
A Synergistic Analysis for
Sharing and Groundness which traces Linearity

Andy King

Department of Electronics and Computer Science���

The University of Southampton� Southampton� S�� �NH� UK�

Abstract� Accurate variable sharing information is crucial both in the
automatic parallelisation and in the optimisation of sequential logic pro�
grams� Analysis for possible variable sharing is thus an important topic in
logic programming and many analyses have been proposed for inferring
dependencies between the variables of a program� for instance� by com�
bining domains and analyses� This paper develops the combined domain
theme by explaining how term structure� and in particular linearity� can
be represented in a sharing group format� This enables aliasing behaviour
to be more precisely captured� groundness information to be more accu�
rately propagated� and in addition� re	nes the tracking and application
of linearity� In practical terms� this permits aliasing and groundness to
be inferred to a higher degree of accuracy than in previous proposals and
also can speed up the analysis itself� Correctness is formally proven�

� Introduction

Abstract interpretation for possible sharing is an important topic of logic pro�
gramming� Sharing �or aliasing� analysis conventionally infers which program
variables are de�nitely grounded and which variables can never be bound to
terms containing a common variable� Applications of sharing analysis are nu�
merous and include� the sound removal of the occur�check �		
� optimisation of
backtracking ��
� the specialisation of uni�cation �	

� and the elimination of
costly checks in independent and�parallelism �	�� �
� 	�
� Early proposals for
sharing analysis include �	�� ��� ��
�

This paper is concerned with a semantic basis for sharing analysis� and in
particular� the justi�cation of a high precision abstract uni�cation algorithm�
Following the approach of abstract interpretation ��
� the abstract uni�cation
algorithm �the abstract operation� essentially mimics uni�cation �the concrete
operation� by �nitely representing substitutions �the concrete data� with sharing
abstractions �the abstract data�� The accuracy of the analysis depends� in part�
on the substitution properties that the sharing abstractions capture� Sharing
abstractions usually capture groundness and aliasing information� and indeed�
accurate analyses are often good at groundness propagation ��
� 	�
� A knowl�
edge of groundness can improve sharing and vice versa� A synergistic relationship

�� New address
 The Computing Laboratory� The University of Kent� Canterbury�
CT� �LX� UK�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


also exists between sharing and type analysis� Type analysis deduces structural
properties of aggregate data� By keeping track of type information� that is infer�
ring structural properties of substitutions� it is possible to infer more accurate
sharing information� Conversely� more accurate type information can be deduced
if sharing is traced�

Type information is often applied by combining sharing and freeness analy�
sis �	�� �� 	�
 or by tracing linearity �		� �
� Freeness information di�erentiates
between a free variable� a variable which is de�nitely not bound to non�variable
term� and a non�free variable� a variable which is possibly bound to a non�variable
term� Freeness information is useful in its own right� in fact it is essential in the
detection of non�strict and�parallelism ���
� A more general notion than freeness
is linearity �		� �
� Linearity relates to the number of times a variable occurs in
a term� A term is linear if it de�nitely does not contain multiple occurrences
of a variable� otherwise it is non�linear� Without exploiting linearity �or free�
ness�� analyses have to assume that aliasing is transitive ��
� The signi�cance
of linearity is that the uni�cation of linear terms only yields restricted forms of
aliasing� Thus� if terms can be inferred to be linear� worst case aliasing need not
be assumed in an analysis�

Sharing analyses can be used in isolation� but an increasing trend is to com�
bine domains and analyses to improve accuracy ��
� For example� the pair�sharing
domain of S�ndergaard �		� �
� tracks linearity but is not so precise at propagat�
ing groundness information� Conversely� sharing group domains ��
� 	�
 accu�
rately characterise groundness but do not exploit linearity� The rationale behind
��
� therefore� is to run multiple analyses in lock step� At each step� the shar�
ing information from di�erent analyses is compared and used to improve the
precision� For instance� the linearity of the S�ndergaard domain �		� �
 can be
used to prune out spurious aliasing in the sharing group analysis ��
� 	�
� and
the groundness information of the Jacobs and Langen domain can be used to
remove redundant aliasing in the S�ndergaard analysis�

This paper develops the combined domain theme by explaining how the lin�
earity of the the S�ndergaard domain �		� �
 can be represented in the sharing
group format of the Jacobs and Langen domain ��
� 	�
� This enables both
aliasing behaviour to be precisely captured� and groundness information to be
accurately propagated� in a single coherent domain and analysis� This is not an
exercise in aesthetics but has a number of important and practical implications�

�� By embedding linearity into sharing groups� the classic notion of linearity
�		� �
 can be re�ned� Speci�cally� if a variable is bound to a non�linear term�
it is still possible to di�erentiate between which variables of the term occur
multiply in the term and which variables occur singly in the term� Put an�
other way� the abstraction proposed in this paper records why a variable
binding is potentially non�linear� rather than merely indicating that it is
possibly non�linear� Previously� the variable would simply be categorised as
non�linear� and worst�case aliasing assumed� The re�ned notion of linearity
permits more accurate aliasing information to be squeezed out of the analy�
sis� This can� in turn� potentially identify more opportunities for parallelism



and optimisation�
	� Tracking aliasing more accurately can also improve the e�ciency of the anal�

ysis ��
� Possible aliases are recorded and manipulated in a data structure
formed from sharing groups� As the set of possible aliases is inferred more ac�
curately� so the set becomes smaller� and thus the number of sharing groups
is reduced� The size of the data structures used in the analysis are therefore
pruned� and consequently� analysis can proceed more quickly�
Moreover� the sharing abstractions de�ned in this paper are described in
terms of a single domain and manipulated by a single analysis� This is sig�
ni�cant because� unlike the multiple analyses approach ��
� it avoids the
duplication of abstract interpretation machinery and therefore simpli�es the
analysis� In practical terms� this is likely to further speedup the analysis ��	
�
Furthermore� the closure under union operation implicit in the analyses of
��
� 	�
 has exponential time� and space�complexity in the number of sharing
groups� It is therefore important to limit its use� In this paper� an analog of
closure under union operation is employed� but is only applied very conser�
vatively to a restricted subset of the set of sharing groups� This is also likely
to contribute to faster analysis�

�� Errors and omissions have been reported �
� �
 in some of the more recent
proposals for improving sharing analysis with type information �	�� �� 	�
�
Although the problems relate to unusual or rare cases� and typically the
analyses can be corrected� these highlight that analyses are often sophisti�
cated� subtle and di�cult to get right� Thus� formal proof of correctness is
useful� indeed necessary� to instill con�dence� For the analysis described in
this paper� safety has been formally proved� In more pragmatic terms this
means that the implementor can trust the results given by the analysis�

The exposition is structured as follows� Section 	 describes the notation and
preliminary de�nitions which will be used throughout� Also� linearity is for�
mally introduced and its signi�cance for aliasing is explained� In section �� the
focus is on abstracting data� A novel abstraction for substitutions is proposed
which elegantly and expressively captures both linear and sharing properties of
substitutions� In section 
� the emphasis changes to abstracting operations� Ab�
stract analogs for renaming� uni�cation� composition and restriction are de�ned
in terms of an abstract unify operator ��

� An abstract uni�cation algorithm
is precisely and succinctly de�ned which� in turn� describes an abstract ana�
log of unify� �Once an abstract unify operator is speci�ed and proved safe�
a complete and correct abstract interpreter is practically de�ned by virtue of
existing abstract interpretation frameworks ��� ��� 	�
�� Finally� sections � and
� present the related work and the concluding discussion� For reasons of brevity
and continuity� proofs are not included in the paper� but can be found in ���
�

� Notation and preliminaries

To introduce the analysis some notation and preliminary de�nitions are required�
The reader is assumed to be familiar with the standard constructs used in logic



programming ���
 such as a universe of all variables �u� v ��Uvar� the set of
terms �t ��Term formed from the set of functors �f� g� h ��Func �of the �rst�
order language underlying the program�� and the set of program atoms Atom�
It is convenient to denote f�t�� � � � � tn� by �n and f ��t��� � � � � t

�
n� by � �n� Also let

�� � f and � �� � f �� Let Pvar denote a �nite set of program variables � the
variables that are in the text of the program� and let var�o� denote the set of
variables in a syntactic object o�

��� Substitutions

A substitution � is a total mapping � � Uvar � Term such that its domain
dom��� � fu � Uvar j��u� �� ug is �nite� The application of a substitution
� to a variable u is denoted by ��u�� Thus the codomain is give by cod��� �
�u�dom���var���u��� A substitution � is sometimes represented as a �nite set
of variable and term pairs fu �� ��u� ju � dom���g� The identity mapping on
Uvar is called the empty substitution and is denoted by �� Substitutions� sets
of substitutions� and the set of substitutions are denoted by lower�case Greek
letters� upper�case Greek letters� and Subst�

Substitutions are extended in the usual way from variables to functions� from
functions to terms� and from terms to atoms� The restriction of a substitution �
to a set of variables U � Uvar and the composition of two substitutions � and
�� are denoted by � � U and � �� respectively� and de�ned so that �� ����u� �
����u��� The preorder Subst �v�� � is more general than �� is de�ned by� � v �
if and only if there exists a substitution � � Subst such that � � � � �� The
preorder induces an equivalence relation � on Subst� that is� � � � if and only
if � v � and � v �� The equivalence relation � identi�es substitutions with
consistently renamed codomain variables which� in turn� factors Subst to give
the poset Subst	� �v� de�ned by� ��
� v ��
� if and only if � v ��

��� Equations and most general uni�ers

An equation is an equality constraint of the form a � b where a and b are terms
or atoms� Let �e ��Eqn denote the set of �nite sets of equations� The equation
set feg�E� following ��
� is abbreviated by e �E� The set of most general uni�ers
of E� mgu�E�� is de�ned operationally ��

 in terms of a predicate mgu� The
predicate mgu�E� �� which is true if � is a most general uni�er of E�

De�nition� mgu� The set of most general uni�ers mgu�E� � 
�Subst� is de�
�ned by� mgu�E� � f� jmgu�E� ��g where

mgu�	� ��
mgu�v � v� �E� �� if mgu�E� �� 
 v � v�

mgu�v � v� �E� � � �� if mgu���E�� ��
 v �� v� 
 � � fv �� v�g
mgu�v � v� �E� � � �� if mgu���E�� ��
 v �� v� 
 � � fv� �� vg
mgu�v � �n �E� � � �� if mgu���E�� ��
 v �� var��n� 
 � � fv �� �ng
mgu��n � v �E� � � �� if mgu���E�� ��
 v �� var��n� 
 � � fv �� �ng
mgu��n � � �n �E� �� if mgu�t� � t�� � � � �� tn � t�n �E� �� 
 f � f �



By induction it follows that dom���� cod��� � 	 if � � mgu�E�� or put another
way� that the most general uni�ers are idempotent ���
�

Following ��

� the semantics of a logic program is formulated in terms of
a single unify operator� To construct unify� and speci�cally to rename apart
program variables� an invertible substitution ���
� 
 � is introduced� It is conve�
nient to let Rvar � Uvar denote a set of renaming variables that cannot occur
in programs� that is Pvar �Rvar � 	� and suppose that 
 � Pvar� Rvar�

De�nition� unify� The partial mapping unify � Atom
 Subst	�
 Atom

Subst	� � Subst	� is de�ned by�

unify�a� ��
�� b� ��
�� � ��� � �� � Pvar
� where � � mgu�f��a� � 
 ���b��g�

To approximate the unify operation it is convenient to introduce a collect�
ing semantics� concerned with sets of substitutions� to record the substitutions
that occur at various program points� In the collecting semantics interpreta�
tion� unify is extended to unifyc � which manipulates �possibly in�nite� sets of
substitutions�

De�nition� unifyc � The mapping unifyc � Atom 
 
�Subst	�� 
 Atom 


�Subst	�� � 
�Subst	�� is de�ned by�

unifyc�a� �� b� � � � f��
� j ��
� � � 
 ��
� � � 
 ��
� � unify�a� ��
�� b� ��
��g

��� Linearity and substitutions

To be more precise about linearity� it is necessary to introduce the variable
multiplicity of a term t� denoted ��t��

De�nition� variable multiplicity� � �	
� The variable multiplicity operator
� � Term � f�� �� 	g is de�ned by�

��t� � max�f�u�t� ju � Uvarg� where �u�t� �

��
�
� if u does not occur in t
� if u occurs only once in t
	 if u occurs many times in t

If ��t� � �� t is ground� if ��t� � �� t is linear� and if ��t� � 	� t is non�linear�
The signi�cance of linearity is that the uni�cation of linear terms only yields
restricted forms of aliasing� Lemma � states some of the restrictions on a most
general uni�er which follow from uni�cation with a linear term�

Lemma	� ��b� �� 	 
 var�a� � var�b� � 	 
 � � mgu�fa � bg� �

�� �u � Uvar � ����u�� � 	 � u � var�b�
�� �u� u� � Uvar � u �� u� 
 var���u�� � var���u��� �� 	 � u �� var�a� � u� ��

var�a��
�� �u�� u�� � var�b� � u� �� u��
w � var���u����var���u���� � �u � var�a�� �u�a�

� 	 
w � var���u��



Application of lemma � is illustrated in example ��

Example �� Note that � � mgu�ff�u� v� v� � f�x� y� z�g� where � � fv �� y�
x �� u� z �� yg� ��f�x� y� z�� �� 	 and that f�u� v� v� and f�x� y� z� do not share
variables� Observe that

�� The variables u and v of f�u� v� v� remain linear after uni�cation� that is�
����u�� � � and ����v�� � �� as predicted by case � of lemma ��

	� The variables of f�u� v� v�� speci�cally u and v� remain unaliased after uni�
�cation� Indeed� case 	 of lemma � asserts that since u� v � var�f�u� v� v���
var���u�� � var���v�� � 	�

�� Informally� case � of lemma � states that the aliasing which occurs between
the variables of f�x� y� z�� is induced by a variable of f�u� v� v� which has a
multiplicity of 	� For instance� y � var���y�� � var���z�� with �v�f�u� v� v��
� 	 and y � var���v���

Lemma � di�ers from the corresponding lemma in ��
 �lemma 	�	� in two ways�
First� lemma � requires that a and b do not share variables� This is essentially a
work�around for a subtle mistake in lemma 	�	 ��
� Second� lemma � additionally
states that a variable which only occurs once in a can only be aliased to one
variable in b� This observation permits linearity to be exploited further than in
the original proposals for tracking sharing with linearity �		� �
 by putting a
tighter constraint of the form of aliasing that occurs on uni�cation with a linear
term� The proof for lemma � follows by induction on the steps of the uni�cation
algorithm�

� Abstracting substitutions

Sharing analysis is primarily concerned with characterising the sharing e�ects
that can arise among program variables� Correspondingly� abstract substitutions
are formulated in terms of sharing groups ��

 which represent which program
variables share variables� Formally� an abstract substitution is structured as a
set of sharing groups where a sharing group is a �possibly empty� set of program
variable and linearity pairs�

De�nition� Occ
Svar

� The set of sharing groups� �o ��Occ
Svar

is de�ned by�

Occ
Svar

� fo � 
�Svar 
 f�� 	g� j �u � Svar � hu� �i �� o � hu� 	i �� og

Svar is a �nite set of program variables� The intuition is that a sharing group
records which program variables are bound to terms that share a variable� Ad�
ditionally� a sharing group expresses how many times the shared variable occurs
in the terms to which the program variables are bound� Speci�cally� a program
variable is paired with � if it is bound to a term in which the shared variable
only occurs once� The variable is paired with 	 if it can be bound to a term in
which the shared variable occurs possibly many times� The �niteness of Occ

Svar

follows from the �niteness of Svar� �Svar usually corresponds to Pvar� the set of



program variables� It is necessary to parameterise Occ� however� so that abstract
substitutions are well�de�ned under renaming by 
 � Then Svar � Rvar��

The precise notion of abstraction is �rst de�ned for a single substitution via
lin and then� by lifting lin� generalised to sets of substitutions�

De�nition� occ and lin� The abstraction mappings occ � Uvar 
 Subst �
Occ

Svar
and lin � Subst	� � 
�Occ

Svar
� are de�ned by�

occ�u� �� � fhv� �u���v��i ju � var���v�� 
 v � Svarg

lin���
�� � focc�u� �� ju � Uvarg

The mapping lin is well�de�ned since lin���
�� � lin���
�� if � � �� The map�
ping occ is de�ned in terms of Svar because� for the purposes of analysis� the
only signi�cant bindings are those which relate to the program variables �and
renamed program variables�� Note that 	 � lin���
�� since the codomain of a
substitution is always �nite�

The abstraction lin is analogous to the abstraction A used in �	�
 and im�
plicit in ��

� Both abstractions are formulated in terms of sharing groups� The
crucial di�erence is that lin� as well as expressing sharing� additionally represents
linearity information�

Example �� Suppose Svar � fu� v� w� x� y� zg and � � fu �� u�� w �� v� x �� f �
y �� g�u�� u�� u��� z �� h�u�� u�� u��g then

lin���
�� � f	� occ�u�� ��� occ�u�� ��� occ�u�� ��� occ�v� ��g �

f	� fhu� �i� hy� �ig� fhy� 	i� hz� �ig�fhz� 	ig� fhv� �i� hw��igg

since occ�w� �� � occ�x� �� � occ�y� �� � occ�z� �� � 	� The salient properties of
�� namely sharing� groundness and linearity� are all captured by lin���
��� The
variables of Svar which � ground� do not appear in lin���
��� and the variables of
Svar which are independent �unaliased�� never occur in the same sharing group
of lin���
��� Thus lin���
�� indicates that x is ground and that� for example� v
and y are independent� Additionally� lin���
�� captures the fact that grounding
either v or w grounds the other� Or� put another way� that v and w are strongly
coupled �	�
�

Linearity is also represented and lin���
�� indicates that ����x�� � �� ����u��
� ����v�� � ����w�� � �� and ����y�� � ����z�� � 	� It is evident that ����w��
� �� for instance� since �v���w�� � � and �u���w�� �� 	 for all u � Uvar� Specif�
ically� hw� �i � occ�v� �� and hw� 	i �� occ�u� �� for all u � Uvar� The subtlety
is that the domain represents variable multiplicity information slightly more ac�
curately than the S�ndergaard domain �		� �
� Note that although ����y�� �
	 and y is aliased to both u and z� lin���
�� indicates that the variable that
occurs through u and y �namely u�� occurs only once in ��y� whereas the vari�
able through y and z �that is to say u�� occurs multiply in ��y�� This can be
exploited to gain more precise analysis�



The abstract domain� the set of abstract substitutions� is de�ned below using
the convention that abstractions of concrete objects and operations are distin�
guished with a � from the corresponding concrete object or operation�

De�nition
 Subst�
Svar

� The set of abstract substitutions� Subst�
Svar

� is de�ned
by� Subst�

Svar
� 
�Occ

Svar
��

Like previous sharing groups domains ��
� 	�
� Subst�
Svar

��� is a �nite lattice
with set union as the lub� Subst�

Svar
is �nite since Occ

Svar
is �nite�

The lin abstraction naturally lifts to sets of substitutions� but to de�ne con�
cretisation� the notion of approximation implicit in linearity �speci�cally in the
denotations � and 	� must be formalised� In the abstraction� a program variable
is paired with � if it is de�nitely bound to a term in which the shared variable
only occurs once� and is paired with 	 if it can possibly be bound to a term in
which the shared variable occurs multiply� This induces the poset Occ

Svar
���

de�ned by� o � o� if and only if var�o� � var�o�� and for all hu�mi � o there ex�
ists hu�m�i � o� such that m � m�� The poset lifts to the preorder Subst�

Svar
���

by� �� � ��� if and only if for all o � �� there exists o� � ��� such that o � o��

De�nition� �lin and �lin� The abstraction and concretisation mappings�lin �

�Subst	�� � Subst�

Svar
and �lin � Subst�

Svar
� 
�Subst	�� are de�ned by�

�lin��� � �������lin���
��� �lin���� � f��
� � Subst	� j lin���
�� � ��g

The structure of �lin and �lin mirrors that of the abstraction and concretisation
operations found in ��
� 	�
�

As illustrated in example 	� the lin abstraction can encode the variable mul�
tiplicity of a substitution� More signi�cantly� if � � �lin����� the variable multi�
plicity of ��t� can be �partially� deduced from t and �� � The precise relationship
between ����t�� and t and �� is formalised in de�nition �� and lemma ��� with
an analog of �� denoted �� �

De�nition�� �� � The abstract variable multiplicity operator �� � Term 

Occ

Svar
� f�� �� 	g is de�ned by�

�� �t� o� �

������
�����

� if � v � var�o� � �v�t� � �
	 if � v � var�o� � �v�t� � 	
	 if � v� v� � var�t� � v� v� � var�o� 
 v �� v�

	 if � v � var�t� � hv� 	i � o
� otherwise

Lemma���

var�t� � Svar 
 occ�u� �� � o� �u���t�� � �� �t� o�

To conservatively calculate the variable multiplicity of a term t in the context of
a set of substitutions represented by �� � the sharing group operator �� is lifted
to abstract substitutions via ln and nl�



De�nition�� ln and nl� The mappings ln � Term 
 Subst�
Svar

� Subst�
Svar

and nl � Term 
 Subst�
Svar

� Subst�
Svar

are de�ned by�

ln�t� ��� � fo � �� j���t� o� � �g� nl�t� ��� � fo � �� j���t� o� � 	g

The operators ln and nl essentially categorise �� into two sorts of sharing group�
sharing groups which describe aliasing for which ��t� is de�nitely linear� and
sharing groups which represent aliasing for which ��t� is possibly non�linear�
An immediate corollary of lemma ��� corollary ��� asserts that ��t� is linear if
nl�t� ��� is empty�

Corollary���

��
� � �lin��� � 
 var�t� � Svar 
 nl�t� ��� � 	 � ����t�� �� 	

The signi�cance of corollary �� is that it explains how by inspecting t and �� �
��t� can be inferred to be linear� thereby enabling linear instances of uni�cation
to be recognised�

� Abstracting uni�cation

The collecting version of the unify operator� unifyc � provides a basis for ab�
stracting the basic operations of logic programming by spelling out how to ma�
nipulate �possibly in�nite� sets of substitutions� The usefulness of the collecting
semantics as a form of program analysis� however� is negated by the fact that
it can lead to non�terminating computations� Therefore� in order to de�ne a
practical analyser it is necessary to �nitely abstract unifyc � To synthesise a
sharing analysis� an analog of unifyc� unify� � is introduced to manipulate sets
of substitutions following the abstraction scheme prescribed by �lin and �lin�

Just as unifyc is de�ned in terms of mgu� unify� is de�ned in terms of an
abstraction of mgu� mge� which traces the steps of the uni�cation algorithm�
The uni�cation algorithm takes as input� E� a set of uni�cation equations� E is
recursively transformed to a set of simpli�ed equations which assume the form
v � v� or v � �n� These simpli�ed equations are then solved� The equation
solver mge� adopts a similar strategy� but relegates the solution of the simpli�ed
equations to solve� The skeleton of the abstract equation solver mge is given
below in de�nition �
�

De�nition�� mge� The relation mge � Eqn
 Subst�
Svar


 Subst�
Svar

is de�ned
by�

mge�	� �� � ���
mge�v � v� �E� ��� �� � ifmge�E� �� � ���
 v � v�

mge�v � v� �E� ��� �� � ifmge�E� solve�v� v� � ���� �� �
 v �� v�

mge�v � �n �E� ��� �� � ifmge�E� solve�v� �n � ���� ���
 v �� var��n�
mge��n � v �E� ��� �� � ifmge�v � �n �E� ��� �� �
mge��n � � �n �E� ��� �� � ifmge�t� � t�� � � � �� tn � t�n �E� ��� �� �
 f � f �



To spare the need to de�ne an extra �composition� operator for abstract sub�
stitutions� mge is de�ned to abstract a variant of mgu� Speci�cally� if � �
mgu�f��a� � ��b�g�� ��
� � �lin����� and mge�fa � bg� �� � ���� then �� ab�
stracts the composition � � � �rather than ��� that is� �� � �
� � �lin��� ��

To de�ne solve� and thereby mge� a number of auxiliary operators are re�
quired� The �rst� denoted rl�t� ���� represents the sharing groups of �� which are
relevant to the term t� that is� those sharing groups of �� which share variables
with t�

De�nition�	 rl ���
� The mapping rl � Term
 Subst�
Svar

� Subst�
Svar

is de�
�ned by� rl�t� ��� � fo � �� j var�o� � var�t� �� 	g�

Note that rl�t� ��� � fo � �� j���t� o� �� �g and therefore rl�t� ��� � ln�t� ��� �
nl�t� ���� In ��

 the equivalent operator is denoted rel�

The second operator� t� is a technical device which is used to calculate
occ�u� � � �� from a set of sharing groups occ�w� �� for the variables w with u �
var���w��� Since occ�u� ���� � fhv� �u�����v��i ju � var�����v�� 
 v � Svarg�
observe that hv� �i � occ�u� ���� if a single variablew satis�es u � var���w�� and
additionally �w���v�� � � with �u���w�� � �� Otherwise hv� 	i � occ�u� � ��� if
there exist distinct variables w and w� for which u � var���w��� var���w���� or
�w���v�� � 	� or �u���w�� � 	� Thus hv�min��u�var���w��mv�w� 	�i � occ�u� ��
�� where mv�w � max��u���w��� �w���v���� The r�ole of the t operator is to com�
pute occ�u� � � �� by calculating the pairs hv�min��u�var���w��mv�w� 	�i given
mv�w for u � var���w���

De�nition�� t� The operator t � � 
�Occ
Svar

� � Occ
Svar

is de�ned by�

tw�W ow � fhv�min��hv�mv�wi�owmv�w� 	�i j v � �w�W var�ow�g

Although the motivation for t is technical� example � illustrates that the oper�
ator itself is straightforward to use and compute� Sometimes� for brevity� t is
written in�x�

Example �� Three examples of using the t operator are given below� �rst� fhu�
�i� hv� �i� hw� 	igtfhv� �i� hw� 	i� hx� 	i� hy� �ig � fhu� min��� 	�i� hv� min�����
	�i� hw� min�	 � 	� 	�i� hx� min�	� 	�i� hy� min��� 	�ig � fhu� �i� hv� 	i� hw� 	i�
hx� 	i� hy� �ig� second� 	 t 	 � 	� and third� tw��ow � 	�

Note that t is commutative and associative but is not idempotent� and specif�
ically� o t o � var�o� 
 f	g� Also observe that var�tw�W ow� � �w�W var�ow�
hinting at the fact that t generalises set union which is used to combine sharing
groups in the original sharing analyses ��
� 	�
�

In the conventional approach� worst�case aliasing is always assumed and a
closure under union operator is used to enumerate all the possible sharing groups
that can possibly arise in uni�cation ��
� 	�
� The t operator de�nes an analog of
closure under union� closure under t� denoted ��� and de�ned in de�nition ���



De�nition�� closure under t� �� The closure under t operator �� � Subst�
Svar

� Subst�
Svar

is de�ned by� ��� � �� � fo t o� j o� o� � ���g�

Closure under t is used more conservatively than the closure under union oper�
ator of ��
� 	�
 and is only invoked in the absence of useful linearity information�
An interesting consequence of Subst�

Svar
��� being a preorder �rather than a

poset�� is that equivalent ��� can have di�erent representations� For instance� if
�� � ffhu� �i� hv� 	igg� ��� � ffhu� �i� hv� 	ig� fhu� 	i� hv� 	igg but ��� � ��� �
��� where �� � ffhu� 	i� hv� 	igg and ��� � ffhu� 	i� hv� 	igg� Clearly ��� is
preferable to ���� and more generally� redundancy can be avoided in the calcu�
lation and representation of ��� by computing ��� with fvar�o�
f	g j o � ��g��

Finally� to achieve a succinct de�nition of the abstract equation solver� it is
useful to lift t to sets of sharing groups in the matter prescribed in de�nition ���

De�nition�
 �� The mapping �� � � Subst�
Svar


 Subst�
Svar

� Subst�
Svar

is
de�ned by� �� ���� � fo t o� j o � �� 
 o� � ���g�

The nub of the equation solver mge is solve� In essence� solve�v� t� �� � solves
the syntactic equation v � t in the presence of the abstract substitution �� �
returning the composition of the uni�er with �� � The di�erent cases of operator
solve apply di�erent analysis strategies corresponding to when ��v� is linear�
��t� is linear� both ��v� and ��t� are possibly non�linear� �If both ��v� and
��t� are linear� cases � and 	 coincide�� The default strategy corresponds to the
standard treatment of the abstract solver amgu of ��

�

De�nition�� solve� The abstract equation solver solve � Uvar 
 Term 

Subst�

Svar
� Subst�

Svar
is de�ned by�

solve�v� t� �� � � �� n �rl�v� ��� � rl�t� �����������
�����

�ln�v� ���� ln�t� ��� � � �ln�v� ���� �nl�t� ��� �
if nl�v� �� �� 	

ln�v� �� � � rl�t� ��� � 	

�ln�v� ���� ln�t� ��� � � �nl�v� ��� � ln�t� �����
if nl�t� ���� 	

ln�t� ��� � rl�v� �� � � 	

rl�v� ���� � rl�t� ���� otherwise

Note that �� � 	 � 	 and 	��� � 	 and in particular� for case � of solve� the
closure ln�v� ���� need not be calculated if nl�t� ��� � 	� Similarly� in case 	� if
nl�v� ��� � 	� ln�t� ���� need not be computed� The correctness of solve is as�
serted by lemma 	�� The justi�cation of lemma 	� relies on very weak properties
of substitutions� and speci�cally� only that a most general uni�er� if it exists� is
idempotent�

Lemma���

��
� � �lin���� 
 � � mgu�f��v� � ��t�g� 


fvg � var�t� � Svar 
 v �� var�t�� �� � �
� � �lin�solve�v� t� �� ��

The correctness of mge follows from lemma 	� and is stated as corollary 	��



Corollary ���

��
� � �lin��� � 
 � � mgu���E�� 


mge�E� �� � ��� 
 var�E� � Svar � �� � �
� � �lin����

It is convenient to regard mge as a mapping� that is� mge�E� �� � � �� if
mge�E� �� � ���� Strictly� it is necessary to show that mge�E� �� � ��� is deter�
ministic for mge�E� �� � to be well�de�ned� Like in ��
� the conjecture is that
mge yields a unique abstract substitution regardless of the order in which E is
solved� This conjecture� however� is only really of theoretical interest because all
that really matters is that any abstract substitution derived by mge is safe� This
is essentially what corollary 	� asserts�

To de�ne unify� � the �nite analog of unifyc � it is necessary to introduce an
abstract restriction operator� denoted ��� ��

De�nition�� abstract restriction� �� � The abstract restriction operator
� �� � � Subst�

Svar

 
�Uvar� � Subst�

Svar
is de�ned by� �� �� U � fo ��

U j o � ��g where o �� U � fhu�mi � o ju � Ug�

The de�nition of unify� is �nally given below� followed by the local safety the�
orem� theorem 	
�

De�nition�� unify� � The mapping unify� � Atom 
 Subst�
P var


 Atom 

Subst�

P var
� Subst�

Pvar
is de�ned by�

unify� �a� �� � b� ��� � mge�fa � 
 �b�g� �� � 
 ��� �� �� Pvar

Theorem�� local safety of unify� �

� � �lin���� 
 � � �lin��� � 


var�a� � var�b� � Pvar � unifyc�a� �� b� � � � �lin�unify� �a� �� � b� ����

Examples 
 and � demonstrate the precision in propagating groundness infor�
mation that the domain inherits from sharing groups� and accuracy that is addi�
tionally obtained by tracking linearity� Furthermore� example � illustrates that
the domain is more powerful than the sum of its parts� that is� it can trace lin�
earity and sharing better than is achievable by running the S�ndergaard �		� �

and sharing group analyses ��
� 	�
 together in lock step ��
� The examples also
comment on the e�ciency of the analysis�

Example � propagating groundness� The supremacy of the sharing group domains
over the S�ndergaard domain for propagating groundness information can be il�
lustrated by separately solving two equations� �rst� x � f�y� z� and second�
x � f�g� g�� Suppose Svar � fx� y� zg� To demonstrate the groundness propaga�
tion of sharing groups� let �� � f	� fhx� 	ig� fhy� 	ig� fhz� 	igg so that worst�case
linearity is assumed� Solving x � f�y� z� for �� yields

�� � solve�x� f�y� z�� �� � �

f	� fhx� 	i� hy� 	ig� fhx� 	i� hz� 	ig� fhx�	i� hy� 	i� hz� 	igg



Since x occurs in each �non�empty� sharing group of �� � grounding x must also
ground both y and z� and indeed �� � solve�x� f�g� g�� �� � � f	g� Furthermore�
�� indicates that y and z are independent� In contrast� the abstract uni�cation
algorithm proposed for the S�ndergaard domain ��
� cannot infer that x and y
are grounded or independent�

Example � tracking linearity� Suppose E � fx � u� y � f�u� v�� z � vg and con�
sider the abstraction ofmgu�E� and speci�cally the calculationmge�E� lin���
����
Assuming Svar � fu� v� x� y� zg� dubbing �� � lin���
�� � f	� fhu� �ig� fhv� �ig�
fhx� �ig� fhy� �ig� fhz� �igg� and solving the equations left�to�right

�� � solve�x� u� �� � � f	� fhu� �i� hx� �ig� fhv� �ig� fhy� �ig�fhz� �igg
�� � solve�y� f�u� v�� �� �� f	� fhu� �i� hx� �i� hy� �ig� fhv� �i� hy� �ig�fhz� �igg
�� � solve�z� v� �� � � f	� fhu� �i� hx� �i� hy� �ig� fhv� �i� hy� �i� hz��igg

Therefore �� � mge�E� �� � and indeed � � fx �� u� y �� f�u� v�� z �� vg �
mgu�E� with ��
� � �lin��� �� Without exploiting linearity �or freeness�� the
sharing group analyses of ��
� 	�
 have to include an additional sharing group
fu� v� x� y� zg for possible aliasing between u and v �and x and z�� Tracking
linearity strengthens the analysis� allowing it to deduce that u and v �and x
and z� are de�nitely not aliased� Note also that the size of the data structure
�the abstract substitution �� � is pruned from 
 to � sharing groups and that� in
contrast to the analyses of ��
� 	�
� the calculation of a closure is avoided�

Example 	 re
ned sharing and linearity� The domain re�nes the way linearity
information is recorded and in particular the analysis can di�erentiate between
which variables can occur multiply in a term �or binding� and which vari�
ables always occur singly in a term �or binding�� For instance� consider the
set of substitutions � � f��
�� ���
�g where � � fx �� f�u� v�g and �� �
fx �� f�w�w�g� � represents two possible bindings for x� In the �rst� ��x�
is linear� whereas in the second� ���x� is non�linear� This is re�ected in �� �
�lin��� � lin���
�� � lin����
��� and speci�cally� if Svar � fu� v� w� x� y� zg

�� � f	� fhu� �i� hx� �ig� fhv� �i� hx��ig� fhw� �i� hx�	ig� fhy� �ig� fhz��igg

The abstraction �� indicates that u and v never occur more than once through
��x� and ���x�� and that w can occur multiply through ��x� or ���x�� Informally�
the abstraction records why x is possibly non�linear� This� in turn� can lead to
improved precision and e�ciency� as is illustrated by the calculation ofmge�fx �
f�y� z�� w � gg� ���� Again� solving the equations left�to�right

�� � solve�x� f�y� z�� �� �� f	�fhu� �i� hx� �i� hy� �ig� fhu��i� hx� �i� hz� �ig�
fhv� �i� hx� �i� hy� �ig� fhv� �i� hx��i� hz��ig�
fhw� �i� hx� 	i� hy� 	ig� fhw��i� hx� 	i� hz� 	ig�
fhw� �i� hx� 	i� hy� 	i� hz� 	igg

�� � solve�w� g� �� � � f	�fhu� �i� hx� �i� hy� �ig� fhu��i� hx� �i� hz� �ig�
fhv� �i� hx� �i� hy� �ig� fhv� �i� hx��i� hz��igg



In terms of precision� linearity is still exploited for u and v� even though worst�
case aliasing has to be assumed for w� Consequently� on grounding w� u and v
�and y and z� become independent� The S�ndergaard domain� however� cannot
resolve linearity to the same degree of accuracy and therefore the analysis of ��

cannot infer u and v �and y and z� become unaliased� Also� the combined domains
approach ��
 does not help� since the precision comes from restructuring the
domain� In terms of e�ciency� observe that although the closure of ln�f�y� z�� ���
is computed� the number of sharing groups in �� is kept low by only combining
ln�f�y� z�� �� �� with nl�x� ��� �rather than with rl�x� �����

The extra expressiveness of the domain is not con�ned to abstracting multiple
substitutions� If � � fx �� f�u� v� w�w�g and �� � lin���
��� for instance�

�� � f	� fhu� �i� hx� �ig� fhv� �i� hx��ig�fhw� �i� hx�	ig�fhy� �ig� fhz� �igg

so that �� is structurally identical to �� � Although omitted for brevity� the
calculation mge�fx � f�y�� y�� y�� y	�� w � gg� ��� deduces that yi and yj �for
i �� j� become independent after w is grounded� This� again� cannot be inferred
in terms of the S�ndergaard domain�

� Related work

Recently� four interesting proposals for computing accurate sharing information
have been put forward in the literature� In the �rst proposal ��
� domains and
analyses are combined to improve accuracy� This paper develops this theme and
explores the virtues of fusing linearity with sharing groups� In short� this paper
explains how accuracy and e�ciency can be further improved by restructuring
a combined domain as a single domain�

In the second proposal �

� the correctness of freeness analyses is considered�
An abstract uni�cation algorithm is proposed as a basis for constructing accu�
rate freeness analyses with a domain formulated in terms of abstract equations�
Safety follows because the abstract algorithm mimics the solved form algorithm
in an intuitive way� Correctness is established likewise here� The essential distinc�
tion between the two works is that this paper tracks groundness and linearity�
Consequently� the approach presented here can derive more accurate sharing in�
formation� Also� as pointed out in �	
� �it is doubtful whether it �the abstract
uni�cation algorithm of �

� can be the basis for a very e�cient analysis�� The
analysis presented here� on the other hand� is designed to be e�cient�

Very recently� in the third proposal �	
� an analysis for sharing� groundness�
linearity and freeness is formalised as a transition system which reduces a set of
abstract equations to an abstract solved form� Sharing is represented in a sharing
group fashion with variables enriched with linearity and freeness information by
an annotation mapping� The domain� however� essentially adopts the Jacobs and
Langen ��

 structure� Consequently the analysis cannot always derive sharing as
accurately as the analysis reported here� Moreover� the use of a tightly�coupled
domain seems to simplify some of the analysis machinery� For instance� the notion
of abstraction introduced in this paper is more succinct than the equivalent



de�nition in �	
� This simplicity seems to stem from the fact the domain is an
elegant and natural generalisation of sharing groups ��

� Also� the analysis of
�	
 has not� as yet� been proved correct�

Fourthly� a referee pointed out a freeness analysis which also tracks linearity
to avoid the calculation of closures in sharing groups ���
� Interestingly� ���
 seems
to adopt a conventional notion of linearity� rather than embedding linearity into
sharing groups in the useful way that is described in this paper�

To be fair� however� the analyses of ���� 
� 	
 do infer freeness� This can be
useful ���
� Although freeness information is not derived in this paper� it seems
that freeness can be embedded into sharing groups in a similar way to linearity�
What is more� if freeness is recorded this way� it can be used to improve sharing
beyond what is achievable by just tracing linearity� This is unusual� contrasts to
�	
� and is further evidence for the usefulness of restructuring sharing groups�

� Conclusions

A powerful� formally justi�ed and potentially e�cient analysis has been pre�
sented for inferring de�nite groundness and possible sharing between the vari�
ables of a logic program� The analysis builds on the combined domain approach
��
 by elegantly representing linearity information in a sharing group format�
By revising sharing groups to capture linearity� a single coherent domain and
analysis has been formulated which more precisely captures aliasing behaviour�
propagates groundness information with greater accuracy� and in addition� a
yields a more re�ned notion of linearity� In more pragmatic terms� the analysis
permits aliasing and groundness to be inferred to a higher degree of accuracy
than in previous proposals� The analysis is signi�cant because sharing informa�
tion underpins many optimisations in logic programming�

Acknowledgements

Thanks are due to Manuel Hermenegildo and Dennis Dams for useful discussions
on linearity� This work was supported by ESPRIT project ������ �ParForce��

References


� M� Bruynooghe� A practical framework for the abstract interpretation of logic
programs� J� Logic Programming� 
�
�
�
��� 
��
�

�� M� Bruynooghe and M� Codish� Freeness� sharing� linearity and correctness � all
at once� In WSA���� pages 
���
��� September 
����

�� J��H� Chang and A� M� Despain� Semi�intelligent backtracking of prolog based
static data dependency analysis� In JICSLP���� IEEE Computer Society� 
����

�� M� Codish� D� Dams� G� Fil�e� and M� Bruynooghe� Freeness analysis for logic pro�
grams � and correctness� In ICLP���� pages 

��
�
� MIT Press� June 
����



�� M� Codish� D� Dams� and E� Yardeni� Derivation and safety of an abstract uni	�
cation algorithm for groundness and aliasing analysis� In ICLP���� pages ������
Paris� France� 
��
� MIT Press�

�� M� Codish� A� Mulkers� M� Bruynooghe� M� J� Garc��a de la Banda� and
M� Hermenegildo� Improving abstract interpretation by combining domains� In
PEPM���� ACM Press� 
����

�� A� Cortesi and G� Fil�e� Abstract interpretation of logic programs
 an abstract
domain for groundness� sharing� freeness and compoundness analysis� In PEPM����
pages ����
� ACM Press� 
��
�

�� P� Cousot and R� Cousot� Abstract interpretation
 A uni	ed lattice model for
static analysis of programs by construction or approximation of 	xpoints� In
POPL�		� pages �������� ACM Press� 
����

�� D� Dams� Personal communication on linearity lemma ���� July� 
����

�� S� K� Debray� Static inference of modes and data dependencies in logic programs�

ACM TOPLAS� 

���
�
������ July 
����


� W� Hans and S� Winkler� Aliasing and groundness analysis of logic programs

through abstract interpretation and its safety� Technical Report Nr� ������ RWTH
Aachen� Lehrstuhl f�ur Informatik II Ahornstra�e ��� W��
�� Aachen� 
����


�� M� Hermenegildo� Personal communication on freeness analysis� May� 
����

�� M� Hermenegildo and F� Rossi� Non�strict independent and�parallelism� In

ICLP��
� pages �������� Jerusalem� 
���� MIT Press�

�� D� Jacobs and A� Langen� Static Analysis of Logic Programs� J� Logic Program�

ming� pages 
����
�� 
����

�� A� King� A new twist to linearity� Technical Report CSTR ���
�� Department of

Electronics and Computer Science� Southampton University� Southampton� 
����

�� J� Lassez� M� J� Maher� and K� Marriott� Foundations of Deductive Databases and

Logic Programming� chapter Uni	cation Revisited� Morgan Kaufmann� 
����

�� B� Le Charlier� K� Musumbu� and P� Van Hentenryck� A generic abstract interpre�

tation algorithm and its complexity� In ICLP���� pages ������ MIT Press� 
��
�

�� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� 
����

�� K� Marriott and H� S�ndergaard� Analysis of constraint logic programs� In NA�

CLP��
� pages ��
����� MIT Press� 
����
��� K� Muthukumar and M� Hermenegildo� Combined determination of sharing and

freeness of program variables through abstract interpretation� In ICLP���� pages
������ Paris� France� 
��
� MIT Press�

�
� K� Muthukumar and M� Hermenegildo� Compile�time derivation of variable depen�
dency through abstract interpretation� J� of Logic Programming� pages �
������

����

��� H� S�ndergaard� An application of the abstract interpretation of logic programs

occur�check reduction� In ESOP���� pages �������� Springer�Verlag� 
����

��� R� Sundararajan and J� Conery� An abstract interpretation scheme for groundness�
freeness� and sharing analysis of logic programs� In �
th FST and TCS Conference�
New Delhi� India� December 
���� Springer�Verlag�

��� A� Taylor� High Performance Prolog Implementation� PhD thesis� Basser Depart�
ment of Computer Science� Sydney� Australia� July 
��
�

��� H� Xia� Analyzing Data Dependencies� Detecting And�Parallelism and Optimizing

Backtracking in Prolog Programs� PhD thesis� University of Berlin� April 
����

This article was processed using the LaTEX macro package with LLNCS style


