incomplete. It is shown that hypothesis tests based on conventional
Wald type procedures do not approximate their nominal properties sufficiently well. This
is the case with the Kenward-Roger adjustment [2, 3], which is implemented in SAS PROC

MIXED [4] and accounts for both bias and variability in the estimated covariance matrix of
the fixed effects by adoption of a scaled F -statistic and an adjustment to the denominator
degrees of freedom. Also considered is the empirical sandwich estimator from the generalized
estimating equations (GEE) approach for categorical data, which uses ordinary least squares
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estimates for the fixed effects and adjusts their standard errors to reflect the observed de-
pendencies in the data. Such a procedure is known to have poor small sample properties,
but an adjusted Wald test due to Pan and Wall [5] can be generalised to allow testing of
any general linear hypothesis involving fixed effects. When combined with a bias adjustment
(Mancl and DeRouen [6]), the resulting statistic is seen to achieve adequate control over the
type 1 error rate, but has very poor power in comparison to the Kenward-Roger adjusted
statistic (when the latter provides a valid comparator). In this paper we consider further the
need for an appropriate general approach, which will be applicable across a range of settings
for repeated measures data where the sample size is very small.

The problems in the methods listed above all stem from the same source: the lack of infor-
mation in the data on the covariance structure of the repeated measurements. In certain
balanced settings with saturated mean models the covariance structure does not influence the
parameter estimates which are then identical to those obtained from ordinary least squares.
In such circumstances the Kenward-Roger adjustment recovers exact Hotelling’s T 2 and hi-
erarchical ANOVA F -tests which do not require small sample approximation. Moving away
from such special cases, such as with missing data or with non-saturated models, leads to
serious departures from the nominal properties of inference procedures in very small samples.
It is clear from this that removing the estimated covariance structure from the estimation
of the regression parameters leads to an improvement in the small sample behaviour of in-
ferences. In such cases, the estimated covariance structure is not used in the estimation of
the mean parameters, but is necessary for estimates of their precision. This control is seen
to deteriorate where the covariance structure enters the estimation step, and is worse still
in situations which are unbalanced. This suggests the use of ordinary least squares more
widely in such settings, with subsequent correction of the measure of precision using a sand-
wich (also termed empirical or robust) estimate of the covariance matrix of the estimates.
In the companion paper it was shown how such procedures, with appropriate small sample
modification of the sandwich estimator, produce test statistics with good approximation to
their nominal size. However, the need to estimate the covariance matrix of the repeated
measurements as part of the sandwich estimator leads to very poor precision of this, with a
consequent impact on the power of the associated tests. This was seen to be unacceptably
poor in small sample settings.

To overcome this, a natural next step is to remove the estimated covariance structure from
both the estimates and their estimates of precision (which will then be strictly invalid). The
estimated covariance matrix is then introduced only at the final stage to approximate the
sampling distribution of the resultant independence-based statistics, and which forms the
basis of subsequent inferences. This idea is not new and forms the basis of the well-known
Box correction [7, 8], which suggests a modification to the one-way ANOVA F -statistic
to account for departures from this model. Its use in the context of cross-over designs
was suggested by Bellavance et al [9] who show that Box’s modified F -test approximation
gives adequate control over the type 1 error rate in this context (see also [10]), but it is
considered here in a general linear model setting. We find that a modification to Box’s
correction is needed to provide acceptably good behaviour across a range of very small
sample repeated measurements settings. We introduce Box’s correction in Section 2, and
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develop the modification in Section 3. The properties of the corrections are explored in
Section 4. In Section 5 we compare, through a series of simulation studies across a range
of repeated measurement settings, the performance of the corrections with the procedures
based on the Kenward-Roger adjustment and the adjusted sandwich estimator. Examples
of the use of the modified Box correction are presented in Section 6, where it is also shown
how Scheffé’s method [11] for obtaining confidence intervals for individual contrasts can be
adapted to allow for the modified Box-corrected statistic. Practical recommendations for the
analysis of very small samples of repeated measurements are then made in the discussion of
Section 7.

2. Box’s correction

We suppose that the data can be represented by a conventional multivariate Gaussian linear
model [12]. Let yi (Ti × 1) be the response vector from the ith of n subjects, and it is
assumed that a common set of measurement times applies to all subjects, although not all
may be observed for all subjects. The model has the following general form

yi ∼ N (Xiβ;Σi) , i = 1, . . . , n, (1)

for β, (p×1), the vector of fixed effect parameters, Xi, (Ti×p), the design/covariate matrix,
and Σi the (Ti×Ti) covariance matrix for this subject. Depending on the setting, the covari-
ance matrix can in principle take many forms, including those induced by a random effects
structure. Defining y = (y1, . . . ,yn)

T , X = (X1, . . . ,Xn)
T , setting Σ = block-diagonal {Σi}

we have the equivalent expression for the whole data set:

Y ∼ N(Xβ;Σ) . (2)

Now suppose that we wish to test the null hypothesis that c elements of β are zero, but not
under the model assumptions above, but rather assuming (wrongly) independent equally
variable Gaussian errors. Define XR (n× (r− c)) to be the design matrix for the model with
the terms to be tested removed, and set A = I−X(XTX)−1XT and B = X(XTX)−1XT −
XR(X

T
RX

T
R)

−1XT
R. Then, using the extra sums of squares principle, the appropriate test

statistic for the null hypothesis under the independence assumptions is given by

F =
n− r

c

yTBy

yTAy
, (3)

which, if these assumptions held, would have a null Fc,n−r distribution. Under the more
general model (2), Box [7, 8] showed that ψ−1F has an approximate Fv1,v2 distribution,
where the degrees of freedom and ψ are obtained as follows. The key approximation [13]
is to treat the numerator and denominator quadratic forms as having independent scaled
chi-squared distributions of the form,

Q = yTCy
approx∼ gχ2

h, (4)
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where the constant and degrees of freedom parameters g and h are chosen by matching the
first and second moments. That is

gh = tr(CΣ)

2g2h = 2tr(CΣCΣ)

From this we get

ψ =
(n− r)

c

tr(BΣ)

tr(AΣ)
(5)

v1 =
{tr(BΣ)}2
tr{(BΣ)2} (6)

v2 =
{tr(AΣ)}2
tr{(AΣ)2} (7)

In practice, any consistent estimator of Σ = V(y), may be used to compute the adjusted F-
distribution parameters. Jones and Keward [14] suggest the use of the ordinary least squares
(OLS) covariance estimate is in keeping with the spirit of this approach. However, for data
which are unbalanced or have missing values, so that the OLS and restricted maximum
likelihood (REML) estimates do not coincide, it may be more practical to simply adopt the
unstructured REML estimate, which is widely implemented in existing software. In cases
where an unstructured REML estimate cannot be computed (as can occur, for example,
where there are too many measurements on too few subjects), Σ may be taken to be the
most complex covariance structure that the data will support, such as a (high order) antede-
pendence structure. An advantage of this method is that it does not require a non-singular
estimate of the covariance structure, so that, in such cases, it is possible to proceed using an
‘empirical’ estimator such as the sample covariance matrix.

In simulations (see below) Box’s correction can be shown to be conservative, giving excessive
control over the type 1 error rate and resulting in test sizes well below the nominal rate, and
so a modification to this correction is proposed.

3. A modified Box correction

Rather than approximating the distribution of the quadratic form in the F -statistic (3)

Q1

Q2
=

yTBy

yTAy

as a ratio of independent scaled chi-squared distributions, we instead approximate it directly
by a scaled F-distribution, λFv1,v2 , and match the first two moments of this. These can be
obtained using the the ‘delta’ method (see, for example, Stuart and Ord [15]), from which
we obtain

E

(

Q1

Q2

)

≈ E(Q1)

E(Q2)
(8)

4



and

Var

(

Q1

Q2

)

=
{E(Q1)}2
{E(Q2)}2

[

Var(Q1)

{E(Q1)}2
+

Var(Q2)

{E(Q2)}2
− 2Cov(Q1, Q2)

E(Q1)E(Q2)

]

(9)

Assuming, as in the Box correction, that the numerator and denominator terms in the F -
statistic are independent, so that Cov(Q1, Q2) = 0, we have, equating these moments with
those of the scaled F-distribution

1

λ

tr(BΣ)

tr(AΣ)
=

v2
v2 − 2

(10)

and,
1

λ2
{tr(BΣ)}2
{tr(AΣ)}2

[

2
tr{(BΣ)2}
{tr(BΣ)}2 + 2

tr{(AΣ)2}
{tr(AΣ)}2

]

=
2v22(v2 + v1 − 2)

v1(v2 − 2)2(v2 − 4)
(11)

Fixing v1 = c, the dimension of the test (similarly to the Kenward-Roger and small-sample
sandwich adjustments), we can use these final two equations to obtain expressions for the
scale factor λ and the denominator degrees of freedom v2 for our approximating distribution.
This gives us

F =
(n− r)

c

yTBy

yTAy

approx∼ λFc,v2 (12)

where,

λ =
(n− r)

c

v2 − 2

v2

tr(BΣ)

tr(AΣ)
(13)

v2 =
c(4V + 1)− 2

cV− 1
(14)

and,

V =

[

tr{(BΣ)2}
{tr(BΣ)}2 +

tr{(AΣ)2}
{tr(AΣ)}2

]

(15)

Results from simulations showing the performance of this statistic across a range of settings
for repeated measurements will be shown in Section 5. A further modification was considered
using second order deviations about the mean in (8). That is, taking

E

(

yTBy

yTAy

)

≈ tr(BΣ)

tr(AΣ)

[

1 + 2
tr{(AΣ)2}
{tr(AΣ)}2 − 2

tr(AΣBΣ)

tr(AΣ)tr(BΣ)

]

(16)

and proceeding as above (with tr(AΣBΣ) = 0). However, simulations show that there is
little advantage in following this more complicated approach, since this results in an adjusted
statistic which is more conservative, with test sizes closer to those given by the Box correction
which we are attempting to inflate.
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4. Properties of the Box corrections

It is worth noting that under the assumption of independence, Box’s original correction
recovers the ANOVA F -statistic exactly, whereas the modified correction does not, although
the disparity is of small order. Although it is desirable to have a statistic which recovers the
exact test in appropriate circumstances, such circumstances are unlikely to arise in practice
in the context of repeated measurements.

It is also useful to consider how such corrections behave under the assumption of ‘compound
symmetry’, and the relationship between this approach and repeated measures ANOVA.
The latter approach was often adopted for ‘practical’ analyses before modern computing
power allowed widespread access to the multivariate general linear model, which is now
more commonly used for such data. See, for example, [16] for an outline to this approach,
and [17] for more detail.

The general formulation is to treat ‘time’ (occasions of measurement) as an additional within-
subjects factor, and to model the jth measurement on the ith subject as

yij = µij + bi + eij (17)

where µij are suitably specified fixed effects, bi ∼ N(0, σ2
b ) are random (individual specific)

subject effects, and eij ∼ N(0, σ2) are the usual error terms.

Two sources of variation, between-subjects and within-subjects, lead to a compound symme-
try covariance structure for the repeated measurements, with a constant variance, σ2

b + σ2,
on the diagonal and a constant covariance off the diagonal, and hence a constant correlation
between any pair of repeated measurements on the same subject, given by the intra-class
correlation

ρ =
σ2
b

σ2
b + σ2

(18)

Such an approach is appropriate when supported by randomization, such as in a randomised
block, or split-plot, design, where the subjects are considered as blocks or main-plots re-
spectively, and in extended examples involving more error strata, [18, 19]. However, this
approach is not appropriate for the majority of repeated measurements studies because time
cannot be randomized. Also, departures from constant correlation and constant variance are
often, although not invariably, observed [12].

Box [8] suggested that departures from compound symmetry could be accounted for by
reducing the degree of freedom parameters for the two-way ANOVA F -ratio for the ‘occa-
sions’/‘time’ effect by a multiplicative factor ǫ. The parameter ǫ, 1/(p − 1) ≤ ǫ ≤ 1, is
estimated using the sample covariance matrix. This approach was extended by Greenhouse
and Geisser to the split-plot design [20] and to the (multivariate) setting of profile analysis
[21], through an adjustment to the MANOVA test statistic. Huynh and Feldt [22] show that
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in general for such a model to be appropriate it is necessary only for the within-subjects
covariance matrix to comply with the assumption of sphericity. This is a less restrictive
condition than compound symmetry, since sphericity requires only that the variance of dif-
ferences in a within-subjects design are equal across all groups. The Greenhouse and Geisser
correction uses

F
approx∼ Fǫ(p−1),ǫ(m−g)(p−1) (19)

where p is the number of repeated measurements on a subject, m is the number of subjects,
and g is the number of treatment groups. Adjusted tests using ǫ defined by both Greenhouse
and Geisser and Huynh and Feldt are widely implemented in software packages.

Using the Box correction of Section 2, under the assumption of compound symmetry, we
find

ψ =
σ2

σ2
b + σ2

= 1− ρ (20)

That is, the Box correction adjusts the one-way ANOVA F -statistic for ‘treatments’ to
that which would be obtained from the (more restrictive) two-way setting, using ‘time’
as the other factor. This is equivalent to using an (unadjusted) Wald statistic for the
regression parameters in a multivariate linear model with a compound symmetry covariance
structure. However, although the numerator degrees of freedom are fixed, the denominator
degrees of freedom are lower than from their two-way counterpart, since we are accounting
for departures from independence. A similar relationship is found with the modified Box
correction under compound symmetry.

In the context of very small samples of repeated measurements, the one-way ANOVA ap-
proach with a suitable correction is preferred, since it is more widely applicable across a
range of settings. The Greenhouse and Geisser approach, based on the split-plot design, is
simply too restrictive to be of use generally, since it requires complete and balanced data
and would not, for example, accommodate missing data or cross-over designs.

5. Simulation studies

To investigate the properties of the Box corrections it is appropriate to consider their use
over a range of settings for repeated measurements. Consideration is given to the following
study designs based on the simple repeated measurement and cross-over designs used to
assess the existing repeated measurements methods in [1]. These simulations accommodate
both a range of numbers of time points (T ) and subjects (n), and include data arising from
a wider variety of plausible non-stationary covariance structures. The extended simulation
designs are detailed below. For the simple repeated measures designs, we have

(A′) A simple repeated measures experiment, with n subjects randomly allocated to two
treatment groups (of equal size), and a response recorded for each subject at each of
T time points.
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Table I. A cross-over design for nine treatments (A, B, C, D, E, F, G, H, I).

Period
Subject 1 2 3 4 5 6 7 8 9
1 A B C D E F G H I
2 B D A F C I H G E
3 C F E G D B I A H
4 D G F I B H E C A
5 E A I C H D F B G
6 F H B E I G A D C
7 G I D H F A C E B
8 H C G B A E D I F
9 I E H A G C B F D
10 I H G F E D C B A
11 E G H I C F A D B
12 H A I B D G E F C
13 A C E H B I F G D
14 G B F D H C I A E
15 C D A G I E B H F
16 B E C A F H D I G
17 F I D E A B G C H
18 D F B C G A H E I

(B′) As design (A′), but with missing values. An equal number of subjects in each treatment
group drop out at some random time following the first observation.

(C′) A five treatment-five period cross-over trial, with n = 10 and 20 subjects allocated
randomly to treatments according to Table I of [1], using a pair of Williams’ squares.

(D) A nine treatment-nine period cross-over trial, with n = 18 and 36 subjects allocated
randomly to treatments according to Table I of this paper.

In designs (A′) and (B′), we consider T = 5 time points with n = 10 and 20 subjects, and
T = 10 time points with n = 20 and 40 subjects. Additionally, in design (B′), the numbers
of subjects allowed to drop out are given in Table II, below. For the extended simulations
involving additional subjects in the cross-over designs (n = 20 in design (C′), and n = 36 in
design (D)), the allocation tables are simply repeated.

Table II. Number of drop out subjects in extended study design (B′).

Number of measurements Number of subjects Number of subjects
per subject (T ) (n) to drop out

5 10 2
20 4

10 20 4
40 8

Data samples are independently generated arising from a Gaussian distribution with zero
mean for a number of underlying covariance structures, and the appropriate null hypotheses
under consideration are those of no treatment/time interaction in designs (A′) and (B′),
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and no treatment effect in designs (C) and (D). Two underlying stationary covariance struc-
tures, compound symmetry and AR1 (high correlation) are considered, together with three
non-stationary structures, heterogeneous compound symmetry, heterogeneous AR1 and first
order independence. For each of the non-stationary structures, variances are restricted so
that they differ by no more than a factor of 10 over the range of the measurement times.
These structures are shown in the Appendix.

Results from the extended simulations of study designs (A′) and (B′) are shown in Tables
III and IV respectively. The results of simulations concerning study designs (C′) and (D)
are shown in Table V.

For T = 5 time points in design (A′), we see that as the number of subjects rises from 10 to
20, the power of the tests using the Box corrections is above that of the KR adjusted Wald
test for data arising from the stationary covariance structures. However, for data arising
from the non-stationary structures, the increase in power is generally lower in comparison
to the level attained by the KR adjusted test. This is particularly noticeable for the data
arising from the antedependence structure, which is furthest from the univariate linear model
assumptions of independence and homogeneity of variance. This is as we might expect, the
performance of the KR adjusted test improving as the sample size increases, and the Box
corrections performing comparatively less well for large departures from independence. A
similar pattern is observed in design (B’), although the loss of power relative to the KR
adjusted Wald test is more apparent for increased sample sizes where we have missing values.

As the number of time points increases to T = 10, the loss in power of the Box corrections
relative to the KR adjusted test is less marked. That is, as the number of subjects and time
points is increased in the balanced and complete data setting of design (A′), the modified
Box correction appears to hold its own against the KR adjusted Wald test. For design (B′),
where the missing values introduce imbalance, the KR adjustments no longer give an exact
Hotelling T 2 test, and must be calculated individually for each data set. For the (10 × 10)
matrices necessitated by considering T = 10 time points, this is too expensive in terms of
available computational time for such a practical study. In order to provide a comparison,
the KR adjusted test results in Table IV have been estimated in each case using the ‘known’
underlying covariance structure and an average number of observations. This gives a measure
of the best that could be achieved using the KR method, that is, an upper bound on its
performance. The estimated results are marked with an asterisk in the table. Throughout
Table IV, the KR adjustment is seen to give a test statistic with inflated size (for both T = 5
and 10 time points), although this size is seen to approach the nominal level of 5% as the
number of subjects increases.

In the extended simulations of study designs (A′) and (B′) tests involving the adjusted
sandwich estimator are seen to control size, but these tests appear to have little power to
detect differences from the null hypothesis in comparison to the other methods. This is
particularly true for data arising from underlying covariance structures which are far from
the independence (identity) ‘working’ covariance structure. Also, for increased time points
(T = 10), there were problems with this adjustment in the low subject setting (n = 20),
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Table III. Summary of results from 1000 simulations of extended study design (A′).

Underlying Proportion of significant test results (out of 1000)
‘true’ Number of time (Null model - no treatment/time interaction)
covariance points (T ) and Method Unstr. Sand. adj. Box F Mod. Box
structure subjects (n) of inf. (KR) (PW)
Stationary structures
Compound T=5 n=10 Size 0.045 0.057 0.023 0.042
symmetry Power 0.747 0.660 0.964 0.984

n=20 Size 0.057 0.037 0.024 0.036
Power 0.749 0.663 0.808 0.843

T=10 n=20 Size 0.049 0.035 0.013 0.020
Power 0.756 0.510 0.950 0.964

n=40 Size 0.049 0.034 0.031 0.038
Power 0.756 0.645 0.827 0.840

AR1 (ρ=0.8) T=5 n=10 Size 0.056 0.083 0.035 0.068
Power 0.775 0.793 0.992 0.999

n=20 Size 0.042 0.037 0.032 0.052
Power 0.756 0.884 0.937 0.958

T=10 n=20 Size 0.048 0.065 0.038 0.060
Power 0.753 0.698 0.995 0.996

n=40 Size 0.052 0.048 0.037 0.053
Power 0.779 0.728 0.968 0.972

Non-stationary structures
Heterogeneous T=5 n=10 Size 0.053 0.044 0.026 0.052
comp. sym. Power 0.773 0.534 0.961 0.981

n=20 Size 0.042 0.017 0.033 0.052
Power 0.740 0.586 0.788 0.823

T=10 n=20 Size 0.052 0.016 0.026 0.040
Power 0.758 0.207 0.980 0.989

n=40 Size 0.063 0.023 0.023 0.028
Power 0.765 0.550 0.901 0.910

Heterogeneous T=5 n=10 ‘Size’ 0.049 0.076 0.034 0.069
AR1 (ρ=0.8) Power 0.744 0.765 0.981 0.994

n=20 Size 0.043 0.046 0.037 0.053
Power 0.770 0.721 0.922 0.947

T=10 n=20 Size 0.051 0.042 0.035 0.054
Power 0.767 0.604 0.990 0.996

n=40 Size 0.053 0.044 0.031 0.047
Power 0.755 0.687 0.912 0.932

Antedependence T=5 n=10 Size 0.060 0.053 0.038 0.059
Power 0.767 0.611 0.861 0.924

n=20 Size 0.058 0.032 0.041 0.053
Power 0.741 0.600 0.624 0.688

T=10 n=20 Size 0.043 0.003 0.041 0.052
Power 0.749 0.070 0.834 0.861

n=40 Size 0.056 0.010 0.038 0.043
Power 0.764 0.403 0.704 0.725

Design(A′): a simple repeated measures experiment with n subjects in two treatment groups of equal size, and measurements
recorded on T occasions. Table gives the proportion of type 1 errors (Size) and Power assessed using a fixed level of α =
0.05. Power is calculated by adding a linear effect in time to one treatment group to achieve approximately 75% using the
Kenward-Roger adjustment with an unstructured covariance matrix. KR - Kenward-Roger adjusted test; PW - Pan and Wall
bias-adjusted sandwich estimator. The Box and modified Box correction statistics (Box F and Mod Box) adopt the unstructured
REML estimator of the covariance matrix.
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Table IV. Summary of results from 1000 simulations of extended study design (B′).

Underlying Proportion of significant test results (out of 1000)
‘true’ Number of time (Null model - no treatment/time interaction)
covariance points (T ) and Method Unstr. Sand. adj. Box F Mod. Box
structure subjects (n) of inf. (KR) (PW)
Stationary structures
Compound T=5 n=10 Size 0.074 0.051 0.017 0.040
symmetry (miss=2) Power 0.632 0.523 0.882 0.937

n=20 Size 0.059 0.036 0.041 0.050
(miss=4) Power 0.644 0.505 0.733 0.772

T=10 n=20 Size 0.053* 0.050 0.012 0.023
(miss=4) Power 0.624* 0.361 0.857 0.890
n=40 Size 0.057* 0.038 0.046 0.052
(miss=8) Power 0.624* 0.449 0.610 0.643

AR1 (ρ=0.8) T=5 n=10 Size 0.078 0.064 0.024 0.061
(miss=2) Power 0.637 0.677 0.966 0.989
n=20 Size 0.067 0.050 0.052 0.067
(miss=4) Power 0.662 0.586 0.869 0.900

T=10 n=20 Size 0.068* 0.096 0.036 0.068
(miss=4) Power 0.645* 0.618 0.993 0.995
n=40 Size 0.062* 0.040 0.054 0.070
(miss=8) Power 0.674* 0.614 0.925 0.944

Non-stationary structures
Heterogeneous T=5 n=10 Size 0.084 0.056 0.019 0.042
comp. sym. (miss=2) Power 0.609 0.412 0.843 0.927

n=20 Size 0.054 0.032 0.043 0.059
(miss=4) Power 0.634 0.439 0.681 0.739

T=10 n=20 Size 0.062* 0.025 0.022 0.037
(miss=4) Power 0.627* 0.162 0.910 0.939
n=40 Size 0.063* 0.020 0.030 0.038
(miss=8) Power 0.667* 0.318 0.796 0.810

Heterogeneous T=5 n=10 Size 0.083 0.066 0.031 0.072
AR1 (ρ=0.8) (miss=2) Power 0.631 0.578 0.914 0.975

n=20 Size 0.048 0.025 0.052 0.070
(miss=4) Power 0.683 0.562 0.836 0.884

T=10 n=20 Size 0.048* 0.049 0.048 0.075
(miss=4) Power 0.602* 0.413 0.948 0.974
n=40 Size 0.058* 0.038 0.042 0.054
(miss=8) Power 0.658* 0.505 0.851 0.894

Antedependence T=5 n=10 Size 0.065 0.042 0.038 0.072
(miss=2) Power 0.664 0.494 0.748 0.862
n=20 Size 0.054 0.028 0.040 0.057
(miss=4) Power 0.658 0.472 0.558 0.634

T=10 n=20 Size 0.071* 0.000 0.034 0.049
(miss=4) Power 0.604* 0.040 0.767 0.813
n=40 Size 0.048* 0.005 0.036 0.043
(miss=8) Power 0.654* 0.174 0.603 0.628

Design(B′): as Design(A′) but with (miss) subjects allowed to drop out at random following the first observation as indicated.
Table gives the proportion of type 1 errors (Size) and Power assessed using a fixed level of α = 0.05. Power is calculated
by adding a linear effect in time to one treatment group to achieve approximately 75% using the Kenward-Roger adjustment
with an unstructured covariance matrix where the data are complete. KR - Kenward-Roger adjusted test; PW - Pan and
Wall bias-adjusted sandwich estimator. The Box and modified Box correction statistics (Box F and Mod Box) adopt the
unstructured REML estimator of the covariance matrix. The asterisked values (∗) are estimated using ‘known’ underlying
covariance structures and the average number of observations.
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Table V. Summary of results from 1000 simulations of extended study designs (C′)
and (D).

Underlying Proportion of significant test results (out of 1000)
‘true’ Number of treatment/ (Null model - no treatment effect)
covariance time points (T ) Method Unstr. Sand. adj. Box F Mod. Box
structure and subjects (n) of Inf. (KR) (PW)
Stationary Structures
Compound T=5 n=10 Size 0.690 0.034 0.032 0.046
symmetry Power —– 0.564 0.958 0.977

n=20 Size 0.126 0.045 0.049 0.062
Power —– 0.900 0.981 0.983

T=9 n=18 Size 0.472* 0.037 0.033 0.040
Power —– 0.531 0.991 0.994

n=36 Size 0.063* 0.029 0.041 0.047
Power 0.977* 0.941 0.997 0.997

AR1 (ρ=0.8) T=5 n=10 Size 0.672 0.034 0.020 0.043
Power —– 0.313 0.738 0.827

n=20 Size 0.123 0.024 0.036 0.053
Power —– 0.533 0.837 0.867

T=9 n=18 Size 0.497* 0.020 0.020 0.033
Power —– 0.139 0.656 0.706

n=36 Size 0.086* 0.023 0.037 0.052
Power 0.985* 0.406 0.778 0.796

Non-stationary structures
Heterogeneous T=5 n=10 Size 0.682 0.032 0.016 0.047
comp. sym. Power —– 0.372 0.840 0.899

n=20 Size 0.124 0.033 0.038 0.053
Power —– 0.691 0.904 0.926

T=9 n=18 Size 0.499* 0.016 0.028 0.037
Power —– 0.300 0.864 0.892

n=36 Size 0.065* 0.032 0.044 0.048
Power 0.974* 0.671 0.922 0.929

Heterogeneous T=5 n=10 Size 0.597 0.037 0.012 0.028
AR1 (ρ=0.8) Power —– 0.226 0.442 0.536

n=20 Size 0.111 0.024 0.029 0.043
Power —– 0.370 0.665 0.717

T=9 n=18 Size 0.473* 0.023 0.016 0.030
Power —– 0.100 0.471 0.535

n=36 Size 0.069* 0.026 0.036 0.046
Power 0.987* 0.237 0.591 0.619

Antedependence T=5 n=10 Size 0.697 0.028 0.024 0.037
Power —– 0.206 0.618 0.698

n=20 Size 0.122 0.028 0.048 0.054
Power —– 0.398 0.688 0.712

T=9 n=18 Size 0.483* 0.018 0.029 0.023
Power —– 0.126 0.515 0.403

n=36 Size 0.066* 0.016 0.044 0.051
Power 0.951* 0.242 0.579 0.592

Designs(C′) and (D): cross-over studies with T = 5 or 9 treatments and periods, and n subjects assigned to treatments using
Williams’ squares. Table gives the proportion of type 1 errors (Size) and Power assessed using a fixed level of α =0.05. Power
is calculated by adding a linear effect increasing by treatment to all subjects. For comparison purposes the treatment effect is
calculated by reference to a Kenward-Roger adjustment using the known covariance matrix to achieve approximately 100%. KR
- Kenward-Roger adjusted test; PW - Pan and Wall bias-adjusted sandwich estimator. The Box and modified Box correction
statistics (Box F and Mod Box) adopt the unstructured REML estimator of the covariance matrix. The asterisked values (∗)
are estimated using ‘known’ underlying covariance structures. Power is not assessed where the test size is not fixed at the
nominal level (—).
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resulting in invalid (negative) estimates for the denominator degrees of freedom. In these
instances, setting the numerator degrees of freedom to c, the dimensionality of the test,
results in a single denominator degree of freedom test. These issues do not, however, reccur
as the number of subjects increases, and the results for 10 time points and 20 subjects do
not appear to be out of line.

Consider now the cross-over studies of designs (C′) and (D). For extended study design
(C′), based on the five treatment-five period design, we see that as the number of subjects
increases from 10 to 20, the test sizes using the KR adjustment are closer to the nominal
level of 5%, but are too inflated for power to be considered. Power is compared for the
adjusted sandwich estimator and the Box corrections for treatment differences which lead to
comparable powers using the Wald statistic (with a KR adjustment and a ‘known’ covariance
structure) of 100%. Again, the modified Box correction is seen to give a test with nominal
properties and good power in comparison to the ‘true’ test.

Results from the simulations under study design (D) are obtained similarly, and the modified
Box correction is again seen to give the better performance. As previously seen, the adjusted
sandwich estimator results in invalid parameter estimates where the number of time points
is increased and the number of subjects is small (n = 18), so that the denominator degrees
of freedom of such tests are fixed at 1, close to the boundary.

In this setting, with an estimated (9 × 9) covariance structure, the KR adjustments are
again computationally expensive in terms of 1000 individual simulations, so are estimated,
for comparison purposes, using the ‘known’ structure to give an upper bound on the perfor-
mance. (Again these estimated values are marked with an asterisk in the table). These show
that the test size reduces towards nominal levels as the number of subjects increases, so that
it may be appropriate to consider power. However, it is clear that these values cannot be
achieved in practice.

6. Examples

Two examples are presented which illustrate the use of the modified Box correction in prac-
tical analyses.

6.1. Cardiac enzyme in preserved dog hearts

Data were collected to investigate the preserving quality of a liquid on the enzyme content
(%ATP) of dog hearts. The data presented concern 12 dog hearts, and differ according to
the presence or absence of a component, A, in the preserving liquid. (The data are a subset
of a larger factorial design to compare two components, A and B, and correspond to the
presence or absence of A, B absent). The mean profiles of the two treatment groups are
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Figure 1. Cardiac enzyme data: mean profiles.

shown as Figure 1 and the pooled within-groups sample covariance-correlation matrix as
Table VI.

Treating these data as a simple repeated measures design, a test for a treatment by time
interaction using the unstructured covariance matrix with a Kenward-Roger (KR) small
sample adjustment is equivalent to an exact Hotelling T 2 test. The upper panel of Table
VII shows the results obtained from Wald tests using various covariance models and the
modified Box correction. It can be seen that the test results differ according to the choice
of structure. As the data are complete and balanced, the same mean estimates (by ordinary
least squares) are obtained under each method, but they differ in their estimates of precision.

The exact Hotelling T 2 test obtained using the unstructured covariance matrix indicates that
there is insufficient evidence (at the 5% level) to reject the null hypothesis of no treatment
by time interaction. This is confirmed by the modified Box corrected statistic, although in
this instance the evidence is less marginal than that offered by the Hotelling T 2 test.

To show how such results can differ where there is imbalance, i.e. when the estimates of the
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Table VI. Sample covariance-correlation matrix for the cardiac enzyme data.

37.08 11.29 4.04 32.53 24.78 37.22 51.32 19.08 15.89
0.34 29.27 -3.52 12.80 7.64 10.02 18.66 8.14 -7.84
0.12 -0.11 33.08 -7.70 15.43 6.91 15.80 -11.43 30.00
0.47 0.21 -0.12 128.08 -27.86 6.51 58.84 19.38 -43.17
0.58 0.20 0.38 -0.35 48.85 46.33 33.20 24.45 53.01
0.57 0.17 0.11 0.05 0.62 114.22 86.48 44.59 61.27
0.78 0.32 0.25 0.48 0.44 0.75 117.38 51.39 48.76
0.30 0.14 -0.19 0.16 0.33 0.40 0.45 111.24 42.10
0.27 -0.15 0.54 -0.39 0.78 0.59 0.46 0.41 94.24

Variances on the diagonal with covariances above and correlations below.

Table VII. Cardiac enzyme data: comparison of results.

Num. Den.
Covariance structure df df F p

Complete data

Identity - independence 8 90 1.49 0.1713
Unstructured 8 3 8.73 0.0509
Compound symmetry 8 80 2.07 0.0485
AR1 8 73.8 1.24 0.2904

Mod. Box (λ = 0.59) 8 11.2 2.52 0.0774
With artificial dropout

Identity - independence 8 87 1.87 0.0753
Unstructured 8 1.6 88.63 0.0252
Compound symmetry 8 77.2 2.32 0.0274
AR1 8 12.2 1.51 0.1686

Mod. Box (λ = 0.66) 8 10.48 2.84 0.0591

Table gives results of Wald tests using a Kenward-Roger adjustment, under the given covariance model assumptions, for
a treatment/time interaction. The comparative results using the modified Box correction adopt the unstructured REML
estimator of the covariance matrix.
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mean parameters as well as their standard errors are dependent on the choice of covariance
structure, we introduce an artificial dropout to this reduced data set. To achieve this,
consider that the three final measurements are missing from one of the dog hearts which
receives the preserving liquid from which component A is absent. Repeating the tests for a
treatment/time interaction with this artificial dropout gives the results shown in the lower
panel of Table VII.

Now the tests using the KR adjustment (with the identity, unstructured, and compound
symmetry structures) are no longer exact, and so these results are less plausible given the
performance of such tests in our simulations. There is a higher significance of an interaction
using the unstructured form once the three observations from the ‘absent’ group are removed,
but the test using the modified Box correction remains non-significant.

6.2. Electrocardiogram abnormalities in the guinea pig papillary muscle

As the second example, we present analysis of data published by Brammer [23] which illus-
trated the need for methods specific to very small samples of repeated measurements.

These data comprise measurements taken from papillary muscles dissected from the right
ventricles of each of just three guinea pigs’ hearts in two experiments. The purpose of the
experiments was to determine whether the compounds are likely to cause electrocardiogram
abnormalities. Brammer recognises that analysis from such small samples is unlikely to
be definitive, but notes that such small samples are common in isolated tissue or organ
experiments.

Since the isolated tissue assays from the guinea pigs deteriorate in time, there is a limited
period in which to test different concentrations of the compounds on each muscle, so a control
measure is followed by six increasing concentrations of the compound. In such an ascending
dose design, the carryover effect is considered to be minimal in comparison to the current
dose. Concentration and time are confounded, but a separate ‘control’ experiment with no
compound present showed that there were no important changes over time. Five variables
were measured, but we focus here on AP (amplitude of action potential). Mean profiles
under each compound are shown in Figure 3.

These experiments can be considered as block designs, with concentration of compound
as the treatment and tissue as the blocking factor, but the compound symmetry structure
imposed by such a design may not be appropriate. Instead, Brammer treats the experiments
as simple repeated measures designs with concentration as the time variable and tissue as
the subject, and compares the resulting analyses from adopting various covariance models
to account for the correlation between measurements on the same tissue (subject).

To analyse these experiments in such a way requires the fitting of a (7×7) covariance structure
using just three subjects, so unsurprisingly the estimation method for the unstructured
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Figure 2. GPPM data: mean profiles, compounds 1 and 2.

covariance models did not converge. Brammer compares those correlation structures that
can be fitted by informal comparison of the (reduced) log-likelihoods and prefers an AR1 or
heterogeneous AR1 model in each case over the more usual compound symmetry approach
adopted for such experiments. However, the results of the simulations in [1] show that, for
small samples, such methods are unreliable for choosing an appropriate structure.

It is of interest to compare Brammer’s approach with that offered by the modified Box
correction in this extreme small sample setting. Whilst the estimation method for the
unstructured covariance model did not converge for either of the two experiments, it is
possible to construct the (singular) sample covariance matrix directly in each case. The
resulting estimates are shown in Table VIII below. While these matrices do not allow the
construction of the usual Wald tests, which require invertible matrices, they can be used
directly in the modified Box correction to allow the tests to reflect the observed dependencies
in the data.

Although it is possible to replicate Brammer’s tests by suitable parametrization of the design
matrix, with columns representing contrasts between each concentration with the control
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Table VIII. Sample covariance-correlation matrices for the GPPM data: compounds
1 and 2.

Compound 1
2.33 3.67 3.00 4.17 3.50 3.83 7.17
0.95 6.33 5.00 7.83 6.50 6.17 12.83
0.98 0.99 4.00 6.00 5.00 5.00 10.00
0.85 0.97 0.93 10.33 8.50 7.17 16.33
0.87 0.98 0.94 1.00 7.00 6.00 13.50
1.00 0.97 0.99 0.89 0.90 6.33 12.17
0.91 0.99 0.97 0.99 0.99 0.94 26.33

Compound 2
21.33 22.67 24.00 22.67 22.67 20.00 20.00
0.99 24.33 25.50 24.83 24.83 22.50 23.00
1.00 0.99 27.00 25.50 25.50 22.50 22.50
0.96 0.98 0.96 26.33 26.33 25.00 26.50
0.96 0.98 0.96 1.00 26.33 25.00 26.50
0.87 0.91 0.87 0.97 0.97 25.00 27.50
0.78 0.84 0.78 0.93 0.93 0.99 31.00

Variances on the diagonal with covariances above and correlations below.

measurement, a more appropriate method is suggested as follows.

1. Use the modified Box correction to test for an overall treatment (concentration) effect.

2. If significant, use Scheffé’s method, in conjunction with the adjusted F -statistic, to
test individual contrasts.

This approach ensures that the type 1 error rate for individual tests is controlled for mul-
tiplicity of testing, as well as to departures from independence in the small sample setting
for which the modified Box correction has been shown to be successful for the analysis of
repeated measurements.

Scheffé’s method [11] allows for the comparison of any or all possible contrasts between
treatment means, ensuring that the type 1 error rate is at most α for any of the possible
comparisons. It takes advantage of the union-intersection test properties of the ANOVA
F -statistic, by simultaneously considering all possible contrasts in the treatment means:

Γa = a1µ1 + a2µ2 + . . .+ arµr (21)

for any a=(a1, . . . , ar), with
∑

ai = 0. The corresponding contrasts in the treatment averages
ȳi., are hence

Ca = a1ȳ1. + a2ȳ2. + . . .+ arȳr. (22)

and the standard error of this contrast is

SCa
=

√

√

√

√σ̂2

r
∑

i=1

(a2i /ni) (23)
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where ni is the number of observations of the ith treatment, and σ̂2 is the mean squared
error (MSE) of the data.

To use Scheffé’s method with the modified Box corrected ANOVA statistic from (12) with
(13)-(15), we have σ̂2 = MSE = yTAy/(n− r), and the critical value to which Ca should be
compared is

Sα,a = SCa

√

c

λ
Fα;c,v2 (24)

so that a 100(1-α)% confidence interval for Ca is given by

Ca ± Sα,a = Ca ± SCa

√

c

λ
Fα;c,v2 (25)

An advantage of Scheffé’s method is that it will always agree with the ANOVA F -test in
the sense that if the F -test detects differences, then at least one Scheffé test will detect a
difference. Conversely, if the F -test does not detect any differences, then none of Scheffé’s
tests will. This is illustrated below using Brammer’s data.

We begin by considering the overall tests for a concentration effect, given in Table IX. The
results show that there is only marginal evidence of a significant effect of concentration with
compound 1, but that the evidence of a significant effect in compound 2 is much stronger.

Table IX. GPPM data: results using the modified Box correction.

Num Den
Effect df df F p
Concentration (λ=0.1131) 6 5.1756 4.4977 0.0570
(compound 1)

Concentration (λ=0.0429) 6 5.0861 20.8472 0.0020
(compound 2)

Table gives results of tests of overall treatment effect using the modified Box correction adopting the singular sample covariance
matrix.

Turning to the Scheffé tests of individual contrasts (differences from control), we have, for
compound 1, σ̂2=8.9524, so that the standard error for the first, and actually all, the con-
trasts is given by

SC1
=

√

√

√

√σ̂2

7
∑

i=1

(a2i /ni) =
√

8.9524(1 + 1)/3 = 2.4430

and, since the 0.95-quantile of F(6,5.1756) is 4.8063, we find the 95% confidence interval for
the first contrast is

1.333± 2.4430
√
6× 0.1131× 4.8063 = 1.333± 4.4120 = (−3.08, 5.75)
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Table X. GPPM data: individual contrasts using Scheffé’s method with the modified
Box correction.

Compound 1 Compound 2
Mean diff. Mean diff.

Conc from control 95% CI from control 95% CI
0
0.1 1.3333 (-3.08,5.74) 0.3333 (-4.33,4.99)
0.3 1.6667 (-2.74,6.08) 0.6667 (-3.99,5.33)
1 2.3333 (-2.07,6.75) -0.6667 (-5.33,3.99)
3 2.6667 (-1.74,7.08) -0.6667 (-5.33,3.99)
10 2.0000 (-2.71,6.41) 2.3333 (-6.99,2.33)
30 -0.6667 (-5.07,3.74) -7.3333 (-11.99,-2.67)

Table gives Scheffé confidence intervals for individual concentration differences from control using the modified Box statistics
of Table IX.

Confidence intervals for the remaining contrasts are calculated similarly, (for compound 2,
σ̂2 = 25.9048). The results are shown in Table X.

As is expected, since the overall concentration effect was non-significant at the 5% level, none
of the 95% confidence intervals for mean difference from control for compound 1 exclude zero.
Of the contrasts with compound 2, only the final concentration is significantly different from
control, 95% CI (-11.99, 2.67). (In fact this contrast is also significant at the 1% level, 99%
CI (-14.14, -0.52)).

7. Discussion

The extensive simulation studies of Section 5 show that the modified Box correction results
in a test with correct size which is more powerful than the other methods considered across
a range of small sample settings for the analysis of repeated measurements. This is also
seen to be the case in further simulations undertaken by the authors, for data arising from
underlying covariance structures with low to medium correlation, such as the independence
and AR1 (ρ = 0.2) structures used in the simulations of the companion paper. For such
data, as might be expected, the Box corrections are most powerful, as we are closest in this
setting to the underlying assumptions of the ANOVA statistic from which they originate.

Tests based on the adjusted sandwich estimator are also seen to have correct size across the
range of settings considered, but this approach lacks power. Also, estimation of the adjusted
test parameters are seen to be non-robust, resulting in invalid estimates of the denominator
degrees of freedom where the number of time points is large in comparison to the number of
subjects. It is worth noting that the adjusted sandwich estimator method of Pan and Wall
does not assume a common covariance structure for all subjects, and that this may contribute
to its loss of power in comparison to the Box corrections. However, we believe that the true
advantage of the Box corrections relates not to how the covariance matrix is assessed across
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subjects, but rather how it is used in inference. That is, where exactly such assumptions
about the covariance structure enter the process. Further simulations (not presented) have
shown no significant loss of power using the Box corrections where a common covariance
structure is not assumed, such as when allowing the structure to change between treatment
groups. However, convergence problems can arise in estimating the unstructured form using
REML in this instance in the most extreme small sample settings.

The simulations confirm that Wald tests using an unstructured covariance matrix with the
Kenward-Roger adjustment give inflated type 1 error rates where the data do not allow
for exact tests, although the size of such tests does approach nominal levels as the sample
size increases as we might expect. Where nominal properties are achieved, so that it is
appropriate to consider power, we see that where the sample size (number of subjects) is
small, tests using the Box corrections give greater power than the corresponding Wald tests.
As the sample size increases the improvement in power from using the Box corrections over
the KR adjustment diminishes as the underlying covariance structure moves further from
independence, but the correction remains an effective method for inference.

The modified Box correction developed in Section 3 is preferred to Box’s original statistic
which is conservative and hence less powerful. This method can, by suitable parameteriza-
tion of the design matrix, be used to test any hypothesis involving fixed effects, based on
their ordinary least squares estimates under the assumption of independence, and using any
consistent estimator of the covariance matrix, such as that obtained from REML. It can be
easily implemented using statistical software with minimal programming. Also, seen in the
examples in Section 6 it is easily combined with Scheffé’s method for simultaneous contrasts
to examine questions of interest arising from significant tests, and providing appropriate
control for multiple testing.

Appendix A

The following (5 × 5) and (10 × 10) symmetric matrices are used as the underlying covari-
ance structures for the data generated in the simulations of extended designs (A′), (B′)and
(C′) used in the Section 5. The (9 × 9) matrices required for study design (D), are simply
extracted from the first nine rows and columns of the (10× 10) structures noted above.
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A.1. Compound Symmetry
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1 = 1 and σ2 = 1. We obtain the (5× 5) and (10× 10) matrices
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A.2. AR1

σ2























1
ρ 1
ρ2 ρ 1
ρ3 ρ2 ρ 1
ρ4 ρ3 ρ2 ρ 1
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. . .

ρ9 ρ8 ρ7 ρ6 ρ5 . . . ρ























with σ2 = 1 and ρ = 0.8. We obtain the (5× 5) and (10× 10) matrices













1
0.8 1
0.64 0.8 1
0.512 0.64 0.8 1
0.4096 0.512 0.64 0.8 1
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and
































1
0.8 1
0.64 0.8 1
0.512 0.64 0.8 1
0.4096 0.512 0.64 0.8 1
0.3277 0.4096 0.512 0.64 0.8 1
0.2622 0.3277 0.4096 0.512 0.64 0.8 1
0.2098 0.2622 0.3277 0.4096 0.512 0.64 0.8 1
0.1678 0.2098 0.2622 0.3277 0.4096 0.512 0.64 0.8 1
0.1343 0.1678 0.2098 0.2622 0.3277 0.4096 0.512 0.64 0.8 1

































A.3. Heterogeneous compound symmetry
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For the (5× 5) structure, we use ρ = 0.5, with σ2
1 = 1, σ2

2 = 2, σ2
3 = 3, σ2

4 = 4, and σ2
5 = 5,

to obtain












1
0.7071 2
0.8660 1.2247 3
1.0000 1.4142 1.7321 4
1.1180 1.5811 1.9365 2.2361 5













For the (10 × 10) structure, we use ρ = 0.5, with σ2
1 = 1, σ2

2 = 2, σ2
3 = 3, σ2

4 = 4, σ2
5 = 5,
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σ2
6 = 6, σ2

7 = 7, σ2
8 = 8, σ2

9 = 9 and σ2
10 = 10, to obtain

































1
0.7071 2
0.8660 1.2247 3
1.0000 1.4142 1.7321 4
1.1180 1.5811 1.9365 2.2361 5
1.2247 1.7321 2.1213 2.4495 2.7386 6
1.3229 1.8708 2.2913 2.6458 2.9580 3.2404 7
1.4142 2.0000 2.4495 2.8284 3.1623 3.4641 3.7417 8
1.5000 2.1213 2.5981 3.0000 3.3541 3.6742 3.9686 4.2426 9
1.5811 0.2361 2.7386 3.1623 3.5355 3.8730 4.1833 4.4721 4.7434 10

































A.4. Heterogeneous AR1
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For the (5× 5) structure, we use ρ = 0.8, with σ2
1 = 1, σ2

2 = 2, σ2
3 = 3, σ2

4 = 4, and σ2
5 = 5,

to obtain












1
0.1314 2
1.1085 1.9596 3
1.0240 1.8102 2.7713 4
0.9159 1.6191 2.4787 3.5777 5













For the (10 × 10) structure, we use ρ = 0.8, with σ2
1 = 1, σ2

2 = 2, σ2
3 = 3, σ2

4 = 4, σ2
5 = 5,
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0.1314 2
1.1085 1.9596 3
1.0240 1.8102 2.7713 4
0.9159 1.6191 2.4787 3.5777 5
0.8026 1.4189 2.1722 3.1353 4.3818 6
0.6936 1.2261 1.8770 2.7092 3.7863 5.1846 7
0.5932 1.0486 1.6053 2.3170 3.2382 4.4341 5.9867 8
0.5033 0.8897 1.3621 1.9661 2.7477 3.7624 5.0798 6.7882 9
0.4244 0.7503 1.1487 1.6579 2.3170 3.1727 4.2837 5.7243 7.5895 10

































A.5. Antedependence






















σ2
1

σ1σ2ρ1 σ2
2

σ1σ3ρ1ρ2 σ2σ3ρ2 σ2
3

σ1σ4ρ1ρ2ρ3 σ2σ4ρ2ρ3 σ3σ4ρ3 σ2
4

σ1σ5ρ1ρ2ρ3ρ4 σ2σ5ρ2ρ3ρ4 σ3σ5ρ3ρ4 σ4σ5ρ4 σ2
5

...
. . .

σ1σ10ρ1ρ2ρ3ρ4ρ5ρ6ρ7ρ8ρ9 σ2
10























With σ2
1 = 1, σ2

2 = 2, σ2
3 = 3, σ2

4 = 4, σ2
5 = 5, ρ1 = 0.8, ρ2 = 0.6, ρ3 = 0.4, and ρ4 = 0.2, we

have the (5× 5) matrix












1
1.1314 2
0.8314 1.4697 3
0.3840 0.6788 1.3856 4
0.0859 0.1518 0.3098 0.8944 5













For the (10× 10) structure, we use σ2
1 = 1, σ2

2 = 2, σ2
3 = 3, σ2

4 = 4, σ2
5 = 5, σ2

6 = 6, σ2
7 = 7,

σ2
8 = 8, σ2

9 = 9 and σ2
10 = 10, with ρ1 = 0.8, ρ2 = 0.725, ρ3 = 0.65, ρ4 = 0.575, ρ5 = 0.5,

ρ6 = 0.425, ρ7 = 0.35, ρ8 = 0.275 and ρ9 = 0.2 to obtain
































1
0.1314 2
1.0046 1.7759 3
0.7540 1.3329 2.2517 4
0.4847 1.8569 1.4475 2.5715 5
0.2655 0.4693 0.7928 1.4085 2.7386 6
0.1219 0.2154 0.3640 0.6466 1.2572 2.7543 7
0.0456 0.0806 0.1362 0.2419 0.4704 1.0306 2.6912 8
0.0133 0.0235 0.0397 0.0706 0.1372 0.3006 0.7640 2.3335 9
0.0028 0.0050 0.0084 0.0149 0.0289 0.0634 0.1611 0.4919 1.8974 10
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