
Integration of Location Services in the Open Distributed O�ce

Mike Rizzo� Peter F� Linington� and Ian A� Utting

Computing Laboratory� University of Kent

Canterbury� Kent CT� �NF

United Kingdom

Keywords� distributed systems� location systems� active badges� ubiquitous computing�

Abstract

There has recently been much interest in location systems which enable people and

equipment to be tracked as they move within and across buildings� Thus far� such sys�

tems have been used in isolation with the result that� although there are often several

sources of location information available at any one site� users have to consult each sys�

tem individually� Additionally� it is di�cult for services requiring location information

to take advantage of all these sources�

In this paper� we put forward the notion of a master location system to co�ordinate

the location process so that available sources of information are used automatically in

as e�cient a manner as possible� We discuss a number of factors that are of concern to

the design of such a system� and describe a particular implementation which we worked

on as part of an o�ce automation project�

� Introduction

There has recently been much interest in location systems which enable people and equip�
ment to be tracked as they move within and across buildings� Perhaps one of the more
innovative of these is the ORL active badge location system �WHFG���� where tracking is
done by means of IR communication between badges and a network of sensors� Potential
applications include replacing telephone numbers with personal codes� recording a history
of events to aid one	s memory �McC�
�� teleporting user interace environments �BRH�
��
and tracking a moving object through a video camera network�

There are often several sources of location information available at any one site� Ex�
amples include system login information� and personal diary systems� Additionally� people
tend to have known habits that others may become accustomed to� For example� Mike
often forgets to wear his active badge� but normally works in his room �S�� and goes for
a co�ee break at ������ Or a particular OHP projector may be kept in one speci�c room
most of the time� but is sometimes borrowed for use in the adjacent room�

Of course� it is possible that not every object will be traceable by any one particular
location system within an organisation� For example� one person may choose not to wear a
badge� and the tea trolley is unlikely to log in to the computer system�

In the light of the above� we propose that a location system should not rely solely on one
speci�c mechanism� but should try to use and combine information from as many sources as
possible� It would be useful then� to have some kind of master location system �MLS which

�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

co�ordinates all location systems available within an organisation� In this model� all such
location systems are treated as slaves and are invoked by the MLS as it deems necessary�
Applications requiring location information are clients of the MLS and do not communicate
with the slaves directly�

It is also worth pointing out that the notion of an MLS is also useful as an abstraction
for federating locators across sites� A person from site A may query the location of a
person at another site B without needing to know anything about the speci�cs of location
mechanisms employed by site B� Related to this is the issue of control over information
release� individuals� or indeed organisations� may wish to restrict access to their location
systems�

In this paper we discuss the issues that need to be taken into consideration in the design
of such a location system� We also describe the location system developed as part of the
Open Distributed O�ce �ODO project �RLU�
��

� Factors in�uencing the design of an MLS

The availability of multiple� independent slave locators can be extremely useful� but requires
a carefully designed mechanism to harness their potential e�ectively� This section identi�es
the issues that must be taken into consideration by such a design�

��� Uncertainty

There may be a degree of uncertainty associated with a returned location� For example�
a user may be known to be logged on a particular host from a particular terminal� but is
reported to have been idle for � minutes� Depending on the user	s habits� there may or
may not be a very good chance that he or she is still sitting at the terminal� With active
badges� a person may have his back temporarily turned to the sensor so that the badge is
not picked up for a short time� Thus a last sighting time of � minutes could mean that the
person may still actually be in the room� though obviously with less likelihood than for a
last sighting time of a few seconds�

We stipulate therefore� that whenever a locator suggests a location� it should also supply
a con�dence value to give some indication of the likelihood of that location being correct�
The master locator can then use this value in its decision�making process as will be made
clearer in the coming sections�

��� Returning multiple locations

A locator may be capable of returning more than one location for the same target object�
For example� a person may have overlapping appointments in a personal diary� or may be
logged in from more than one terminal on the local network� In such circumstances� the
con�dence value described in the previous section would normally �but not necessarily be
di�erent for each location� For example� if a user is logged in on host A with an idle time
of � minutes� and on host B with an idle time of a few seconds� then one would expect
the con�dence value associated with host B to be at least as strong as host A� In fact a
typical �con�dence function	 would indicate a much stronger likelihood for host B in this
case� Ultimately� however� an appropriate con�dence function must be based on the habits

�

of each individual user or entity� and therefore it is not desirable� nor is it necessary� to
impose constraints on the choice of such functions�

The master locator itself is capable of returning multiple locations� Clients of the master
locator would be expected to try locations in order of decreasing likelihood�

��� Corroboration and con�ict

A location indicated by one slave locator may con�ict with or corroborate that returned by
another� In the case of corroboration� it might be useful to combine the con�dence values in
some appropriate way that re�ected the strength of the combined support for that location�

As is the case with locators returning multiple con�icting locations� con�dence values
are needed to determine which location should be tried �rst whenever two slave locators
give con�icting results� However� there is a subtle di�erence in that the con�dence values
are now being computed by di�erent locators� The respective con�dence functions must
therefore be chosen carefully so as to ensure that it makes sense to compare values returned
by di�erent locators� Failure to do so will result in situations where one locator is �over�
con�dent	 relative to another�

��� What is a location�

If a locator �be it master or slave is to return a location� then some kind of representation
for locations is needed� This is not a trivial problem as there is often more than one way
of identifying a location in space� For example� three di�erent ways of identifying the
multimedia lab at UKC are�

� room SW����

� the room with telephone extension �����

� the room where the host rowan�ukc�ac�uk is situated�

A slave locator may very well be capable of reporting one or more of these� In particular�
the master locator should attempt to return as much knowledge about the location as
possible� as this increases the options available to the client� For example� in the ODO
project� the client may contact a person via the phone or via a workstation	s audio hardware�

The problem of location comparison is also an imporant issue� If we are to establish
whether one returned location corroborates or con�icts with another� then some means of
e�ectively comparing locations is needed� In the above example� the master locator for
UKC should be able to establish that room SW��� is the same as the room with extension
����� which is the same as the room that houses rowan�ukc�ac�uk�

��� E	ciency and Strategy

In many circumstances it is highly desirable that the location system should respond as
quickly as possible� A typical example where performance is an issue is the setting up of
phone calls� There is no point in keeping the caller waiting for all slaves to respond if at
least one of them has already established the location of the target with a high enough level
of con�dence�

Thus a strategy is needed to determine the sequencing of slave locator requests� A good
strategy would take the following factors into consideration�

�

� known characteristics and habits of the target person� if the person is known not to
wear a badge� then there is little point in trying the badge slave locator �rst� On the
other hand� the badge locator would probably be a good �rst choice for those known
to wear one regularly�

� con�dence level� if the con�dence level for a returned location is below some threshold�
then it would probably be worth consulting some other slave locator �rst� This may
result in corroboration of the �rst location� or might return some other location�
possibly with a higher con�dence value�

� failed trials� assuming that the MLS only returns one location at a time� if the MLS
returns a location which the client �nds to be incorrect� then subsequent invocations
by the client should not receive that location again� even if another slave corroborates
it�

� slave locator delay characteristics� some slave locators may take longer to respond
than others� The availability of expected response times for slave locators is useful in
the formulation of e�cient location policies�

��
 Location policy

Many of the factors discussed so far will be in�uenced by policies de�ned at both the
organisation and individual level� The con�dence function for badges may well be de�ned
at the organisation level� whereas location strategy depends very much on the characteristics
of the target entity� While organisation policy could be hard�wired into the master locator
or supplied via a designated interface� a mechanism is needed whereby individuals can
specify and alter their own policies� A good organisation policy would give individuals a
lot of �exibility in areas where their habits tend to di�er�

An individual	s policy must be interpreted in the context of the constraints imposed
by the organisation	s policy� For example� if an organisation possesses a slave locator
which it knows to be highly reliable and e�cient in locating all locatable entities within
the organisation� then it can impose that this slave locator be tried �rst� regardless of the
policies supplied for those entities�

��� Extensibility

By ensuring that all slave locators present identical interfaces� a �plug�and�play	 location
system can be built� This will allow slaves to be added and withdrawn dynamically� If
the master locator also has the same interface� then it can itself be used as a slave to a
higher�level master� thereby facilitating federation of location systems� One case where this
might be useful is when a remote site	s master locator needs to be consulted as part of a
local location request� For example� an individual may specify that� as a last resort� an
attempt should be made to locate him at some other site where he will be with some other
speci�ed person�

Location
Directory

Master
Locator

System info
 Locator

 Diary
Locator

Client

 Other
Locator

 Badge
Locator

Figure �� The ODO Location System

� The ODO Location System

The ODO location system was designed taking all the above factors into consideration�
Figure � illustrates the relationship between master and slave locators and introduces a
new component� namely the location directory� which is used to store information needed
for the location process�

��� Location representation

A location is represented as a list of name�value pairs �known as an attribute list in ODO�
There are standard names for attributes such as room number� extension number and
resident user terminal�� Where necessary a value may in fact consist of a list e�g� there may
be more than one phone in the room�

Two location representations are taken to refer to the same location if �i they have at
least one attribute name in commmon and� �ii for every name in common� the values are
either equal� or in the case of list values� share at least ONE common list member� If �i is
not satis�ed then nothing can be inferred about the equivalence of the two locations� If �i
is satis�ed but �ii is not� then the locations are taken to be distinct��

One of the roles of the location directory is as an aid to comparing location repre�
sentations� This directory contains full location representations for all locations at a site�

�Examples of user terminals include workstation consoles and X terminals�
�The underlying assumption here is that any location representation returned by a locator represents a

unique location�

�

Whenever a location is returned by a slave� the master can expand this representation using
data from the directory so that condition �i is always satis�ed when comparing locations�

Expanding representations in this way serves to maximise the options available to the
client� For example� if a slave returns a location in terms of a terminal name� then an ex�
panded representation will probably also contain a room number and an extension number�

��� Location policy

The location directory also serves as a repository for individuals	 location policies� A direc�
tory entry corresponding to an individual will contain attributes which collectively specify
that individual	s location policy� Where no policy is speci�ed by an individual� a default
organisation policy is assumed�

A directory entry pertaining to an individual may also contain data that is needed by
one or more of the slaves� For example� a capability� to read an individual	s diary may
be left in that individual	s directory entry so that it may be passed on to the diary slave
locator�

At the organisation level� policy can be hard�wired into the master locator� For example�
the corroboration function used to calculate a new con�dence level when two slave locators
agree on a location is established uniquely in the master locator�

��� Access control

Control over access to location services is also by the use of capabilities� Each locator
requires presentation of a valid capability before it can start to provide service� Access
control is therefore achieved by limiting the availability of such capabilities�

In ODO� capabilities are stored as attributes in directory entries� Users have their own
personal directories where they can store information� including capabilities� pertaining
to other users and services� Capabilities may also be made available in shared or public
directories� Placing a capability in a directory e�ectively grants that capability to any
user who has access to that directory� Access to directories is� in turn� also controlled
by capabilities� This approach is extremely �exible� making it possible to limit access to
designated individuals� groups� and�or organisations�

Turning back to the location directory� whilst maintenance of directory entries for loca�
tions is best left to the system administrator� maintenance of directory entries for individuals
is best left to the individuals themsleves� Individuals are given su�cently powerful capabil�
ities corresponding to their respective location directory entries� allowing them to change
their location policies and other attributes that may in�uence the location process�

��� Location session

In order for a client to use the location system it must �rst establish a location session

via the MLS� This is necessary because the MLS needs to maintain state pertaining to the
client	s request� and because the client may need to communicate with the MLS several
times before it obtains the information that it needs �or gives up� For example� the MLS
might �rst suggest one location which the client �nds to be incorrect� Subsequently� the

�Capabilities are used extensively for access control in ODO� For an introduction to capability�based
protection see �Mul����

�

client asks the MLS whether it can come up with another location� In order to do this�
the MLS must have knowledge of the prior invocation and take the associated result into
account i�e� it must remember the �rst incorrect location and must ensure that it is not
proposed to the client again�

For similar reasons� the MLS must itself initiate a session with each of the slave locators
that it uses� Like the MLS� slave locators are also capable of proposing one more than one
location� and the MLS may need to interact with them several times� This similarity is
useful because it �ts in nicely with the idea of using the same interface for both the MLS
and its slaves�

��� Locator interface

In accordance with the desire for a �plug�and�play	 environment� the ODO location
system uses the same interface for all locators� be they slave or master� Figure � shows the
ANSAware IDL �Arc� speci�cation for the Locator interface�

The Locate operation receives a locator capability �a client can only invoke a locator if
it has a capability for it and a speci�cation of the target individual �in ODO� individuals
are also represented by attribute lists� If successful� this operation opens a new location
session and returns�

� the location perceived most likely to be correct by the locator�

� an integer con�dence level between � and ���� where � indicates that the locator has
no con�dence in the returned location at all �but does not know it to be impossible
and ��� indicates absolute certainty�

� a session voucher which can be used to carry on with the location process if the
returned location turns out to be wrong�

In the event that a client �nds the returned location to be incorrect� it can present the
session voucher to NextLocation in order that it may obtain the next most likely location�
If the list of all possible locations is exhausted� the locator returns L ListExhausted and
closes the location session�

If a client �nds a returned location to be correct� it should terminate the location session
by calling Release�

Finally the GetInfo operation can be used to return the current status of a session�

��
 Master locator algorithm

In short� the algorithm works by placing possible locations on a priority queue on the basis of
con�dence level� When the topmost entry has a con�dence level above a session threshold�
this entry is returned� After all slaves have been exhausted� entries from the queue are
returned until success is reported or the queue is exhausted�

The remainder of this section describes the algorithm in greater detail using C���like
pseudo�code� For simplicity� the description of the state and pseudo�code assume a single
session� In practice� multiple instances of the state and corresponding multiple threads of
execution can exist simultaneously� and references to state should therefore be interpreted
as being relative to a session� Another simpli�cation is that details pertaining to locator
capabilities are omitted�

�

Locator � INTERFACE �

NEEDS Types�

BEGIN

L�OpReason � TYPE � �

L�LocatorFailure� L�ListExhausted� L�InvalidVoucher

��

L�LocateResult � TYPE � CHOICE OpStatus OF �

OpSuccess �	 RECORD

voucher � odo�Datum� �� location voucher

loc � odo�DirEntry�

conf � CARDINAL

��

OpFailure �	 L�OpReason

��

Locate � OPERATION

sc � odo�SCapability�

who � odo�DirEntry

� RETURNS
 L�LocateResult ��

NextLocation � OPERATION

voucher � odo�Datum

� RETURNS
 L�LocateResult ��

Release � OPERATION

voucher � odo�Datum

� RETURNS
 ��

L�GetInfoResult � TYPE � CHOICE OpStatus OF �

OpSuccess �	 RECORD

who � odo�DirEntry�

loc � odo�DirEntry�

conf � CARDINAL

��

OpFailure �	 L�OpReason

��

GetInfo � OPERATION

voucher � odo�Datum

� RETURNS
 L�GetInfoResult ��

END

Figure �� IDL speci�cation for Locator interface

�

exhausted � FALSE�

loc�queueclear���

tried�listclear���

cur�slave � loc�policylistfirst���

voucher � NULL�

Figure �� Session initialisation

Session state

For each session� the following state variables are maintained�

� a target speci�cation target� which is an attribute list that describes the entity to be
located�

� a location policy loc policy� which consists of two �elds� namely list� a list of
references to slave locators� and threshold� a threshold con�dence value�

� a priority queue loc queue� which is used to store the results of invocations on slave
locators� Every element in the queue is a LocationEntry structure containing the
�elds loc for the location� and conf for the con�dence level� The queue is ordered by
decreasing con�dence level�

� a list tried list� that records all locations returned by the master locator as the
session progresses�

� a slave reference cur slave� that keeps track of the current slave� and a session voucher
voucher� which stores the voucher that needs to be presented to the current slave in
order to obtain the next location� The latter is initialised to NULL each time cur slave

is updated� Subsequently� values are assigned to it from the results of invocations to
Locate and NextLocation on the current slave locator interface�

� a �ag exhausted� which is used to indicate that the policy	s list of slaves has been
exhausted�

For all lists �including loc queue� which is described in terms of a list� it is assumed that
the following operations exist� empty�� returns TRUE if the list is empty� FALSE otherwise�
contains�i� returns TRUE if the list contains i� FALSE otherwise� first�� initialises an
internal counter to point to the �rst item in the list and returns this item or NULL if the
list is empty� next�� advances the internal counter and returns the current item or NULL
if the end of the list has been reached� clear�� removes all items in the list� append�i�
adds the item i to the end of the list� insert before�i	j� inserts the item j before item
i in the list� remove�i� removes the item i from the list�

The label NULL is used to denote null �or zero values and can assume any type as
required by the context in which it is used�

Session behaviour

A master location session is automatically created when the Locate operation is invoked
on the master locator interface� Assuming the location policy has been obtained �using the

�

done � FALSE�

while ��exhausted �� �done� �

if �voucher �� NULL� � �� No current session

if �cur�slave �� NULL� � �� Haven�t reached end of the policy

rloc � cur�slaveLocate�target�� �� Call Locate on current slave

�

else � �� No more slaves listed in policy

exhausted � TRUE�

�

�

else � �� Session already open

rloc � cur�slaveNextLocation�voucher�� �� Call NextLocation on cur slave

�

if ��exhausted� � �� If we have a result

if �rloc denotes success� � �� containing a loc

add�queue�rlocloc�rlocconf�� �� add the loc to loc queue

voucher � rlocvoucher� �� update session voucher

�

else � �� This slave is no longer useful

voucher � NULL� �� Reset session voucher

cur�slave � loc�policylistnext��� �� Advance cur�slave

�

�

�� We�ve found next likely loc if the loc queue has something in it� and

�� one loc�s confidence value is above the threshold

done � �

�loc�queueempty�� ��

�loc�queuefirst��conf 	� loc�policythreshold�

��

�

if ��loc�queueempty��� � �� If we have a loc to return

LocationEntry le � loc�queuefirst��� �� extract it

loc�queueremove�le�� �� remove it from loc queue

tried�listappend�leloc�� �� append it to tried list

succeed�le�� �� return this loc

�

else �

fail�L�ListExhausted�� �� Fail with reason L�ListExhausted

�

Figure
� Obtaining the next location

��

add�queue�Location loc� int conf� �

Expand loc using location directory

if ��tried�loccontains�loc�� � �� If loc not returned already

LocationEntry i�

�� Scan loc�queue� searching for an occurence of the same location

for � i � loc�queuefirst��� i �� NULL � i � loc�queuenext��� �

if �loc and iloc describe the same place� �

conf � corroborate�conf� iconf��

locqueueremove�i��

break�

�

�

�� Create a new location entry for the new location

LocationEntry �le � new LocationEntry�loc� conf��

�� Scan loc�queue� searching for appropriate place to insert le

for �i � loc�queuefirst��� i �� NULL � i � loc�queuenext��� �

if �iconf �� conf� �

break�

�

�

�� Insert le before first entry with a lower confidence value

loc�queueinsert�before�i� �le��

�

�

Figure �� The procedure add queue�

supplied target entity speci�cation and the master locator directory� or by copying the
default location policy if the target entity has not provided a location policy and is stored
in loc policy� �gure � illustrates the steps needed to initialise a master locator session�

Once the session has been initialised� the Locate operation returns the �rst most likely
location using the routine described in �gure
� This routine is also used to obtain the next
most likely location in the case of the NextLocation operation� The routine makes use of an
additional local �ag done to indicate that the next most likely location has been determined�
and a variable rloc to receive the results of Locate and NextLocation invocations�

add queue�� ��gure � inserts a location entry at the right place in the priority queue�
but only if the location has not been tried already� If the location is already present in the
queue� then its con�dence level and position are updated if necessary� The new con�dence
level is calculated by applying a corroboration function� Note that this algorithm makes it
impossible for the same location to appear in the queue more than once�

��

Corroboration function� corroborate��

The corroboration function is determined by the organisation policy� Some possible choices
are described here� highlighting a couple of important issues in the process�

Given two con�dence levels l� and l�� the corroboration function de�ned by

l � max�l�� l�

represents a �quality rules over quantity	 policy� For example� if two slave locators both
return con�dence levels of ��� for a location A� and another returns a con�dence level of
��� for location B� then the master locator returns B before A because the con�dence level
for B is higher than the combined levels for A� which is ����

A better function would increase a con�dence level by some appropriate amount each
time a locator expressed some con�dence in the corresponding location� One possibility is�

lmax � max�l�� l�
lmin � min�l�� l�
l � lmax� trunc��lmin���� � ����� lmax

With this function� two ���	s for A would win over one ��� for B because the corroboration
function yields a con�dence level of �
� for A� However� because this function relies on
min�� and max��� it is sensitive to the order of arrival of con�dence values�

Finally� the function de�ned by�

l � ���� ����� l� � ����� l�����

preserves the intention of the previous one but remains insensitive to arrival order��

� Tuning and performance indicators

The framework encompasses several tuning points which can be used to make the system
more e�ective� Suitable choices for con�dence functions� thresholds� corroboration func�
tions� and location policies can only be made on the basis of experience with a working
system� However� the framework can provide some level of support by providing perfor�
mance indicators�

Such indicators can be compiled by the master locator by having it record a log for
every location session� Each log is e�ectively a indication of how successful the client found
the location results to be� Each time a client asks for the next possible location� this can be
interpreted to mean that the previously returned location was found to be incorrect� On the
other hand� an invocation of Release can be taken to indicate that the client found the last
returned location to be correct� If� over a period of time� the total number of failures exceeds
some chosen threshold then this indicates that some parameters may require adjustment�

Detailed logging� such as recording the identity of slave locators and the con�dence
values they return� coupled with a comprehensive statistics reporting system� facilitates the

�The reasoning behind this function is as follows� let pA denote the probability that the location returned
by locator A is correct	 let pB denote the probability that the location returned by locator B is correct�
Then the probability that both A and B are wrong is
�� pA�
�� pB�� We are interested in the probability
that this does not happen i�e� that it is not the case that both A and B get it wrong� This probability is
given by ��
�� pA�
�� pB��

��

task of pin�pointing the parameters that need adjusting� For example� if the performance of
the system as a whole is satisfactory� but is extremely poor for one particular entity� then a
parameter pertaining to that speci�c entity �such as its location policy may need adjusting�
Or if it can be determined that one particular slave is not being very e�ective� regardless
of the entity being located� then its con�dence function might need to be changed�

Is should be noted that �optimum performance	 can mean di�erent things to di�erent
users� One possible de�nition of optimum performance might relate to the number of slave
locators used in a any one session� wherein the smaller the number of slaves used� the
better the performance is considered to be� Another de�nition might relate to the time
taken to locate an individual during o�ce hours� It is therefore not possible to guage the
performance implications of an individual	s policy without a reference context� A more
sophisticated master locator might allow individuals to specify how performance is to be
measured for their particular requirements so that it can warn them when their policy does
not live up to their expectations�

� Discussion

Location systems are becoming of increasing importance in o�ce automation �Hop�
� and
universal personal telecommunications �UPT �Lau�
� services� They are also useful in
shared media�spaces such as Xerox	s RAVE �G����� virtual reality systems� and memory�
aid systems�

There are often several potential sources of location and di�erent approaches to location
may be required for di�erent locatable entities� depending on their habits and characteris�
tics�

In this paper we have described a framework for the integration of location services
which allows multiple location mechanisms to co�exist and co�operate� The framework also
gives the locatable entities some control over the approach used to locate them� so that
each may choose an e�ective strategy to match its own mobility characteristics� We have
also described how the framework provides support for performace tuning via indicators
that report on the success rate of the locator� both on an individual entity basis and on a
system�wide basis�

We have built a prototype of the ODO location system� using ANSAware �Arc��� as an
engineering platform� and using the ORL active badge system and computer system login
information as slave locators� This has been useful to demonstrate the principles behind
our framework� We are using the prototype in order to determine what kinds of functions�
values and policies are likely to be most useful�

Acknowledgments

This work was funded by EPSRC grant GR�G����
� Mike Rizzo is currently sponsored by
the University of Malta� We are grateful to Olivetti Research Limited for supplying us with
an active badge system�

��

References

�Arc� Architecture Projects Management Limited� Poseidon House� Castle Park�
Cambridge CB� �RD� United Kingdom �apm ansa�co�uk� ANSAware ��� Ap�

plication Programmer�s Manual�

�Arc��� Architecture Projects Management Limited� Poseidon House� Castle Park�
Cambridge CB� �RD� United Kingdom �apm ansa�co�uk� RM�	

�	�� An

Overview of ANSAware ���� May �����

�BRH�
� Frazer Bennett� Tristan Richardson� and Andy Harter� Teleporting!making
applications mobile� In Proceedings of �

� Workshop on Mobile Computing

Systems and Applications Santa Cruz� December ���
�

�G���� William Gaver et al� Realizing a video environment� EuroPARC	s RAVE sys�
tem� In Proceedings of CHI �
� Monterey California� ACM SIGCHI� ACM
Press� New York� May �����

�Hop�
� Andy Hopper� Communications at the desktop� Computer Networks and ISDN

Systems� �������"����� ���
�

�Lau�
� Gregory S� Lauer� IN architectures for implementing universal personal telecom�
munications� IEEE Network� �����"��� March ���
�

�McC�
� John McCrone� Don	t forget your memory aide� New Scientist� pages ��"���
February ���
�

�Mul��� S�J� Mullender� Protection� In Sape Mullender� editor� Distributed Systems �st

ed� chapter �� Addison�Wesley� �����

�RLU�
� Mike Rizzo� Peter F� Linington� and Ian A� Utting� The ODO project� a case
study in integration of multimedia services� Technical Report ����
� Computing
Laboratory� University of Kent at Canterbury� Canterbury� Kent CT� �NF�
United Kingdom� August ���
�

�WHFG��� Roy Want� Andy Hopper� Veronica Falcao� and Johnathon Gibbons� The active
badge location system� ACM Transactions on Information Systems� �������"
���� January �����

�

