
Encapsulation and Aggregation

Stuart Kent and Ian Maung*

Department of Computing
University of Brighton BN2 4GJ

England

Stuart.Kent@brighton.ac.uk, Ian.Maung@dcs.warwick.ac.uk

* Now with: Department of Computer Science, University of Warwick, Coventry CV4 7AL, England.

Abstract
A notion of object ownership is
introduced as a solution to difficult
problems of specifying and reasoning
about complex linked structures and of
modeling aggregates (composite objects).
Syntax and semantics are provided for
extending Eiffel with language support for
object ownership annotation and checking.
The ideas also apply to other OOPLs such
as C++.

1. Overview

In section 2, we analyse the requirements
of a mechanism for implementing the
components of an aggregation or
composite object, and we evaluate the
extent to which the techniques of
inheritance, expanded type attributes,
reference type attributes and selective
export satisfy these requirements. We
restrict consideration to examples of
composite objects from the solution
(programming) domain. In section 3, we
propose the use of reference type
attributes with ownership properties to
implement components and propose a
syntax and semantics for object
ownership. Section 4 shows how object
ownership can be used in the natural
modelling of aggregation structures
identified in the problem domain. Section
5 discusses related work and section 6
concludes with a summary of
contributions and issues for further
investigation.

1.1 Terminology
We adopt the Eiffel terminology for OO
systems [Meyer 88,92] throughout this
article.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Implementing Components of an
Aggregation

We study two important examples of
composite object classes from the
EiffelBase1 (data structure) class library to
motivate a list of requirements for a
mechanism for implementing the
components of a composite object.

2.1 Stacks with Array
representation
Consider an implementation of the stack
ADT using an array to represent the
contents of the stack. A stack object is
thus a composite object with a component
array object. In Eiffel, there are at least
three reasonable ways to implement this:

1. Define ARRAY_STACK[T] as an heir
of ARRAY[T] and hide (make secret)
all the exported features of ARRAY[T]
from clients of ARRAY_STACK[T].
(see [Meyer 94] 3.10.4, p.111)

2. Define a secret attribute, rep :
ARRAY[T] in ARRAY_STACK[T].
([Meyer 88]p.118-119)

3. Define an attribute, rep : expanded
ARRAY[T] in ARRAY_STACK[T]
(see [Meyer 92]p.204-205).

If the last option is used and rep is not a
secret attribute then clients of
ARRAY_STACK can access its complete
internal state, ignoring the LIFO property.
This violates information hiding but not
encapsulation, since assignment for
expanded entities is field-by-field copy
and thus a client can only tamper with a
copy of the internal representation of the
stack, not the representation itself.

The concepts of encapsulation and
information hiding are of fundamental

1Note that we are not modelling container (data
structure) objects as aggregates of the objects
they contain. In the two examples given, a
stack is an aggregate with an array component
object, and a linked list is an aggregate with its
linkable cells (but not its elements) as
components.

importance to this discussion, but
unfortunately (as with much OO
terminology) they do not have a
universally accepted meaning. For our
purposes, the following definitions will
suffice:
• Encapsulation means that the

components of a composite object
cannot be modified except by feature
calls to the composite object, or by
calls from the composite object to its
components. Encapsulation limits and
controls aliasing and interference,
thereby simplifying reasoning about
and understanding object systems.

• Information hiding means that the
components of a composite and their
states cannot be accessed by clients.
Information hiding limits and controls
the dependence of clients on the
supplier (composite object) internal
representation, thereby localizing the
effects of changing this representation
during system maintenance.

In fact, the last option is not available in
Eiffel since ARRAY has a creation
procedure with an argument, violating a
validity rule of Eiffel [Meyer 92] p. 284.
This also overloads the meaning of
expanded types, which (we believe)
should be used to implement value types
[Kent 95, Cook 94], such as the basic
types INTEGER and BOOLEAN and
other obvious value types such as
PAIR[T1,T2] and other tuple types.

If the second option is used then it is
possible for the encapsulation of
ARRAY_STACK instances to be violated
e.g. by defining an exported feature,
expose, that returns a reference to the
object attached to rep. Of course, it is
fairly unlikely that the designer of
ARRAY_STACK would provide such a
feature. However, a distant descendant of
ARRAY_STACK might introduce such a
feature, without its designer realizing the
implications. This means that assumptions
that clients of ARRAY_STACK may be
relying upon can be invalidated by
descendant instances, when polymorphism
is exploited.

If the first option is used, then inheritance
has been used for code reuse and ARRAY
entities should not be polymorphically
attached to ARRAY_STACK entities
(because ARRAY_STACKs hide some
ARRAY features to prevent encapsulation
violation and allow information hiding).
This overloads the meaning of the
inheritance relation, which in Eiffel,
defines that a child should conform to its
parents, and thus makes type-checking
much more complicated [Meyer
92]Chapter 22.

If we require a number of alternative
implementations of stacks e.g. stacks
implemented using linked lists or arrays,
then using inheritance we must introduce
classes LINKED_STACK[T] and
ARRAY_STACK[T] etc. inheriting their
representation from LINKED_LIST[T]
and ARRAY[T] respectively.
Alternatively, we might try using a
reference of deferred type,
SEQUENCE[T], and we can use
polymorphism to allow this attribute to be
attached to an object of type
LINKED_LIST[T] or ARRAY[T] at run-
time. This is again not possible for the
approach of using an attribute of expanded
type, since expanded types cannot be
deferred, and entities of expanded type are
non-polymorphic. It is also likely that
problem domain aggregations will have
components of deferred or polymorphic
type (see Section 4 for an example).

2.2 Linked list

For the purposes of this discussion, we
assume the interface and implementation
of LINKED_LIST from EiffelBase. A
rationale for the interface design is given
in [Meyer 88] Chapter 9, while
implementation details are discussed in
[Meyer 94] section 6.6.

A linked list (see Figure 1) can be
modelled as an aggregation of its linkable
elements. For linkable cells, neither the
inheritance or expanded type attribute
approach is possible, because LINKABLE
is a recursive class (i.e. a client of itself).
A LINKABLE object cannot inherit its
right attribute (this would require
LINKABLE to inherit from itself). An
expanded class cannot have an attribute of
its own type, as this would require its
instances to be infinite objects. Hence
LINKABLE cannot be an expanded class,
although there can be instances of the
expanded type, expanded LINKABLE[T].
Also note that if LINKABLE was
expanded then, for example, insertion and
deletion would require expensive deep
copying and mean that the list was of
fixed size, defeating much of the purpose
of linked structures (efficient shallow
reference copying and dynamically
varying size).

Hence the linkable elements of a linked
list must be instances of a reference type.
Unfortunately, as mentioned in the
previous subsection, making the linkable
elements into secret attributes does not
guarantee encapsulation or information
hiding.

count 4
first_element
previous
active
next

Figure 1 : A typical instance of LINKED_LIST.

2.2.1 The EiffelBase Solution :
Selective Export
Although selective export works for
LINKED_LISTs and LINKABLEs as
implemented in EiffelBase, it does not
provide the appropriate level of
protection. Selective export provides

protection at the class level, not the object
level. For example the features right and
put_right of linkables are exported only to
the classes LINKABLE and
LINKED_LIST. This means that no
objects of other types can call these
features and thus access or change the cell
to the right of another cell.

count 4
first_element
previous
active
next

count 3
first_element
previous
active
next

ll1

ll2

c1 c3c2 c4

Figure 2 : Lists sharing linkable elements

One advantage of the selective export
approach is that compliance to selective
export restrictions is statically checkable.

The export restrictions still allow two
distinct linked list objects to share the
same linkable element and thereby
interfere with each other. A simple
example is shown in Figure 2, where, ll2
removes cell, c3, thereby changing the size
of both ll1 and ll2. Now a client tries to
access the fourth item in ll1, the
require clause evaluates to true but a
run-time error occurs. Essentially, an
invariant of ll1 has been violated.

2.2.2 Class interface restriction
If we examine the interfaces of the classes
LINKED_LIST and LINKABLE from
EiffelBase, it seems that we can infer that
two distinct linked list objects cannot
share the same linkable element because
all features with argument or result type,
LINKABLE[T] are secret. This means that
it is not possible to pass a reference to a
linkable instance from a linked list
instance to another linked list instances
(other than itself) and thus no sharing can
occur. This argument is not sound because
of the following points:
• Newer versions of LINKED_LIST[T]

might export new features with

signatures involving LINKABLE[T],
e.g. a feature that returns a deep copy
of the linkable element at the cursor
position.

• References to linkable instances can be
passed in as arguments and out as
results of any feature with signature
having an argument of type A or result
of type A, where A is any ancestor or
descendant of LINKABLE[T] e.g.
ANY, CELL[T], BI_LINKABLE[T].
This occurs in several exported
features of LINKED_LIST[T] since T
can be any type (any descendant of
ANY) and thus, for example,
LINKED_LIST[LINKABLE[INTEGE
R]] is a valid derived type, with e.g.
feature,
item(i:INTEGER):LINKABLE[INTEG
ER]. It might be argued that the bodies
of features of LINKED_LIST[T]
cannot call the features of
LINKABLE[G] on entities of type, T,
but only those features applying to all
types i.e. features defined in ANY, and
furthermore this is confirmed statically
by the type-checker. However, by using
reverse assignment attempt, it is
possible to bypass this restriction (for
example, where T is an heir of
LINKABLE[T]).

• By the selective export rules,
descendants of LINKED_LIST[T] also
have access to those features of
LINKABLE[T] that are selectively
exported. If descendants of
LINKED_LIST[T] are defined that do
allow sharing of linkable elements (e.g.
LINKED_TREE[T]), some of the

inherited features of
LINKED_LIST[T] may fail to work
together properly and may cause
violations of their own assertions at
run-time. Another problem is that since
it is possible for two of the descendant
instances to share linkable elements,
they may behave in a way that is not
compatible with two linked list
instances (which cannot share
linkables), destroying system
correctness.

It might be argued that the above
circumstances are pathological and would
simply not occur in practice. However,
while the original design of
LINKED_LIST[T] is unlikely to contain
such anomalies, later, modified versions
and descendant classes could possibly
introduce the above problems, especially
if the maintainer or child class designer
did not understand the encapsulation
assumptions of LINKED_LIST[T].

2.3 Summary

The requirements of a language
mechanism for defining components of an
aggregation are given in the first column
of Table 1, while the analysis (detailed in
this section) of the suitability of existing
mechanisms and techniques with respect
to these requirements is summarized in the
other 3 columns.

Component property Inheritance Expanded Reference

Encapsulation Yes Yes No
Information hiding Yes No No
Arbitrary Creation Yes No Yes
Polymorphic No No Yes
Existence-dependent Yes Yes No
Deferred type No No Yes
Recursive type No No Yes

Table 1 : Inheritance vs. Expanded attribute vs. Reference attribute.

Clearly, none of the techniques for
implementing components examined in
this

section fulfil all of the necessary
requirements.

3. Object Ownership

We introduce the concept of object
ownership, suggest syntax and semantics
and discuss some possible generalizations
and implementation considerations. We
show that reference attributes with
ownership restrictions (private attributes)
satisfy all the properties derived from the
requirements analysis of Section 2 and
summarized in Table 1. We only show
that encapsulation, information hiding
and existence dependence are satisfied,
since the other properties follow
immediately from the last column of Table
1.

3.1 Syntax and semantics
The syntactic extension is the introduction
of two new keywords, private and
protected . These keywords are used as
annotations (or declarations) describing
the ownership of objects attached to
entities2 (attributes, local variables, formal
arguments, Current and Result). An
example of their use is given below.

The semantics is presented as a series of
rules. Firstly, the rules governing object
ownership (a run-time concept) are given.
These are followed by the rules for entity
proprietorship, including interpretation of
static declarations of object ownership. An
example is given showing how the concept
of object ownership can be applied and
demonstrating entity proprietorship

2The term entity is Eiffel terminology, and
denotes a different concept from that used in
the entity-relationship (E-R) model. In C++
terminology, an entity is (roughly) the lvalue of
an expression (when it exists), and the object
attached to an entity is (roughly) its rvalue.

declarations. The revised semantics for
reattachment operations (creation,
assignment and reverse assignment
attempt) are then presented. In Section
3.1.1, we demonstrate that this semantics
ensure that aggregates implemented using
object ownership satisfy the properties of
encapsulation and information hiding.

Object ownership is a run-time notion
governed by the following rules:
• Every non-expanded (i.e. reference)

object has an owner object (which
could be Void).

• Expanded objects do not have owners.
• Ownership of an object is immutable,

i.e. constant throughout its lifetime (a
generalization that relaxes this
condition is considered in Section
3.3).

• When the owner of an object dies, i.e.
becomes garbage (unreachable from
the root), the object itself dies also.
Thus an object is existence-dependent
upon its owner.

Entity proprietorship is the mechanism by
which object ownership can be specified
in software texts, and is defined by the
following rules:
• Every entity of reference type has a

proprietor object.
• Entities of expanded type do not have

proprietors or proprietorship
annotations.

• The proprietor of a public entity (the
default) is Void.

• The proprietor of a private entity
(keyword private) is the object in
which it is declared.

• The proprietor of a protected entity
(keyword protected) is the owner
of the object in which it is declared.

The following example illustrates the new
syntax, and shows how the ownership
properties of linkable elements of linked
lists (as described in Section 2.2) can be
specified.

Example - Linked lists revisited
class LINKED_LIST[T]
feature

first : T
feature {NONE} -- secret
first_elem : private LINK[T]
put_linkable_left
(new : private LINK[T])
.....
end

class LINK[T]
feature
right : protected LINK[T]
put_right
(other : protected LINK[T])
....
end

Thus, a linked list is the owner of all its
linkable elements, but not of the items in
the list.

The relationship between object
ownership and entity proprietorship is
summarized by the following rule:
• The owner of an object attached to an

entity must be the proprietor of that
entity.

The proprietor object of an entity cannot
be determined statically, but the entity to
which the object is attached can be
determined statically e.g.

class RECTANGLE
feature
top_left : private POINT
....
p : POINT, r : RECTANGLE
..... p:=r.top_left....

The proprietor of the entity, r.top_left, is
the object attached to the entity, r.

Declarations of entity proprietorship and
run-time object ownership obtain useful
semantics, when the reattachment
operations are redefined so as to restrict
sharing of objects according to their
ownership properties. The revised
definitions for each of the reattachment
operations is given below:

1. The creation call,
!..!writeable.
creates a new object of the appropriate
class, sets its attributes to their defaults

and then initializes them by calling the
creation routine upon it. In addition, the
owner of the newly created object is set
to be the proprietor of the writeable .

2. The assignment operation,
writeable:= readable
behaves exactly as in Eiffel if the
proprietor of the writeable is
identical to the owner of the object
attached to the readable (the
proprietor of the readable), assuming
that both entities are of reference type. If
the proprietorship of the readable and
writeable entities is different, then an
exception is raised at run-time. If normal
attachment were to take place, then the
proprietors of the readable and writeable
entities would be sharing the ownership
of the object attached to both entities.
Since the proprietorship of an entity
cannot be determined statically, it is not
possible to detect illegal attachments at
compile-time. Instead, if an illegal
attachment occurs at run-time, an
exception is raised. This is analogous to
a feature call on a void target.

3. The reverse assignment attempt is
similarly redefined.

We might also introduce a private
assignment attempt, which like the reverse
assignment attempt, works exactly as
assignment, when the ownership
conditions are satisfied, but otherwise
makes the writeable target entity become
Void.

4. Whenever attachment of entities to
objects occurs e.g. the attachment of
formal argument entities to actual
argument objects in a feature call, a run-
time exception is raised if the proprietor of
the entity is different from the owner of
the object being attached to it.

3.1.1 Encapsulation and Information
hiding
A private attribute is an attribute with a
private ownership annotation. Each
component (part) of a composite object
(aggregate) is owned by the aggregate and

attached to at least one of its private
attributes. So no object other than the
aggregate is the proprietor of an entity that
is attached to one of the components of the
aggregate (by the restrictions on
reattachment for objects and entities with
ownership annotations). Hence no other
object (except the aggregate) can access or
modify a component of the aggregate
except by calling a feature of the
aggregate object. This shows that the
requirements of information hiding and
encapsulation are satisfied for this
technique of modelling and implementing
aggregations. Satisfaction of the other
properties of Table 1 has already been
shown.

3.2 Generalization - Ownership by
a Private Club
The rules could be generalized as follows:
• An object can have multiple owners,

and an entity multiple proprietors.
• An object can be shared amongst its

multiple owners.
• An object dies when all its owners die.

Concrete syntax
e : share (e1,. .,en) T

meaning that the object attached to e is
jointly owned by the objects currently
attached to entities e1,. . ,en.
Attachment of an entity to an object is
legal only if the set of owners of the object
is identical to the set of proprietors of the
entity.

3.3 Other generalizations
Ownership of an object can be mutable
with changes of ownership being
accomplished by an acquire command.
For example:
writeable.acquire(readable)

means that the owner of the object (say o)
attached to readable is reset to the
proprietor of writeable , all existing
references to o are reset to Void, and then:

writeable:=readable
is performed. It is not clear whether such a
feature would be sufficiently useful in
practice to justify the additional
complexity. Other possible generalizations

include allowing proprietorship
annotations other than private and
protected e.g. owner (e) meaning
that the proprietor of the entity is the
object attached to the entity, e.

3.4 Ownership monitoring as a
compilation option

Run-time monitoring of object ownership
and legality of assignments clearly incurs
some overhead - an extra attribute (for the
owner or collection of owners) for each
object, and extra checking for each
instruction involving reattachment of
entities e.g. assignment, feature call with
arguments etc. This overhead may be
worthwhile during testing of the system,
but unacceptable for the delivered system.
This is analogous to run-time assertion
monitoring and we propose the analogous
solution of specifying ownership
monitoring as a compilation option.

3.5 Language Support vs.
Ownership Library

It might seem that we can model object
ownership within the Eiffel language,
instead of by language extension. The
most elegant way to do so is by defining a
class library with classes modelling
ownership properties and restrictions.
Although it is possible to define an
attribute, owner : ANY to denote the
owner of an object, it does not seem
possible within Eiffel (unlike C++) to
redefine the meaning of assignment and
other reattachment operations (e.g. the
attachment of formal argument entities to
actuals in a feature call). This is because
reattachment (like creation) is not a
feature call with a target object but an
operation with a target writeable entity
and source object (see [Meyer 92] Chapter
20). Notice that creation itself cannot be
redefined: the effect is always to create a
new object and attach it to the writeable
target entity. However, the initialization
feature call on a newly created object,
which is just a special kind of feature call
(obeying creation rather than export

restrictions) can be redefined by
redefining the initialization feature in a
child class. Similarly, it is not possible to
define the precondition assertion of
reattachment as equality of the owner
attributes of the source object and the
proprietor ‘attribute’ of the target entity,
because the latter is an entity and not an
object and thus cannot have attributes.

4. Modeling aggregations

This section is not intended to
demonstrate that all interesting properties
of all aggregation structures can be
captured using object ownership
annotations, but simply to show that such
annotations are a useful complement to
other techniques and offer natural and
expressive models for some examples.

This example (discussed comprehensively
in [Civello 93b]) appears originally in one
of the case studies (the Drawing Editor) of
[Wirfs-Brock 93]. Drawings consist of
collections of figures, some of which may
be selected (some or all may be
selectable). Figures cannot be shared
between different drawings. Notice that
FIGURE may well be a deferred class
with effective children implementing
different kinds of figures e.g. rectangles,
ellipses, text boxes, tables. As explained
in Section 2, it is not possible to
implement deferred type components
using inheritance or expanded type
attributes.

class DRAWING
..
feature
shapes : private
 LIST[protected FIGURE]
selected : private

LIST[protected FIGURE]
....
end

where

class LIST[T]
..

feature
first : T
ith (i : INTEGER) : T
...

end

Notice that protected FIGURE is not a
type, but a type (FIGURE) together with
an ownership annotation (protected).
Type derivation is the usual syntactic
replacement of formal generic parameter
by actual type (FIGURE), except that the
ownership annotation is also substituted.
The effect is to define a list of figures, the
items of which are owned by the drawing
object, as required. Similarly, both the list
of selected figures and the items in that
list are all owned by the drawing object.

5. Related Work

None of the major commercial OO
programming languages (Eiffel, C++,
Smalltalk, Objective-C and Ada-93)
provides language support for object
ownership and we are not aware of any
OOPL providing such support.

Many OO development methods have a
concept of and notation for aggregation
structures (sometimes called part-of
hierarchies) in OO models and designs. As
well-established methods have matured
and second generation methods (e.g. BON
[Waldén 94] and Syntropy [Cook 94])
developed, a better understanding of the
different roles and properties ascribed to
aggregation structures in different
contexts and examples has emerged (see
e.g. [Waldén 94]p.70-71 and [Cook 94]p.
38-40). The fact that Eiffel expanded
types do not provide a general solution to
the problem of modelling aggregations is
noted in [Waldén 94]p.80. [Civello 93a] is
a deep analysis and comprehensive
classification of the roles and properties of
aggregation structures in object-oriented
modeling, analysis and design. Object
ownership enriches modeling by capturing
some of the properties of aggregations
(e.g. life-time dependency) precisely.
[Dong 95] gives an analysis of the related
concept of object containment.

The notion of object ownership simplifies
reasoning about linked structures by
restricting aliasing and sharing of
component objects, thereby preventing the
possibility of interference. The presence
of aliasing is regarded by the formal
methods community as one of the major
challenges of specifying and verifying
object systems[Duke 94, Hogg 91a]. We
briefly relate our work to other techniques
developed for restricting aliasing to
simplify reasoning.

[Hogg 91b] introduces the concept of
islands and bridges to restrict aliasing in
object-oriented programs and thereby
simplify reasoning. Hogg introduces three
access modes for entities: read, unique
and free. Read-only entities (like const
entities in C++) provide read-only (side-
effect-free) access to the objects they
denote. Unique entities are always
attached to Void or unshared objects (only
one static reference in the entire system).
Free entities can only denote objects with
no static reference in the entire system.
For example, creation expressions (i.e.
queries returning newly created objects)
are free entities. Hogg specifies
restrictions on the use of entities for each
of these modes to ensure that the entities
satisfy the properties of their declared
modes (like the rules for ‘const
correctness’ in C++). In contrast to our
rules for object ownership, conformance
to these restrictions can be checked
statically.

An island is the transitive closure of a set
of objects accessible from a bridge object.
A bridge is the sole access point to a set of
instances that make up an island. The
bridge object of an island must be an
instance of a bridge class. A bridge class
must satisfy the following restriction:

every formal argument of each
exported feature and the result of all
exported queries must have (at least)
one of the three access modes: read,
unique or free.

Hogg suggests implementing collections
as islands with container objects as
bridges. However, the class
LINKED_LIST is not a bridge class,
because (for example) the result of the
query, ith, has none of the access modes:
read, unique or free. In addition the right
attributes of the linkable elements and the
arguments to their put_right command are
neither unique nor free in general. For
example, the cursor attributes, active,
previous and next are all aliased to right
attributes of linkables. Internal sharing
also occurs in other linked structures such
as circular lists and doubly linked lists.

Formal inference systems for reasoning
about aliasing in object systems are given
in [America 90, Wills 93], but these are
very complex.

[Jones 92] presents inference rules for
reasoning about concurrent object-based
systems. Some of these depend upon
‘private references’ to prohibit
interference and simplify reasoning. One
of his examples involves a priority queue
implemented as a linked list. However,
Jones does not give detailed formal
semantics for private references.

6. Conclusions
We have proposed a concept of object
ownership and outlined a syntax and
semantics for extending Eiffel to support
this concept directly.

We have shown two situations for which
limiting the ownership of objects is useful:
1. specifying, implementing and verifying

linked structure data types.
2. natural, expressive modeling of
complex aggregation structures.

In addition, we have shown how the
introduction of object ownership helps
prevent overloading of the inheritance
mechanism (for code reuse in addition to
polymorphism) and expanded types (for
components as well as value types),

thereby making the language mechanisms
more orthogonal.

However, our analysis falls short of the
complete account of object ownership
necessary to judge whether or not it is
worthwhile to extend the Eiffel language
standard to support this concept (see
[Meyer 92] Appendix B.10, p. 508). In
particular, we have not considered the
possible interaction of object ownership
with all other Eiffel constructs and
mechanisms (e.g. the Result of a once
function cannot be private, can protected
entities be redefined as private in heirs?).
Also, we do not claim to have made the
optimal choices for reattachment in the
presence of ownership annotations. For
example, it may be advantageous to apply
the semantics of reattachment given in
Section 3.1 only when the writeable entity
is an attribute or Result, and use
conventional reattachment (i.e. don’t
check proprietorship of the target) when
the target is a local entity so that objects
can have temporary references to objects
they don’t own for the duration of a
feature call. Also, we have made no
judgement about which of the
generalizations suggested in Section 3
might be worthwhile. It is clear that much
work is still required (e.g. developing a
prototype implementation of a pre-
processor for the extended language,
resolving the problems raised above) on
the topic of object ownership and its
support in Eiffel and other OOPLs.

References
[America 90] P. America and F. de Boer.
A sound and complete proof system for
SPOOL. Technical Report 505, Philips
Research Labs, May 1990.
[Civello 93a] F. Civello. Roles for
composite objects in object-oriented
analysis and design. OOPSLA’93, ACM
Press, pages 376-393, 1993.
[Civello 93b] F. Civello. Roles for
composite objects in object-oriented
analysis and design. PhD. thesis,
University of Brighton, 1993.

[Cook 94] S. Cook and J. Daniels.
Designing Object Systems, Prentice Hall
1994.
[Dong 95] J.S. Dong and R. Duke. The
geometry of Object Containment. Object
Oriented Systems, vol. 2, no. 1, 1995.
[Duke 94] R. Duke. Do Formal Object-
Oriented Methods have a future? Keynote
TOOLS Pacific, Melbourne 1994, in
TOOLS 15 (Mingins and Meyer, eds.),
Prentice Hall, pages 273-280, 1994.
[Hogg 91a] J. Hogg, D. Lea, A. Wills, D.
de Champeaux and R. Holt. The Geneva
convention on the treatment of object
aliasing, in Follow-up Report on ECOOP
‘91 Workshop W3: Object-oriented
Formal Methods, pages 11-16, 1991.
[Hogg 91b] J. Hogg. Islands : Aliasing
Protection in Object-Oriented Languages,
OOPSLA’91, ACM Press, pages 271-285,
1991.
[Jones 92] C.B. Jones. An Object-Based
Design Method for Concurrent Programs.
Technical Report UMCS-92-12-1,
University of Manchester, 1992.
[Kent 95] S. Kent and I. Maung.
Quantified Assertions in Eiffel,
Proceedings of TOOLS Pacific 95,
Prentice Hall, December 1995.
[Meyer 88] B. Meyer. Object-oriented
Software Construction. Prentice Hall
1988.
[Meyer 92] B. Meyer. Eiffel, the
Language. Prentice Hall 1992.
[Meyer 94] B. Meyer. Reusable Software -
the base OO component libraries. Prentice
Hall 1994.
[Waldén 94] K. Waldén and J.-M. Nerson.
Seamless Object-Oriented Software
Architecture, Prentice Hall 1994.
[Wills 93] A. Wills. Reasoning about
aliasing. unpublished manuscript, 1993.
[Wirfs-Brock 90] R. Wirfs-Brock, B.
Wilkerson and L. Wiener, Designing
Object-Oriented Software, Prentice Hall
1990.

