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Abstract. In this paper we investigate the performance of four different SOR acceleration tech-
niques on a variety of linear systems. Two of these techniques have been proposed by Dancis
[1] who uses a polynomial acceleration together with a sub-optimal w. The two other techniques
discussed are vector accelerations; the e algorithm proposed by Wynn [9] and a generalisation of
Aitken’s A2 algorithm, proposed by Graves-Morris [3].

The experimental results show that these accelerations can reduce the amount of work required
to obtain a solution and that their rates of convergence are generally less sensitive to the value of
w than the straightforward SOR method. However a poor choice of w can result in particularly
inefficient solutions and more work is required to enable cheap estimates of a effective parameter
to be obtained.

Necessary conditions for the reduction in the computational work required for convergence are
given for each of the accelerations, based on the number of floating-point operations.

It is shown experimentally that the reduction in the number of iterations is related to the
separation between the two largest eigenvalues of the SOR iteration matrix for a given w. This
separation influences the convergence of all the acceleration techniques above.

Another important characteristic exhibited by these accelerations is that even if the number
of iterations is not reduced significantly compared to the SOR method, they are competitive in
terms of number of floating-point operations used and thus they reduce the overall computational
workload.
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1. Introduction

Consider the solution of the non-singular, symmetric, positive-definite system of n
linear equations
Ar =1 (1)
by the SOR iteration
(I+wD A ™) = (1 —w)l —wD P Ay) 2™ +wD ', k=0,1,... (2)

where D = diag(A), Ar and Ay are the strictly lower and upper triangular parts of
A and w is the relaxation parameter. Convergence of the method is guaranteed for
0<w<

The SOR iterative method is commonly used for the solution of large, sparse,
linear systems that arise from the approximation of partial differential equations. Its
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rate of convergence is dependent on the value chosen for the iteration parameter w.
Following Young [5], the minimum number of iterations required for convergence is
obtained when this parameter has an optimal value, wp, which minimises the spectral
radius of the SOR, iteration matrix,

Lo=T+wD ' Ap) " (1 —w)I —wD ' Ay) .

The value of w; may be obtained from the largest eigenvalue, pq, of the Jacobi
iteration matrix B = —D~Y (AL + Ap) using

2

o = — =

" +/1—pd 3)
However computing w; is relatively expensive in most cases. Adaptive procedures
exist that can be used to update some initial approximation to wy, as in the ITPACK
2C package [4], but some of the initial iterations have large error vectors (when
compared to SOR using some w > 1). In this case some of the initial estimates of
the solution are “wasted” during the iterative process and this may be undesirable.

An alternative 1s to use an acceleration technique that may not be so sensitive to
the choice of w. The first two acceleration techniques, detailed in §2 were proposed
by Dancis [1] and follow the usual approach of trying to select some w for the
SOR, iteration. We show that for one of his techniques the selection of w is not as
sensitive as expected. In section 3 we look at an extension of the ¢ algorithm of
Wynn applicable to vector and matrices iterations ([8][9]) and in §4 a generalisation
of Aitken’s A? algorithm as proposed by Graves-Morris [3] is described. These are
vector accelerations and thus do not give a prescription for selecting w.

Our investigation is aimed at establishing how sensitive these accelerations are
with respect to the value chosen for w. Section §6 describes the test problems used
in the investigation and the results obtained from the experiments. In section §7 we
summarise the results and draw some conclusions.

2. Dancis’s Acceleration

Dancis proposes the use of a polynomial accelerator with SOR, w being chosen such
that the coordinate of the error vector, corresponding to the largest eigenvalue of
L., 1s annihilated. Dancis recommends that w = Ay + 1, where A5 is the second
largest eigenvalue of £,. By computing the second largest eigenvalue, ps, of the
Jacobi iteration matrix we can obtain the value of w using Equation (3), with p
replaced by ps.

Two different accelerations are proposed. The first, which we refer to as PSORI1,
is as follows. Perform r — 1 SOR iterations and then apply

s e M
xSOR_x_l_/\quOR_l_Xix() (4)

continuing with the SOR iterations thereafter.

The second acceleration (referred to as PSOR2) is obtained by

sy _ _L=a ry  a(l—a)

1—ai+1xSOR 1 — qitl ) i:1,2,...,7“ (5)
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where ¢ = w — 1. After r steps of the above iteration have been performed, we set

x(;;é) = 2"t and the SOR iteration is used from then on.
Dancis propose that the value of r be chosen according to a spectral radius
analysis (see [1, page 827]); its value is given by

mrin =w=-1D""((w=1D"4+A) /1 =2 (ws = 1), r=1,2,..., (6)

where m is some arbitrarily chosen number of iterations.

3. Wynn’s ¢ Algorithm

In 1962 Wynn proposed an extension of the ¢ algorithm ([8]) for vector and matrix
iterations ([9]). Consider a sequence S = {sy}%2, which is slowly convergent. If

we define the sequences 6(_161) = {0}%2, and Eék) = S then a new sequence Eglj_)l is
generated by

el = (e N D — 01, k=0,1,. (7)
In certain circumstances, the sequences E(Zl:»), t=1,2,... converge faster to the limit
of S.

(k)

We investigate the behaviour of the ¢,/ sequence obtained from vectors gener-
ated by SOR. We can express the new vector iterates, generated by two successive

applications of (7) to three SOR vectors, xch_é), l‘(;o)R and x(;gé) , as
(k1) _ (64D () =1 () (k=1 1) T (k)
&2 = ((l’SOR —g50r) — (¥50r — ¥s0R") ) T Tsor (8)

where u= = @/(] u|?) is the Moore-Penrose generalised inverse and @ denotes the
complex conjugate.
In [3] it is shown that the value of w should be taken as 1+ Ay; when using

a sequence {6(2]:)};0 For the acceleration of SOR shown above, with E(Zk) as the
sequence to be used, then w = 1 + Ag, which is the value proposed by Dancis.

4. Graves-Morris’s Acceleration

Graves-Morris suggests, [3, page 25], that the sequence of vectors 2 ) generated by
(2) may be accelerated using

(Al,(k—z))z
Ax(k—z)Azx(k—z)

where Az*) = z(F+1) _ ¢(¥) which is a generalisation of Aitken’s A? process [6].
We will refer to (9) as the G-M iteration.

Experimental results on a few model problems given in [3] show that, for the G-M
iteration, using the value of w which maximises the separation between the largest
eigenvalue of the SOR iteration matrix and the other eigenvalues, a reduction in the
number of iterations needed for convergence occurs. We investigate whether this
reduction is also observed in larger, practical problems and, if so, how critical the
eigenvalue separation is to the rate of convergence.

The value of w is chosen in a similar way as for the ¢ algorithm, following [3].

(k) — pk=1) _ Ax(k_l), k=23,... (9)




4 RUDNEI DIAS DA CUNHA AND TIM HOPKINS

5. Conditions for the Effectiveness of the Acceleration Techniques

Our aim is to discover whether we can reduce the amount of computation needed by
SOR to solve a system of the form (1) by using one of the accelerations techniques.
For instance, using the G-M acceleration one might expect (intuitively) that
if at least one iteration is saved, the computing workload is reduced by a factor
of roughly n? multiplications compared to the SOR iteration. We present below
necessary conditions for the techniques discussed to require a smaller number of
floating point multiplications (flops) than SOR. These conditions are obtained in
terms of the number of iterations (k) and the number of flops per iteration. For
SOR, and each of the accelerations we consider that the total number of flops is

flopssor = ksor(n® 4+ n)O.
flopspsors = (kpsori(n® +n) + 2n) O.
flopspsors = (kpsors(n® + n) + 2rn) O

flops,, = (k€2(n2 +7Tn) — 6n) 0.

flops i pr = kgp(n® + 3n)0.

where O, represents a floating-point multiplication.
It is easy to show that for kgpor > k,ecer Where accel denotes any of the acceler-
ation techniques, we have

ﬂopSSOR > ﬂopsaccel

if and only if the following conditions are satisfied

PSORI1: n > (2+kpsors — ksor)/(ksor — kpsor1)
PSOR2: n > (2r+kpsore — ksor)/(ksor — kpsorz2)
£ n > (Tk., — ksor — 6)/(ksor — k-,)

G-M: n > (3kag.ar— ksor)/(ksor — ka-m)
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6. Description of the Test Problems and Experiments

In this section we present the results obtained from solving a set of problems us-
ing MATLAB implementations of the above methods. Three of the problems are
taken from the Boeing-Harwell library [2] and for these we used Fortran77 and
BLAS routines to implement the methods and LAPACK subroutines to compute
the eigenvalues.

The problems solved present different characteristics with respect to the distribu-
tion of eigenvalues and are of interest to the analysis of the acceleration techniques
discussed.

In each experiment, we describe the system of linear equations used, the value of
wp computed using (3) and the convergence criteria. The results are tabulated for
each method in terms of number of iterations to achieve convergence and the flops
counting of SOR and the ratios between the flops counting of each acceleration with
respect to SOR.

For the analysis of the G-M iteration, we provide a graph showing the two largest
eigenvalues of the SOR iteration matrix, Ay and Az, such that [A;| > |A2|. For these
test problems, the value of r for the Dancis’s accelerations was found to be 1.

6.1. VARGA’S PROBLEM
This is a system of order n = 16 described in [7, Appendix B] derived from the
five-point finite-difference discretisation of
B i@D(r,y)u B i@D(r,y)u
Ox Ox Oy Oy

+ oz, y)u=S(z,y) (10)

in the region R = (0,2.1) x (0, 2.1) subject to the boundary condition dn = 0, where
On is the outward normal. The functions D, o and S are as shown in Figure 1. The
condition number is k(A) = 3.5888 x 103. The value of w; is 1.9177.

Fig. 1. Region for Varga’s problem.

2.1
i 1
B [ D(xy)=1
: D(xy)=2 : O(x.y)=0.02
| O(x,y)=0.03 except where marked
- l— ———— :— S(x,y)=0 everywhere
D(x,y)=3 | |
O(x,y)=0.05 : :
| |

0 1 2 21
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6.1.1. Experiment

In this problem, we are solving

which has the zero vector as the unique solution. The initial vector #(°) was set to
(1,1,...,1)T and we iterated until the co-norm of the solution vector was less than
10~* (this stopping criterion was used in order to reproduce the behaviour of SOR
presented in [7, Appendix B, page 304]). A maximum of 2000 iterations was allowed.

An impressive reduction in the number of iterations is achieved by the G-M, ¢
Note that while the minimum number of iterations for

SOR, and PSOR2 is obtained when w = wy, for G-M, £5 and PSOR1 this minimum

and PSOR1 accelerations.

occurs at some w < wy.

Ar =0

TABLE 1

Varga’s problem: number of iterations.

w SOR G-M e PSOR1 PSOR2
1.1019 2000 60 90 60 2000
1.3059 1992 41 60 41 1992
1.5098 1282 23 31 23 1282
1.7137 708 37 52 37 708
1.9177 146 119 152 119 146

TABLE II
Varga’s problem: flops counting.
Mflops ratio to SOR(%)

w SOR G-M €2 PSOR1 PSOR2
1.1019 0.54 3.35 6.07 3.01 100.01
1.3059 0.54 2.30 4.06 2.06 100.01
1.5098 0.35 2.01 3.24 1.80 100.01
1.7137 0.19 5.84 9.89 5.24 100.02
1.9177 0.04 91.10 140.61 81.59 100.08

w ratio to minimum SOR flops(%)

1.1019 1369.86  45.93 83.16 41.18 1369.94
1.3059 1364.38 31.39 55.36 28.16 1364.46
1.5098 878.08 17.61 28.49 15.83 878.16
1.7137 484.93 28.32 47.95 25.42 485.01
1.9177 100.00 91.10 140.61 81.59 100.08
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Fig. 2.
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Varga’s problem: Eigenvalue separation and number of iterations of the methods.
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6.2. ProBLEM TRIDIAG
This problem of order n = 100 is the system defined by

The condition number is k(A) = 3.9964 and the value of w; is 1.1110.

6.2.1. Erperiment

The starting vector used is z(9) = (0,0,...,0)7 and the iterations proceed until the
2-norm of the residual of the solution vector is less than 1071° or the number of

iterations exceeded 200.

This example shows a situation where w; is close to 1. The experiment shows
that in this case little, if any, gain 1s achieved by the accelerations. Nonetheless even
if a single iteration is spared a reduction in the computational effort is verified.

10 3

3

10 3

3 10 3

3 10

b=

bl

—_

TABLE IIT
Problem TRIDIAG: number of iterations.

w SOR G-M e PSOR1 PSOR2
1.0123 24 22 21 22 24
1.0369 23 21 22 22 23
1.0616 22 22 23 22 22
1.0863 22 21 21 23 22
1.1109 23 21 21 24 23

TABLE 1V
Problem TRIDIAG: flops counting.
Mflops ratio to SOR(%)

w SOR G-M e PSOR1 PSOR2
1.0123 0.24 93.48 92.45 91.75 100.08
1.0369 0.23 93.11 101.08 95.74 100.09
1.0616 0.22 101.98 110.49 100.09 100.09
1.0863 0.22 97.34 100.86 104.64 100.09
1.1109 0.23 93.11 96.47 104.43 100.09

w ratio to minimum SOR flops(%)
1.0123 109.09 101.98 100.86 100.09 109.18
1.0369 104.55 97.34 105.67 100.09 104.64
1.0616 100.00 101.98 110.49 100.09 100.09
1.0863 100.00 97.34 100.86 104.64 100.09
1.1109 104.55 97.34 100.86 109.18 104.64
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Fig. 3. Problem TRIDIAG: Eigenvalue separation and number of iterations of the methods.
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6.3. PrRoBLEM NOS4

This problem is taken from the Harwell-Boeing sparse matrix collection [2; pp.
54-55]. Tt is derived from a finite-element approximation to a structural engi-
neering problem. The system has order n = 100 and its condition number is
k(A) = 1.5785 x 103. The RHS vector was chosen as (1,0,0,...,0)7. The value
of wy 1s 1.8810.

6.3.1. Experiment
In this problem we iterated until the 2-norm of the residual of the solution vector
was less than 10~* or the number of iterations exceeded 2000. The initial estimate
of  was (0,0,...,0)%.

This example shows a similar behaviour to that of Varga’s problem. However
in this case the ¢4 acceleration is worse than SOR and PSOR1 and PSOR2 fail to
produce any acceleration.

TABLE V

Problem NOS4: number of iterations.

w SOR G-M €2 PSOR1 PSOR2

1.0978 1099 699 1667 2000 2000
1.2933 748 212 1135 2000 2000
1.4889 489 126 729 2000 2000
1.6845 283 62 409 2000 2000
1.8810 95 103 105 2000 2000
TABLE VI
Problem NOS4: flops counting.
Mflops ratio to SOR(%)
w SOR G-M €2 PSOR1 PSOR2
1.0978 11.10 64.86 160.69 181.99 181.99
1.2933 7.55 28.90 160.74 267.38 267.38

1.4889 4.94 26.28 157.92 409.00 409.00
1.6845 2.86 22.34 153.09 706.72 706.72
1.8810 0.96 110.57 117.03 2105.28  2105.28
w ratio to minimum SOR flops(%)
1.0978 1156.84 750.36 1858.92 2105.28 2105.28
1.2933 787.37 227.58 1265.65 2105.28 2105.28
1.4889 514.74 135.26 812.89 2105.28  2105.28
1.6845 297.89 66.56 456.04 2105.28  2105.28
1.8810 100.00 110.57 117.03 2105.28  2105.28
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Fig. 4. Problem NOS4: Eigenvalue separation and number of iterations of the methods.
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6.4. PROBLEM 685 BUS

This problem is taken from the Harwell-Boeing sparse matrix collection [2, pp. T1].
The coefficient matrix is derived from the modelling of a power system network. The
system has order n = 685 and its condition number is k(A) = 4.2305 x 10°. The
RHS vector was chosen as (1,0,0,...,0)?. The value of w; is 1.9590.

6.4.1. Experiment

In this experiment we used the same stopping criteria as in problem NOS4. It shows
a behaviour similar to that exhibited in Varga’s and NOS4 problems except for the
€5 acceleration which was always worse than SOR, except at w = w;.

TABLE VII
Problem 685 BUS: number of iterations.

w SOR G-M €2 PSOR1 PSOR2
1.1066 2000 614 2000 2000 2000
1.4762 1479 384 2000 2000 2000
1.6394 1064 251 2000 2000 2000
1.8525 547 117 952 2000 2000
1.9590 171 163 165 2000 2000

TABLE VIII

Problem 685 BUS: flops counting.

Mflops ratio to SOR(%)

w SOR G-M e PSOR1 PSOR2
1.1066 939.82 30.79 100.87 100.00 100.00
1.4762 695.00 26.04 136.41 135.23 135.23
1.6394 499.98 23.66 189.61 187.97 187.97
1.8525 257.04 21.45 175.56 365.63 365.63
1.9590 80.35 95.60 97.33 1169.59  1169.59

w ratio to minimum SOR flops(%)

1.1066 1169.59 360.11 1179.82  1169.59  1169.59
1.4762 864.91 225.22  1179.82 1169.59 1169.59
1.6394 622.22 147.21 1179.82  1169.59  1169.59
1.8525 319.88 68.62 561.59 1169.59  1169.59
1.9590 100.00 95.60 97.33 1169.59  1169.59
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Fig. 5.
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7. Summary

We summarise the results presented in §6. The main points are as follows

1. The PSOR2 iteration performed poorly in the test problems used in this paper.
The other three methods generally outperformed the basic SOR method with
the G-M acceleration showing the most consistent improvements.

2. The G-M, 2 and PSORI iterations almost invariably reduced the number of
iterations required to obtain a specified accuracy when w < wp. In some cases
this reduction was observed for w = wj.

3. As with the basic SOR method, the G-M, €5 and PSORI1 iterations are poor if
w chosen 1s greater than wy.

4. The reduction in the number of iterations using the G-M method is proportional
to the separation of A; and A;. Since the g9 and PSORI iterations produce
similar behaviour to G-M, we believe this separation also has an influence on the
convergence properties of these methods. Note that as the separation between
A1 and Ao decreases all three iterations exhibit similar behaviour to SOR.

The experimental results presented show that the Graves-Morris’s acceleration tech-
nique 1s the most attractive of the techniques discussed here, from the point of view
both of the overall amount of computational work required and the range of the w
parameter for which the rate of convergence is improved. Though the number of
experiments performed was small we believe the results indicate that these acceler-
ations of the SOR method are effective and may be applicable to other systems.
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