
The Design and Implementation of the

RPC Device Drivers

Ian A Penny

�email� iap�ukc�ac�uk�

��th December ����

� Overview

The RPC project group is investigating high performance communication network interface struc�
tures which are compatible with existing operating systems� in this instance SunOS ��� Unix� The
use of parallel processing in the marshalling and unmarshalling of RPC arguments together with
direct I�O to and from the user�s data area and early scheduling of user processes� are expected
to give a higher throughput than more traditional implementations�

The network front end comprises PC based TRAM�s� The Unix machine is a Sun SPARC�	
running SunOS ����
� The interconnection between the two systems is by the SCSI bus� To
implement this structure requires a kernel device driver to act as a bridge between the Unix
environment on the SPARC station and the TRAM�s in the PC�

� The Kernel

The structure of a device driver is closely tied to the run time structure of the Unix kernel� A
short description of the essentials is given here to provide background before the structure of SCSI
device drivers is discussed�

The kernel is divided into a top half and a bottom half� The top half of the kernel provides
services to applications in response to system calls or traps� The top half of the kernel executes
in a privileged execution mode in which it has access to both kernel memory and the context in
which the user process is executing� its user area or u dot structure�

The bottom half of the kernel contains the routines that are invoked to handle hardware interrupts
and traps that are not related to the current process� These interrupts may be delivered by
hardware devices such as a real�time clock or I�O device� Activities in the bottom half of the
kernel occur asynchronously and cannot rely on having a speci�c process executing at the time of
interrupt�

Whilst executing the code for a system call the kernel is never preempted� it must either run
to completion or voluntarily give up the processor to wait for a resource� It may� however� be
interrupted by activities in the bottom half of the kernel� The top half may block entry into
routines in the bottom half of the kernel by setting the processor priority level to a value which
blocks out the appropriate interrupts�

�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Application Program 1. Application Program 2.

Operating System Kernel.

bdevsw cdevsw

SCSA

Target Driver 1 Target Driver 2. Target Driver 3.

Host Adapter

Driver 1

SCSI Hardware I/F

Driver 2

Host Adapter

SCSI Hardware I/F

Figure �� Block Diagram of Sun Common SCSI Architecture�

� Sun Common SCSI Architecture

The SCSA provides a library of support routines for the transmission of SCSI commands from
a Target driver� to a Host Adapter driver�� The interface is independent of the host adapter
hardware being used� and the SCSI command set being transported� The SCSA separates those
functions related to SCSI protocol management� which are included in the Host Adapter Driver�
from the functions related to SCSI command content� which are included in the Target Driver�

� SCSI Character Device Drivers

Unix supports access to a hardware device through either the block or character interface� Block
oriented device interfaces use the buer cache which resides in the kernel�s address space� All I�O
operations are block oriented and done to or from these kernel buers� This approach requires at
least one memory�to�memory copy to satisfy a user request�

Character oriented device interfaces have one of two styles� depending on the characteristics of the
underlying hardware� For block oriented devices such as a disk� a character device interface may
provide unstructured or raw access to the device� True character devices provide a byte stream
oriented interface� A processor device� such as the SCSI Tram� requires this type of interface
because it is not limited to sending or receiving �xed size blocks of data�

Classically any device driver has three major sections�

�� Autocon�guration and Initialization routines�

�� Routines for servicing I�O requests�

�A Target driver is responsible for the generation of SCSI commands and interpretation of data arising from the

transmission of such commands�
�The Host Adapter driver is responsible for the management of the SCSI protocol chip and DMA resources�

together with virtual address mapping�

�




� Routines for servicing interrupts�

��� Autocon�guration Process

The autocon�guration of the driver takes place when the system is initialized� It is responsible
for determining if a hardware device is present and to initialize both the device� and any software
state associated with it�

For SCSI device drivers the autocon�guration process proceeds as follows� The host adapter is
con�gured prior to any search for target drivers� Once the host adapter is con�gured it is required
to call a SCSA routine scsi config�� which identi�es it to the SCSA library� scsi config

then traverses the config��� generated array of scsi conf structures looking for target devices
which have been declared to exist on a SCSI bus connected to this adapter� For each match� a
scsi device structure is generated and the appropriate target drivers slave�� routine is called
with the scsi device structure as it argument�

A target driver�s slave�� routine is responsible for validating the presence of the hardware� It
should return � for failure or � for success� and set the sd present �eld of the scsi device to
re�ect the presence of the device� If the slave�� routine returns � and the sd present �eld is
set then the SCSA library will call the target driver�s attach routine� The attach routine must
decide whether the addressed hardware is ready for service�

For systems with openproms� the semantics of the dev info structure state that a device is consid�
ered present when the devi driver �eld is initialized to point to the device�s dev ops structure�
The SCSA implementation requires that this be �lled in the same time as the sd present �eld�

����� dev ops structure

The dev ops structure is designed to identify the entry points to a device driver� it is however
largely redundant with the cdevsw and bdevsw structures� The paragraphs below describe the
relevant �elds of the structure� The other elements of the dev ops structure do not need to be
initialized as they are unused under the present implementation�

devo rev The device driver revision level� which must be set to one when programming for SunOS
���� Under revision level one� the only valid elements of the dev ops structure are the identify
and attach routines�

devo identify The function of the identify routine is to determine if this driver works with the
device� For drivers which do not occupy a physical slot on the SBus� such as a SCSI target
driver� no identify routine needs to be declared� Instead the target drivers slave routine
must be declared to check the devices availability�

devo attach For a SCSI target driver the attach routine has two main responsibilities�

�� To allocate any state memory �data structures� the device driver needs in order to
function� This keeps the size of the object �les and� more importantly� the kernel to a
minimum if the device is not present�

�� To perform any device initialization needed�

The attach routines of drivers which occupy a physical slot� such as the host adapter� have
more responsibilities than just these two�

��� The Top Half�

The top half of the driver is responsible for servicing I�O requests� as a result of a system call or
on behalf of the virtual memory system� It executes synchronously in the top half of the kernel
and is permitted to block by calling sleep���






����� Entry Points�

Device drivers are connected to the rest of the kernel by the entry points recorded in the array for
their class� their use of a common buering system� and their use of low level hardware support
routines� For character devices the array of entry points consists of cdevsw structures� the array
is declared in �usr�src�sys�sun�conf�c and the structure in �usr�src�sys�sys�conf�h� To
index into this array each device is distinguished by a major device number� A device�s minor

device number is interpreted at the driver level� and is hence unimportant at this stage�

The relevant �elds of the cdevsw structure are described below�

open Prepare the device for I�O operations� This routine will be called for each open system call
on a character special device �le� Typically it should validate the minor device number and
do other device speci�c error checking� such as ensuring the device was identi�ed correctly
in the autocon�guration phase� If there are no errors it should then proceed to initialize the
device� allocating any resources which are needed on a per�minor device basis� and wait for
the device to come online�

close Shutdown the device� This routine is called when the last client using the device either
explicitly calls the close system call� or terminates� Consequently it must clean up for all
clients which have had the device open� typically releasing or unlocking any resources which
were used by the device and indicate that data cannot be transferred until the device has
been reopened�

read Read data from the device� A read request requires that the driver copy the data from
the device to the application�s virtual address space� It must check that the minor device

number passed to it is within its range� but subsequent actions are dependent on the type of
device�

write Write data to the device� This entry point is similar to the read routine except the direction
of data �ow is reversed�

ioctl Perform an operation other than a read or write� These operations dier for each type of
device� but can provide a means for setting device parameters and for checking the status of
a device� This entry point is intended to implement any commands which are not covered
by the rest of the device�driver entry points�

select Check the device to see if any data is available for reading� or space is available for writing�
This entry point is used by the select system call to check �le descriptors associated with
this device� The driver must maintain a local per�device structure that can associate a
process with each device� and keep track of state information to enable this check to be
made�

mmap Map a device�s contents into memory� This entry point is used by the mmap�� system call
to provide page table entry �PTE� information about pages of the device�s memory� This
information is needed by the kernel to map the page to a virtual address�

����� Typical Operation

When an I�O request is received by the Target Driver it must prepare a SCSI command that�
when passed to the Target Device� will perform the desired function� There is a relatively simple
sequence of events which must be performed in order for the transfer to take place�

�� Target Driver executes functions to obtain a block of memory�

�� Target Driver �lls in the blanks in the block of memory to describe the command for the
host adapter�

�



Local Resource Allocation

Command Construction

Resource Allocation
(Possible Blocking).

Kernel I/O Request

scsi_resalloc()
scsi_dmaget()

pkt_transport()

Host Adapter executes
SCSI command.

Management Of:
1) DMA resources
2) Host Adapter Hardware
3) SCSI Protocols

Target Driver Host Adapter Driver

Figure �� Response to a Kernel I�O request�


� Target Driver calls Host Adapter Driver functions to obtain the other resources necessary
to execute the desired command�

�� Host Adapter Driver manages the resources and can either allocate them now or later at its
discretion�

�� Target Driver passes the descriptive information to the Host Adapter Driver using the trans�
port function�

�� Target Driver is free to prepare other SCSI commands for the same target and for other
attached targets�

Figure � illustrates this sequence with the function names of the routines used by the Target
Driver to request resources from the Host Adapter Driver� There are two separate ways to allocate
resources for a command requiring a DMA transfer� The �rst is to allocate all the resources at one
go using scsi resalloc this allocates not only the scsi pkt but also the DMA resources required
to perform the transfer� The second way to perform this allocation is to call scsi pktalloc�
this routine allocates the necessary scsi pkt but does not allocate any DMA resources for it�
Subsequently the Target Driver may call scsi dmaget to promote the command to one with
associated DMA resources� It is usual for a Target Driver to allocate a request sense packet in the
autocon�guration phase� this packet may then be used in response to error conditions without the
need to go through resource allocation again�

��� The Bottom Half�

The bottom half of the driver consists of the routines for servicing interrupts� These routines
execute in the bottom half of the kernel and as a consequence cannot rely on any per�process state
and cannot block by calling the sleep�� routine�

�



Target Driver Host Adapter Driver

Status Filled In.

Analysis of Returned Data

Resource Freeing.
(Possible Cache Flush).

I/O Complete

Completion Routine

scsi_resfree()
scsi_dmafree()

Figure 
� Command completion�

The two halves of the driver communicate by using I�O queues� When an I�O request is received
by the top half of the driver it must record the command on a per�device queue for processing�
When a command completes the target driver will receive an interrupt from the host adapter�
The interrupt service routine must notify the requester that the command has completed and
then initiate a new command from the device�s queue� The I�O queue is the primary means of
communication between the top and bottom halves of a target driver�

As the I�O queues are shared by the two halves of the driver� access to them must be protected�
The top half of the driver must raise the priority level of the processor� by using splx��� to prevent
the bottom half of the driver from being entered whilst the top half is manipulating the queues�

����� Typical Operation

When the command has completed successfully or unsuccessfully� the Host Adapter Driver is
responsible for calling the completion routine of the Target Driver� The sequence of steps involved
are described below�

�� Host Adapter Driver �lls in remaining status information in allocated memory area�

�� Host Adapter Driver calls the Target Drivers completion routine�


� Host Adapter Driver is no longer responsible for the command�

�� Target Driver analyses the returned status information�

�� Target Driver requests that the Host Adapter Driver releases the resources allocated for this
command�

�� Target Driver noti�es the process that originally requested the transaction that it is complete�

�



Application Program 1 Applicaiton Program 2 Application Program 3

SYSTEM CALL

SCSA LIBRARY

UKC RPC MULTIPLEXOR

UKC RPC SCSI LINK DRIVER

HOST ADAPTER DRIVER

SCSI BUS

Figure �� Structure of RPC Drivers�

� UKC RPC Drivers

Having dealt with the general case Target Drivers the rest of this document concentrates on the
RPC Target Drivers� their structure and operation�

��� Structure

The RPC project calls for a kernel device driver to act as a link between the Unix environment
on the SPARCstations and the parallel processing environment of the TRAM�s� The driver is
required to perform two tasks� the �rst is to provide multiple RPC interfaces to the application
environment� The second is to communicate with the scsi TRAM� This suggests using two drivers�
a multiplexor and a SCSI Link Driver�

The RPC Multiplexor provides a number of character�special devices� each one oering an au�
tonomous RPC slot� The limit on the number of these devices is ��� as minor�dev� is � bits�
It multiplexes these RPC interfaces onto the link provided by the SCSI Link Driver� It is the
multiplexors responsibility to match up outbound RPC�s with their replies� and provide a system
call interface for user processes�

The RPC Link Driver provides an asynchronous send � receive interface across the SCSI bus to
the TRAM� This interface should provide reliable delivery of the commands to the TRAM� the
multiplexor is informed only when writes complete or network input has arrived�

��� Autocon�guration Process

The RPC Multiplexor does not need to go through autocon�guration as it does not have any
associated hardware� The resources it needs are assigned when the �rst open system call is

�



processed� see description of open entry point�

The RPC Link Driver must determine if the TRAM is present and running the RPC Tram Driver�
Its autocon�guration process proceeds as follows�

ukcsslave is called once the host adapter has been con�gured� It calls scsi slave�� which sends
a TEST UNIT READY to the Target�Lun address for this device� If this succeeds it will send an
INQUIRY command� If the inquiry succeeds then the sd inq �eld in the device structure will be
�lled in� ukcsslave then examines the device type to ensure it is a processor and attempts to
match the vendor and product identi�ers with those returned by the RPC Tram Driver� If any
of the steps of the scsi slave routine fail� or ukcsslave cannot match up the device type and
vendor�product identi�ers with those of the RPC Tram Driver then it will return �� indicating to
the host adapter that the hardware failed the autocon�guration process� At this point the Link
Driver has determined that the unit is present and that it is executing the code for the RPC Tram
Driver�

The next step is to allocate a request sense packet� this is used if a SCSI command generates a
CHECK CONDITION status� It is allocated here so that the Link Driver can transport a REQUEST

SENSE command without the need to perform new allocations� When a command completes with
a CHECK CONDITION� the Host Adapter Driver assumes that the next command transmitted to
that Target�Lun will perform the recovery� The Target� Lun is frozen by the Host Adapter Driver
until another packet is transmitted for that Target�Lun�

The last stage is to allocate and �ll in the Link Drivers private data structure for this Target�Lun�
The sd present �eld of the scsi device is �lled in to indicate that the device is present� and the
dev ops entry is �lled in�

ukcsattach�� is called if ukcsslave returns � and the sd present �eld is set� As ukcsslave has
already allocated the private data structure for this Target�Lun� ukcsattach only needs to perform
device initialization� If the driver state is NIL it marks it as CLOSED and prints the Target�Lun
and the Vendor identi�er� The last stage is to �ll in the private data structure un attached �eld
to indicate that the device has been attached�

The ukcsattach routine has far less to do than its counterparts in other scsi target drivers� This
is because the real initialization of the device is done by the ukct setup routine� which is called
by the multiplexor open routine �see open entry point��

��� The Top Half�

The following section deals with the top half of both the Multiplexor and Link driver� Although
the Link driver does not provide a system call interface its routines are called by the Multiplexor
in response to system calls and hence are classi�ed as part of the top level�

When an application emits an RPC request a �xed size structure is passed over the read�write
system call interface� This structure describes the RPC request to the RPC drivers and the
TRAM� The RPC drivers use an extended version of this user structure in order to keep track of
the owning process and form the ioqueues� This extended version is passed across the SCSI bus to
the TRAM� hence some of the �elds of the structure have no meaning to the RPC drivers� These
two structures are described below�

����� ukcrpccmd t

typedef struct �

int ur�cmd	 �
 command type 
�

caddr�t ur�ibp	 �
 input buffer addr 
�

int ur�ibytes	 �
 max�actual input length 
�

caddr�t ur�obp	 �
 output buffer addr 
�

int ur�obytes	 �
 mac�actual output length 
�

�



int ur�stag	 �
 RPC service number 
�

int ur�utag	 �
 chosen by user �client� 
�

int ur�ktag	 �
 chosen by kernel �server� 
�

� ukcrpccmd�t	

ur cmd This �eld identi�es the purpose of the RPC request� and is interpreted by the TRAM� The
RPC drivers are designed as a bridge and hence have no knowledge of the implementation
details of the RPC requests themselves�

ur ibp This identi�es the client�s input buer to the RPC drivers� The input buer is �locked
down� whilst the RPC request is in �ight� allowing the RPC drivers to DMA directly to the
input buer�

ur ibytes When passed by the client to the RPC drivers� this �eld speci�es the maximumamount
of data that may be DMA�ed into the clients input buer� When passed by the RPC drivers
to the client� this �eld speci�es the actual amount of data which was DMA�ed into the clients
input buer�

ur obp Analogous to ur ibp� this �eld identi�es the client�s output buer to the RPC drivers�
It is also locked down whilst the RPC request is in �ight to allow DMA directly from the
buer�

ur obytes This �eld speci�es the maximum amount of data which can be DMA�ed from the
client�s output buer�

ur stag This �eld identi�es which service the RPC request is destined for� A service handler
is responsible for associating servers and clients� it does this through the service number
�ur stag� mechanism�

ur utag This �eld is unique to the RPC request and is chosen by the user� If a client has multiple
requests outstanding and a reply returns it may use this �eld to determine which request
has completed�

ur ktag This �eld is used by the kernel to match up RPC requests with their replies at the service
handler level �see ur stag above�� It must be unique within the context of a service� but
two dierent services may use the same kernel tag �ur ktag�� When a request or reply is
received by a service handler� the service number identi�es which service it is destined for
and the kernel tag identi�es it within that service�

����� ukckcmd t

typedef struct ukckcmd�node 
ukckcmd�ptr	

typedef struct ukckcmd�node �

ukckcmd�ptr uc�next	 �
 Command Chain 
�

ukcrpc�ptr uc�uk	 �
 Back ptr to minor�dev� struct 
�

struct proc 
uc�uproc	 �
 Owners proc table entry 
�

int uc�flag	 �
 Flags 
�

int uc�mtag	 �
 minor�dev� � uniqueness bits 
�

ukcrpccmd�t uc�rpccmd	 �
 User command 
�

� ukckcmd�t	

uc next This �eld identi�es the next entry in the ioqueue� The RPC drivers ioqueue consists of
a linked list of ukckcmd t structures�

uc uk Used by the Multiplexor to identify which minor device �RPC slot� this command is
associated with� Primarily this is used when the Link driver calls the Multiplexor completion
routines for read or write� the command can then be queued on the minor device�s completion
queue�

�



uc uproc Required by the multiplexor to lock down the user�s input and output buers� It is
also required by some of the SCSA library support routines�

uc �ag This �eld may be used by the RPC drivers or TRAM to indicate any special activities
which must be performed for this command�

uc mtag If RPC replies arrive �late� and the client has issued a close system call it is possible
that another client has opened the slot with outstanding tra�c� The uc mtag �eld protects
clients from RPC tra�c from a previous existence�

uc rpccmd This holds a copy of the user�s ukcrpccmd t for use by the RPC drivers�

����� Entry Points

The Multiplexor implements a subset of the full character device entry points� its cdevsw entry is
listed below� The Link driver does not have a cdevsw entry� as it does not implement any system
call interface� The Link driver top level routines are accessed solely by the Multiplexor�

�

xx�open xx�close xx�read xx�write

xx�ioctl xx�reset xx�select xx�mmap

�struct streamtab 
�xx�str xx�segmap

�

�

ukcr�open ukcr�close ukcr�read ukcr�write �
���
�

nulldev nulldev ukcr�select �

� �

�

nulldev is placed in insigni�cant entries in the cdevsw structure� These entries are not invalid�
they are merely not con�gured� nodev should be placed in illegal entries in the cdevsw structure�
it will return ENODEV if a process attempts to use the entry point�

ukcr open The responsibilities of the open entry point for the Multiplexor are extended to en�
compass the Link driver validation� as the Link driver has no open entry point� The RPC
driver open process proceeds as follows�

Upon the �rst open or subsequently after the Link driver has informed the Multiplexor that
the TRAM has crashed� ukcr init will be called� ukcr init initializes the ioqueue and
�lls in a structure containing pointers to the Multiplexor�s completion routines for reading
and writing� and the reset routine� It passes this structure to the Link Driver by calling the
ukct setup routine�

ukct setup checks that the autocon�guration process succeeded and sets up the logical send
and receive channels to the TRAM� These channels are implemented by using two logical
units at the same target� It will also interrogate the Host Adapter to see if it supports
synchronous mode transfers and if so sets up the channels to use it� ukct setup will send
a TEST UNIT READY command to each logical unit to check they are both available� and
allocate a command and data packet for each channel� Assuming no problems arise the
Multiplexor completion structure is stored and a message will be printed to indicate that
the channels have been activated�

Once both channels have been initialized ukct setup sends a read to the TRAM� The TRAM
is expected to disconnect from the bus and reconnect when data becomes available� This
allows the TRAM to interrupt the SPARCstation and provides a means of asynchronous
communication down the SCSI bus� Once the read has been sent� ukct setup �lls in the

��



Link Driver priority level so that the Multiplexor can block the Link Driver and returns�
ukcr init stores this priority before returning�

If any errors occurred whilst trying to initialize the ioqueue or validate the Link Driver then
ukcr open returns the error generated by the lower level routine� ukcr open then ensures
that the requested slot is not being used by anyone else� it will return EBUSY if this is the
case� A process receiving EBUSY from an open is expected to increment the minor device
number and reattempt the open� Because parts of the process area will be used for direct
DMA it must not be swapped out� this is done by overloading the meaning of SPHYSIO in
the process table entry� This does mean that physio on other devices is forbidden� but does
allow the Multiplexor to regain control on exit before the user�s virtual machine is released�
Because of this setting of process table entries the Multiplexor must ensure only the opener
may use the slot� Children may inherit the �le descriptor associated with an RPC slot from
their parent� but they are forbidden to use it�

ukcr close The close entry point is responsible for shutting down the slot and tidying up�
ukcr close veri�es that the device is open returning ENXIO if it is not� It must ensure that
the process attempting the close is the one which opened the device� If it is not ukcr close

returns �� indicating that the close was successful� In this case the Multiplexor will close the
device when the �real� owner calls close�

ukcr close must attempt to deal with any outstanding commands� Any currently active
DMA operation must be allowed to complete� Any commands on the write queue for the
TRAM must be sent to ensure little or no tra�c is lost� Any items on the read pending
queue are placed on the read queue� from where the associated buers are unlocked� The
device state is cleared to indicate that it is closed�

Once any commands have been dealt with ukcr close checks to see if this was the last
outstanding RPC slot open for this process� If it was then SPHYSIO is cleared in the process
table entry� ukcr close then returns�

ukcr forceclose is called from exec and exit and allows the user�s pages to be unlocked
before the user�s virtual machine is discarded� It cycles through the valid minor device
numbers� attempting to close each one� The behavior of ukcr close ensures that the device
will only be closed by the user process which called open� It then attempts to clear SPHYSIO�
It will panic�� the kernel should SPHYSIO not be set when it attempts to clear it�

ukcr read The read entry point reads a ukcrpccmd t from the user and �lls it in with the next
command on the read queue� It ensures that the process has this slot open and that the
correct number of bytes have been requested� If the Link Driver has reported that the TRAM
has crashed then UKF TRAMDOWN will be set� in this case any open RPC slots must be closed�
Attempting to read from a slot whilst UKF TRAMDOWN is set is considered an error�

The next ukckcmd t is taken o the read queue� if no commands are available ukcr read

will return EWOULDBLOCK� The users memory which was locked down for DMA is released
and the user command is copied into the user supplied ukcrpccmd t� The kernel command
�ukckcmd t� is placed on the free message list for reuse�

ukcr write The write entry point reads a ukcrpccmd t from the user and transports it to the
TRAM� It must ensure that the process has this slot open and that the correct number of
bytes have been requested� As with the read entry point� if the TRAM has crashed any RPC
slots must be closed� Attempting to write to a slot whilst UKF TRAMDOWN is set is considered
an error�

ukcr write gets a ukckcmd t from the free list and clears it� if no commands are available
ukcr writewill return EWOULDBLOCK� The user�s command is loaded into the kernel command
structure and the user�s buers are locked down to enable DMA transfers from�to them� The
kernel command is placed on the tram write queue and the start routine �ukcr start� is
called�

��



If the Link driver is not busy� ukcr start takes the �rst kernel command o the tram write
queue and passes it to the Link driver by calling the routine ukcr wtram�

ukcr wtram ensures that no work is outstanding and that the TRAM hasn�t crashed before
it constructs two buf structures to describe the command to the low level SCSA routines�
It links the second buf� containing the data to the �rst� containing the kernel command and
places them on the send channel queue� It calls the routine ukcsstart to begin the transfer�

ukcsstart checks to see if resources have already been claimed for this transfer� if not it
will call ukcs make cmd� ukcs make cmd calls the SCSA routine scsi dmaget to allocate the
necessary DMA resources for this SCSI packet� and then uses the MAKECOM G� P� macro
to create a SCSI commanddescriptor block� If resources were not available ukcsstartmarks
this device as waiting for resources� The callback mechanism implemented by the SCSA will
call the routine ukcs retry when resources �may� have become available� ukcs retry just
attempts to restart any devices waiting for resources� The SCSA requires that it must return
� if it was either able to allocate resources or chose not to attempt it� else it must return ��
If resources were available ukcsstart moves the command from the pending queue to the
active queue and calls the SCSA routine pkt transport to transport the command� Once
pkt transport returns the command is no longer the responsibility of the Link driver� the
Host Adapter will call the Link driver completion routine ukcsintr when it has completed
the command or can proceed no further� Execution unwinds until ukcr write returns�

ukcr select The select entry point checks that the process has the requested device open and
that the TRAM has not crashed� If there is data available in the case of a read select� or
if data can be sent in the case of a write select� ukcr select will return �� If a select has
already blocked for this device and subsequently another select occurs which will also block�
then the collision �ag is set� ukcr select will cause the process to be blocked� returning ��

ukct_setup

ukcr_wtram

ukcts_wdone

ukcts_rdone1

ukcts_rdone2

ukcts_reset

Passed in setup structure.

Multiplexor Link Driver

System Call
Interface.

Host 
Adapter

Top Half

Bottom Half

Top Half

Bottom Half

Figure �� Interaction between Multiplexor and Link Driver�

��� The Bottom Half�

The bottom half of the Multiplexor is invoked by the Link driver when it has completed operations
either successfully or unsuccessfully� on behalf of the Multiplexor or RPC tra�c has been received
from the TRAM� The bottom half of the Link driver is invoked by the Host Adapter driver when
it has completed a scsi command on behalf of the Link driver� or resources have become available
when the Link driver is blocked waiting for them� The latter case is described in the ukcr write

�This macro �lls out many of the �elds of a scsi pkt for group � commands that require the special bits

associated with processor device types�

��



entry point� In the former case� the host adapter interrupts the Link driver by calling the ukcsintr
routine� It is the responsibility of ukcsintr to examine the status of the returned command and
�gure out what to�

����� ukcsintr�	

The command completion routine ukcsintr begins by ensuring that the scsi packet is valid� Invalid
packets are those that have requested a non�interrupting service� or that have no private data area
or device associated with them� If the command is incomplete ukcs incomplete is called�

If the command was a request sense ukcs incomplete will return QUE SENSE if retrying it will
not exceed the retry count� If the command was not a request sense ukcs incomplete will return
QUE COMMAND if retrying it will not exceed the retry count� If the host adapter got the bus and
the command cannot be retried then the target has not responded to selection� in which case
ukcs shutdown is called�

ukcs shutdown detaches both the send and receive channels and marks them as closed� It will call
the Multiplexor�s reset routine via the setup structure it received in ukct setup �see open entry
point�� The Multiplexor reset routine ukcr reset places all pending writes onto the read pending
queue� and �ags all open slots that the tram has crashed �UKF TRAMDOWN� the only operation which
may be performed on such a slot is a close� ukcs shutdown and ukcs incomplete return�

If the command was completed and the device is SENSING then ukcs handle sense is called� oth�
erwise ukcs check error will be called� ukcs handle sense decodes and checks the information
returned by a request sense� Based on the decoded information it may mark the command as
done� or done but with errors or that it should be queued for retransmission� ukcs check error

determines if any errors occurred on completed commands� If the command returned with a busy
status then it will be queued for retransmission if retrying it does not exceed the retry count� if
it would then it is marked as done with errors� If the command returned with a check condition
then the Link driver must send a request sense command�

Once the command has been checked by the lower level routines� ukcsintr decides what to do
with the command based upon their return values� If the command needs to be retransmitted�
ukcsintr calls pkt transport� Otherwise the command completed either successfully or with
errors� in which case ukcsdone is called�

����� ukcsdone

ukcsdone cleans up after the last command and starts the next one� If it receives a command
which has returned with an error condition it frees the resources for the scsi packet and returns�
In later implementations it is envisaged that the Link driver will be required to recover from a
number of dierent errors� each possibly requiring a slightly dierent strategy� If the command
completes without errors ukcsdonemust determine which channel �send or receive� this command
arrived on�

If the command arrived on the send channel and there is still outstanding work� then the command
which arrived is the ukckcmd t in which case the ukcsstart routine is called to send the data�
Otherwise the Multiplexor is informed that the write completed� The resources associated with
this write command are released�

If the command arrived on the receive channel and there is an outstanding packet on the queue�
then the command which has completed is the ukckcmd t� The Multiplexor is informed which
read command has partially completed� This two part sequence is needed in case a process dies
before any outstanding RPC�s are completed� in this case it would is crucial that the DMA transfer
direct into the processes memory not be allowed to continue� If the Multiplexor okay�s the second
part of the read� the Link driver �lls in the waiting buf structure and calls ukcsstart to begin
the second part of the read� If the Multiplexor refuses the read� the resources for this command
are released and the ukcs read routine is called to set up the next disconnecting read �see open

�




entry point�� Otherwise� if nothing is on the pending queue the command which has arrived is the
data� In this case the Multiplexor is informed that the second part of the read has completed� The
resources for this command are released and ukcs read is called to set up the next disconnecting
read�

In both cases the Multiplexor is informed through the setup structure which was passed to the
Link driver by ukcr init when it calls the ukct setup routine� This design ensures that if
the Multiplexor is loadable in future implementations then it can inform the Link driver of its
command completion routines�

� Conclusion

The multiplexor provides for multiple character special device �les� each of which acts as an
autonomous RPC slot� It has no knowledge of the underlying SCSI structure� but instead uses a
simple interface to communicate with the SCSI link driver� The link driver manages the generation
of the necessary SCSI commands to transmit the data over the bus to the PC based TRAM�s�
RPC requests and replies are viewed as opaque data about which neither driver has any knowledge�

Futher work in this area of the project will involve timing the drivers and writing a local ser�
vice handler which does not require SCSI interactions for those RPC�s from clients whose server
executes on the same machine�

References

�Sun� ����� Sun microsystems� Inc� �Writing SBus Device Drivers�� Part No� �����
������ �Jan�
uary ������

�Sun� ����� Sun microsystems� Inc� �SCSA � SUN Common SCSI Architecture� Part No� ����
�������� �March ������

�Sun� ����� Sun microsystems� Inc� �Implementation Guide � SUN Common SCSI Architecture�
Part No� ����������� �November ������

�Le�er et al�� ����� S�J� Le�er et al� �The Design and Implementation of the ��
BSD Unix Op�
erating System�� Addison Wesley �������

�ANSI� ����� American National Standards Institute� Inc� �Small Computer System Interface
�SCSI�� ANSI X
��
������� �June ������

��


