
Maintaining Cross Viewpoint Consistency using Z

John Derrick� Howard Bowman and Maarten Steen y

University of Kent at Canterbury� U�K� fjd��hb��mwasg�ukc�ac�uk�

This paper discusses the use and integration of formal techniques� in particular Z� into the
Open Distributed Processing �ODP� standardization initiative�

One of the cornerstones of the ODP framework is a model of multiple viewpoints� During

the development process it is important to maintain the consistency of di�erent viewpoints of

the same ODP speci�cation� In addition� there must be some way to combine speci�cations

from di�erent viewpoints into a single implementation speci�cation� The process of combining

two speci�cations is known as uni�cation� Uni�cation can be used as a method by which to

check consistency� This paper describes a mechanism to unify two Z speci�cations� and hence

provide a consistency checking strategy for viewpoints written in Z�

Keyword Codes� C����� D����� D�����
Keywords� Distributed Systems� Speci�cation� Tools and Techniques�

� INTRODUCTION

This paper discusses the implications and integration of formal techniques� in particular
Z� into the Open Distributed Processing �ODP	 standard initiative�

The ODP standardization initiative is a natural progression from OSI� broadening
the target of standardization from the point of interconnection to the end
to
end system
behaviour� The objective of ODP �� is to enable the construction of distributed systems
in a multi
vendor environment through the provision of a general architectural framework
that such systems must conform to� One of the cornerstones of this framework is a model
of multiple viewpoints which enables di�erent participants to observe a system from a
suitable perspective and at a suitable level of abstraction ���� ��� There are �ve sepa

rate viewpoints presented by the ODP model� Enterprise� Information� Computational�
Engineering and Technology� Requirements and speci�cations of an ODP system can be
made from any of these viewpoints�

Formal methods are playing an increasing role within ODP� and we aim to provide a
mechanism by which speci�c techniques can be used within ODP� The suitability of a wide
spectrum of FDTs is currently being assessed� Amongst these Z is likely to be used for
at least the information� and possibly the enterprise and computational� viewpoint� The
�rst compliant ODP speci�cation� the Trader� is being written using Z for the information
and computational viewpoint�

�y This work was partially funded by British Telecom Labs�� Martlesham� Ipswich� U�K� the Engineer�
ing and Physical Sciences Research Council under grant number GR�K��	�
 and the Royal Society�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Whilst it has been accepted that the viewpoint model greatly simpli�es the devel

opment of system speci�cations and o�ers a powerful mechanism for handling diversity
within ODP� the practicalities of how to make the approach work are only beginning
to be explored� In particular� one of the consequences of adopting a multiple viewpoint
approach to development is that descriptions of the same or related entities can appear
in di�erent viewpoints and must co
exist� Consistency of speci�cations across viewpoints
thus becomes a central issue� Similar consistency properties arise outside ODP� For ex

ample� within OSI two formal descriptions of communication protocols can co
exist and
there is no guarantee that� when the two protocols are implemented on the basis of these
speci�cations� processes which use these two protocols can communicate correctly� ���
However� the actual mechanism by which consistency can be checked and maintained is
only just being addressed ��� �� �� In particular� although Z is being used as a viewpoint
speci�cation language in ODP� there is as yet no mechanism to describe the combination
of di�erent Z viewpoint speci�cations� or the consistency of them�

In Section � we develop a uni�cation mechanism for Z speci�cations� In Section � we
present an example of the technique by specifying the dining philosophers problem using
viewpoints� Section � discusses consistency checking of viewpoint speci�cations� and we
make some concluding remarks in Section ��

� UNIFICATION IN Z

One of the cornerstones of the ODP framework is a model of multiple viewpoints� Clearly
the di�erent viewpoints of the same ODP speci�cation must be consistent� i�e� the proper

ties of one viewpoint speci�cation do not contradict those of another� In addition� during
the development process there must be some way to combine speci�cations from di�er

ent viewpoints into a single implementation speci�cation� This process of combining two
speci�cations is known as uni�cation� Furthermore� the uni�cation of two speci�cations
must be a re�nement of both� see ��� Uni�cation can also be used� because of this com

mon re�nement� as a method by which to check consistency� To check the consistency of
two speci�cations� we check for contradictions within the uni�ed speci�cation�

The mechanism we describe is a general strategy for unifying two Z speci�cations� As
such it is not speci�c to any particular ODP viewpoint� nor is it tied to any particular
instantiation of the architectural semantics� However� this generality does not reduce its
applicability� indeed it is possible that uni�cation can be used to describe an interac

tion mechanism between descriptions in Z of objects in such a way that is currently not
supported by Part � of the reference model�

Given a re�nement relation� v� de�ned in a formal speci�cation techniques� we can
characterize the uni�cation of two speci�cations as the least re�nement of both� ie�

U �T��T�	 � fT � T��T� v T and if T��T� v S then T v Sg

Uni�cation of Z speci�cations will therefore depend upon the Z re�nement relation� which
is given in terms of two separate components 
 data re�nement and operation re�nement�
���� Two speci�cations will thus be consistent if their uni�cation can be implemented
��� The ability for the uni�cation to be implemented is known as internal validity� and
for Z speci�cations this holds when the speci�cation is free from contradictions�



Z is a state based FDT� and a Z speci�cation describes the abstract state of the system
�including a description of the initial state of the system	� together with the collection of
available operations� which manipulate the state� One Z speci�cation re�nes another if the
state schemas are data re�nements and the operation schemas are operation re�nements of
the original speci�cation�s state and operation schemas� We assume the reader is familiar
with the language and re�nement relation� introductionary texts include ���� ��� ���

The uni�cation algorithm we describe is divided into three stages� normalization� com

mon re�nement �which we usually term uni�cation itself	� and re
structuring� Normal

ization identi�es commonality between two speci�cations� and re
writes the speci�cations
into normal forms suitable for uni�cation� Uni�cation itself takes two normal forms and
produces the least re�nement of both� Because normalization will hide some of the spec

i�cation structure introduced via the schema calculus� it is necessary to perform some
re
structuring after uni�cation to re
introduce the structure chosen by the speci�er� We
do not discuss re
structuring here�

��� Normalization

Given two di�erent viewpoint speci�cations of the same �ODP	 system� the commonality
between the speci�cations needs to be identi�ed� Clearly� the two speci�cations that are
to be uni�ed have to represent the world in the same way within them �eg if an operation
is represented by a schema in one viewpoint� then the other viewpoint has to use the same
name for its �possibly more complex	 schema too	� and that the correspondences between
the speci�cations have to have been identi�ed by the speci�ers involved� These will be
given by co
viewpoint mappings that describe the naming� and other� conventions in force�
Once the commonality has been identi�ed� the appropriate elements of the speci�cations
are re
named�

Normalization will also expand data
type and schema de�nitions into a normal form�
The purpose of normalization is to hide the structuring of schemas �which needs to be
hidden in order to provide automatic uni�cation techniques	 and expand declarations into
maximal type plus predicate declarations� For example� normalization of a declaration
part of a schema involves replacing every set X which occurs in a declaration x � X � with
its corresponding maximal type and adding predicates to the predicate part of the schema
involved to constrain the variable appropriately�

Normalization also expands schemas de�ned via the schema calculus into their full
form� All schema expressions involving operations from the schema calculus can be ex

panded to a single equivalent vertical schema� Examples of normalization appear in ����

��� State Uni�cation

The purpose of state uni�cation is to �nd a common state to represent both viewpoints�
The state of the uni�cation must be a data re�nement of the state of both viewpoints�
since viewpoints represent partial views of an overall system description� Furthermore�
it should be the least re�nement whenever possible� This is needed to ensure we do
not add too much detail during uni�cation because additional detail might add incon

sistencies that were not due to inconsistencies in the original viewpoint speci�cations�
Clearly� uni�cation as a consistency checking strategy is more useful if it is also true that



an inconsistent uni�cation implies inconsistent viewpoint speci�cations� rather than just
consistent uni�cations implying consistent viewpoints�

The essence of all constructions will be as follows� If an element x is declared in both
viewpoints as x � T� and x � T� respectively� then the uni�cation will include a declaration
x � T where T is the least re�nement of T� and T�� The type T will be the smallest type
which contains a copy of both T� and T�� For example� if T� and T� can be embedded
in some maximal type then T is just the union of T� � T�� The proof of correctness of
this uni�cation is given in ��� If T� and T� cannot be embedded in a single type then
the uni�cation will declare x to be a member of the disjoint union of T� and T�� In these
circumstances we again achieve the least re�nement of both viewpoints� Lack of space
precludes a discussion of this construction here�

Given two viewpoint speci�cations both containing the following fragment of state
description given by a schemas D� and D�� then D represents the uni�cation of the two�

D�

x � S

predS

D�

x � T

predT

D

x � S � T

x � S 	� predS
x � T 	� predT

whenever S � T is well founded� �Axiomatic descriptions are uni�ed in exactly the
same manner�	 This representation is needed in order to preserve the widest range of
possible behaviours�

��� Operation Uni�cation

Once the data descriptions have been uni�ed� the operations from each viewpoint need
to be de�ned in the uni�ed speci�cation� Uni�cation of schemas then depends upon
whether there are duplicate names� For operations de�ned in just one of the viewpoint
speci�cations� these are included in the uni�cation with appropriate adjustments to take
account of the uni�ed state�

For operations which are de�ned in both viewpoint speci�cations� the uni�ed speci�

cation should contain an operation which is the least re�nement of both� wrt the uni�ed
representation of state� The uni�cation algorithm �rst adjusts each operation to take
account of the uni�ed state in the obvious manner� then combines the two operations to
produce an operation which is a re�nement of both viewpoint operations�

The uni�cation of two operations is de�ned via their pre
 and post
conditions� Given
a schema it is always possible to derive its pre
 and post
conditions� ���� Given two
schemas A and B representing operations� both applicable on some uni�ed state� then

U�A�B�
���

pre A � pre B

pre A 	� post A

pre B 	� post B

represents the uni�cation of A and B � where the declarations are uni�ed in the manner
of the preceding subsection� This de�nition ensures that if both pre
conditions are true�



then the uni�cation will satisfy both post
conditions� Whereas if just one pre
condition
is true� only the relevant post
condition has to be satis�ed� This provides the basis of the
consistency checking method for object behaviour which we discuss below�

����� Example

As an illustrative example we perform state and operation uni�cation on a simple speci�

cation of a classroom� The example consists of the state represented by the schema Class�
and operation Leave� The two viewpoint speci�cations to be uni�ed are�

Max � IN
Class

d � Pf
� �g

�d � Max

Leave

Class
p� � f
� �g

p� � d

d � 	 d n fp�g

Min � IN
Class

d � Pf�� �� �g

�d � Min

Leave

Class
p� � f�� �� �g

�d � Min � 

p� � d

d � 	 d n fp�� �g

As described above� we �rst unify the state model� i�e� the schema Class in this example�
which becomes�

Class

d � Pf
� �g � Pf�� �� �g

d � Pf
� �g 	� �d � Max

d � Pf�� �� �g	� �d � Min

With this uni�ed state model we can unify the operation Leave on this state� To do so we
calculate the pre and post
conditions in the usual manner� and for this we need to expand
the schema Leave into normal form in each viewpoint� This will involve� for example�
declaring p� � IN and adding p� � f�� �g as part of the predicate for the description of
Leave in the �rst viewpoint� The pre
condition of Leave in the �rst viewpoint is then
p� � d � f�� �g �in fact this is the part of the pre
condition which is distinct from the
pre
condition in the second viewpoint� the rest acting as a state invariant	� Hence� the
uni�ed Leave becomes�

Leave

Class
p� � IN

�p� � d � f
� �g�� �p� � d � f�� �� �g��d � Min � 
�
�p� � d � f
� �g� 	� d � 	 d n fp�g
�p� � d � f�� �� �g��d � Min � 
� 	� d � 	 d n fp�� �g

To show that the uni�ed Leave is indeed a re�nement of Leave in viewpoint one we will
decorate elements in viewpoint one with a subscript one� We use the retrieve relation



R�

Class

Class�

d� � fdg � Pf
� �g

to describe the re�nement between the uni�ed state and the state in the �rst viewpoint�
To demonstrate the re�nement is correct� we make the following deductions� Suppose
pre Leave� ��R� � Leave� we have to show the result of this schema is compatible with
post Leave�� Now if pre Leave�� then p� � d� � fdg � Pf�� �g� and hence d � � d n fp�g�
Then d �

�
� fd �g�Pf�� �g � fd nfp�gg�Pf�� �g� So d �

�
� d ��f�� �g � �d nfp�g	�f�� �g �

d� n fp�g� since by pre Leave�� p� � f�� �g� The deduction that pre Leave� � R� ��
pre Leave is similar� These two deductions complete the proof that the uni�cation is a
re�nement of viewpoint one� The case for viewpoint two is symmetrical�

� EXAMPLE � DINING PHILOSOPHERS

To illustrate uni�cation with Z� we shall consider the following viewpoint speci�cations
of the dining philosophers problem� In the dining philosophers problem� ��� a group of
N philosophers sit round a table� laid with N forks� There is one fork between each
adjacent pair of philosophers� Each philosopher alternates between thinking and eating�
To eat� a philosopher must pick up its right
hand fork and then the left
hand fork� A
philosopher cannot pick up a fork if its neighbour already holds it� To resume thinking�
the philosopher returns both forks to the table�

The three viewpoint speci�cations we de�ne are the philosophers� forks and tables
viewpoints� The philosophers and forks describe individual philosopher and fork objects
and the operations available on those objects� The table viewpoint describes a system
constructed from those objects and the synchronisation mechanism between operations
upon them� We shall then describe the uni�cation of the three viewpoints�

Although this example is not one of an ODP system� it provides a suitable illustration
of the issues involved in viewpoint speci�cation and consistency checking�

��� The Philosophers Viewpoint

This viewpoint considers the speci�cation from the point of view of a philosopher� A
philosopher either thinks� eats or holds her right fork� Note that since the latter is just
a state of mind there is no need to describe the operations from a forks point of view at
all in this viewpoint� A philosopher object is just de�ned by the state of the philosopher�
and initially a philosopher is thinking�

PhilStatus ��	 Thinking j HasRightFork j Eating

PHIL

status � PhilStatus
InitPHIL

PHIL�

status � 	 Thinking



We can now describe the operations available� A thinking philosopher can pick up its
right
hand fork� Philosophers who hold their right fork can begin eating upon picking up
their left
hand fork� Finally to resume thinking� a philosopher releases both forks�

GetRightFork

PHIL

status 	 Thinking

status � 	 HasRightFork

GetLeftFork

PHIL

status 	 HasRightFork

status � 	 Eating

DropForks

PHIL

status 	 Eating

status � 	 Thinking

��� The Forks Viewpoint

This viewpoint speci�es a fork object� Each fork is either free or busy� The fact that
the philosopher might change state when a fork is picked up or dropped does not concern
forks� The state of the fork is given by a FORK schema� and initially a fork is free�

ForkStatus ��	 Free j Busy

FORK

fstatus � ForkStatus
InitFORK

FORK �

fstatus � 	 Free

The operations available allow a free fork can be picked up� and both forks can be
released�

Acquire

FORK

fstatus 	 Free

fstatus � 	 Busy

Release

FORK

fstatus 	 Busy

fstatus � 	 Free

��� The Tables Viewpoint

This viewpoint has a number of schemas from the other viewpoints as parameters� these
are given as empty schema de�nitions� Upon uni�cation the non
determinism in this
viewpoint will be resolved by the other viewpoint speci�cations� and thus uni�cation will
allow functionality extension of these parameters� The parameters we require are�

PHIL InitPHIL GetRightFork

PHIL

GetLeftFork

PHIL
DropForks

PHIL
FORK

InitFORK Acquire

FORK
Release

FORK



The system from the table viewpoint is de�ned by a collection of fork and philosopher
objects�

N � IN

Table

forks � 
��N 	 FORK

phils � 
��N 	 PHIL

Initially the table consists of forks and philosophers all in their respective initial states�

InitTable

Table�


 InitFORK � InitPHIL � ran forks � 	 f�InitFORK g � ran phils � 	 f�InitPHILg

Here we use promotion �ie the � operator	 in the structuring of viewpoints� which allows
an operation de�ned on an object in one viewpoint to be promoted up to an operation
de�ned over that object in another viewpoint� As we can see� this can be used e�ectively
to reference schemas in di�erent viewpoints without their full de�nition�

In order to de�ne operations on the table� we de�ne a schema �Table which will allow
individual object operations to be de�ned in this viewpoint� See ��� for a discussion of
the use of promotion�

�Table
Table
PHIL
FORK
m� � 
��N
n� � 
��N

phils�n�� 	 �PHIL � phils � 	 phils � fphils�n�� 	 �PHIL�g

forks�m�� 	 �FORK � forks � 	 forks � fforks�m�� 	 �FORK �g

Note that we use two inputs m��n�� because we want to control later the synchronisation
between operations on forks and those on philosophers� System operations to get the left
and right forks� and to drop both forks can now be de�ned�

GLF b� �Table �GetLeftFork �Acquire � � n��m� � ���N j m� � n� �� n ��FORK ��PHIL�
GRF b� �Table �GetRightFork �Acquire � � n��m� � ���N j m� � �n� modN � �� �� n ��FORK ��PHIL�
DF b� �Table �DropForks �Release � �n��m� � ���N j m� � n� �� n ��FORK ��PHIL�

The last schema in each conjunction performs the correct synchronisation between the
individual object operations�

��� Unifying the Viewpoints

Since the fork and philosopher object descriptions are independent� ie there are no state
or operation schemas in common� the uni�cation of these two viewpoints is just the
concatenation of the two speci�cations� We do not re
write that concatenation here�



The Table speci�cation does have commonality with the other two viewpoints� For
each state or operation schema de�ned in two viewpoints �ie the Table and one other	� we
build one schema in the uni�cation� In fact� the separation and object
based nature �in a
loose sense	 of this example means that we will not make extensive use of uni�cation by
pre
 and post
conditions� This is desirable� since it reduces the search for contradictions
in the consistency checking phase� In fact� our experiences with viewpoint speci�cations
con�rms that such a viewpoint methodology is really only feasible if one adopts this
object
based approach�

For example� the schema FORK de�ned in the Table viewpoint is just a parameter
from the fork viewpoint� and consequently its uni�cation will just be�

FORK

fstatus � ForkStatus

Similarly the uni�cation of GetLeftFork from the Table and Philosophers viewpoint is

GetLeftFork

PHIL

status 	 HasRightFork

status � 	 Eating

since the pre
condition of GetLeftFork in Table is just false� Notice that this provides a
mechanism in Z by which to achieve functionality extension across viewpoints in a manner
previously not supported�

� CONSISTENCY CHECKING OF VIEWPOINT SPECIFICATIONS

The uni�cation mechanism can be applied to yield a consistency checking process� In
terms of the ODP viewpoint model� consistency checking consists of checking both the
consistency of the state model and the consistency of all the operations� Consistency
checking of the state model ensures there exists at least one possible set of bindings that
satis�es the state invariant� and the Initialization Theorem �see below	 ensures that we
can �nd one such set of bindings initially�

In addition� we require operation consistency� This is because a conformance statement
in Z corresponds to an operation schema�s	� ���� Thus a given behaviour �ie occurrence of
an operation schema	 conforms if the post
conditions and invariant predicates are satis�ed
in the associated Z schema� Hence� operations in a uni�cation will be implementable
whenever each operation has consistent post
conditions on the conjunction of their pre

conditions�

Thus a consistency check in Z involves checking the uni�ed speci�cation for contra

dictions� and has three components� State Consistency� Operation Consistency and the
Initialization Theorem�

State Consistency � From the general form of state uni�cation given in Section
���� it follows that the state model is consistent as long as both predS and predT can be
satis�ed for x � S � T �



Operation Consistency � Consistency checking also needs to be carried out on
each operation in the uni�ed speci�cation� The de�nition of operation uni�cation means
that we have to check for consistency when both pre
conditions apply� That is� if the
uni�cation of A and B is denoted U�A�B	� we have�

pre U�A�B	 � pre A � pre B � post U�A�B	 � �pre A� post A	 � �pre B � post B	

So the uni�cation is consistent as long as �pre A � pre B	 � �post A � post B	�
Initialization Theorem � The Initialization Theorem is a consistency requirement

of all Z speci�cations� It asserts that there exists a state of the general model that satis�es
the initial state description� formally it takes the form�

� 	State � 
 InitState

For the uni�cation of two viewpoints to be consistent� clearly the Initialization Theorem
must also be established for the uni�cation�

The following result can simplify this requirement� Let State be the uni�cation of
State� and State�� and InitState be the uni�cation of InitState� and InitState�� If the
Initialization Theorem holds for State� and State�� then state consistency of Initstate
implies the Initialization Theorem for State� In other words� it su�ces to look at the
standard state consistency of Initstate�

If� however� Initstate is a more complex description of initiality �possibly still in terms
of InitState� and InitState�	� the Initialization Theorem expresses more than state con

sistency of Initstate� and hence will need validating from scratch� An example of this is
given below�

Example � � The classroom
State Consistency � The uni�ed state in this example was given by

Class

d � Pf
� �g � Pf�� �� �g

d � Pf
� �g 	� �d � Max

d � Pf�� �� �g	� �d � Min

To show consistency� we need to show that if d � Pf�� �g � Pf�� �� �g� then both
�d � Max and �d � Min hold� Suppose the class consisted of just the element ��
i�e� d � f�g� Both pre
conditions in the uni�ed state� d � Pf�� �g and d � Pf�� �� �g�
now hold giving the state invariant Min � �d �Max � Thus the consistency of the view

point speci�cations of the classroom requires that Min � Max � This type of consistency
condition should probably fall under the heading of a correspondence rule in ODP� ��� that
is a condition which is necessary but not necessarily su�cient to guarantee consistency�

Operation Consistency � In the classroom example� this amounts to checking the
operation Leave when

�p� � d � f�� �g	 � �p� � d � f�� �� �g ��d � Min � �	

In these circumstances� the two post
conditions are d � � d n fp�g and d � � d n fp�� �g�
These two pre
conditions apply when p� � � and � � d � A consistency check has to be



applied for all possible values of d � For example� let d � f�� �g� then d � � d n fp�g� If
further �d � Min � �� then in addition we have d � � d n fp�� �g� These two conditions
are consistent �since p� � �	 regardless of Max or Min�

Let d � f�g� then both pre
conditions apply i� Min � �� in which case the post

conditions are d � � d n f�g and d � � d n f�g� and thus consistent�

Hence the two viewpoint speci�cations are consistent whenever the correspondence
rule Min � Max holds�

Example � � Dining Philosophers

Inspection of the uni�cation in the Dining Philosophers example shows that both state
and operation consistency is straightforward �note� however� that with non
object based
viewpoint descriptions of this example� consistency checking is a non
trivial task� this
points the need for further work on speci�cation styles to support consistency checks	�
Hence� consistency will follow once we establish the Initialization Theorem for the uni�

cation�

The Initialization Theorem for the uni�cation is� � 	Table � 
 InitTable� which upon
expansion and simpli�cation becomes

 
 forks � � 
��N 	 FORK � phils � � 
��N 	 PHIL � ran forks � 	 fFreeg � ran phils � 	 fThinkingg

which clearly can be satis�ed� Hence the viewpoint descriptions given for the dining
philosophers are indeed consistent�

� CONCLUSIONS

The use of viewpoints to enable separation of concerns to be undertaken at the speci�

cation stage is a cornerstone of the ODP model� However� the practicalities of how to
make the approach work are only beginning to be explored� Two issues of importance
are uni�cation and consistency checking� Our work attempts to provide a methodology
to undertake uni�cation and consistency checking for Z speci�cations�

There are still many issues to be resolved� not least the relation to the architectural
semantics work� Currently the architectural semantics associates an ODP object with
a complete Z speci�cation� Thus the con�guration and interactions of objects is then
outside the scope of a single Z speci�cation� The architectural semantics comments upon
the lack of support for combining Z speci�cations� we are currently investigating the
extent to which uni�cation can provide that support and hence model interaction and
communication between Z speci�cations which represent ODP objects�

Not withstanding this� consistency checking of two Z speci�cations is still important�
It provides a mechanism by which to assess di�erent descriptions of the same object� and
will be needed if consistency checking of speci�cations written in di�erent FDTs is to be
achieved� For example� one method would involve translating a LOTOS object into a Z
speci�cation �and this type of translation is the extremely challenging part	� which could
then be checked for consistency via unifying the two Z speci�cations� Thus the solutions
presented in this paper are only part of the whole consistency problem� and much work
remains including application to a larger case study�

We are currently funded by the EPSRC and British Telecom to extend our approaches
to uni�cation and consistency checking to other formal languages� in particular LOTOS�
and to develop tools to support the process�



References

�
� H� Bowman and J� Derrick� Towards a formal model of consistency in ODP� Technical
Report ����� Computing Laboratory� University of Kent at Canterbury� 
����

��� H� Bowman and J� Derrick� Modelling distributed systems using Z� In K� M� George� editor�
ACM Symposium on Applied Computing� pages 
���
�
� Nashville� February 
���� ACM
Press�

��� G� Cowen� J� Derrick� M� Gill� G� Girling �editor�� A� Herbert� P� F� Linington� D� Rayner�
F� Schulz� and R� Soley� Prost Report of the Study on Testing for Open Distributed Pro�

cessing� APM Ltd� 
����

��� E� W� Dijkstra� Cooperating sequential processes� In F� Genuys� editor� Programming
Languages� Academic Press� 
����

��� A� Fantechi� S� Gnesi� and C� Laneve� Two standards means problems � A case study on
formal protocol descriptions� Computer Standards and Interfaces� ��

�
�� 
����

��� K� Farooqui and L� Logrippo� Viewpoint transformations� In J� de Meer� B� Mahr� and
O� Spaniol� editors� �nd International IFIP TC� Conference on Open Distributed Process�

ing� pages �������� Berlin� Germany� September 
����

��� J� Fischer� A� Prinz� and A� Vogel� Di�erent FDT�s confronted with di�erent ODP�
viewpoints of the trader� In J�C�P� Woodcock and P�G� Larsen� editors� FME���� Industrial

Strength Formal Methods� LNCS ���� pages �������� Springer�Verlag� 
����

��� K� Geihs and A� Mann� ODP viewpoints of IBCN service management� Computer Com�
munications� 
��

���������� 
����

��� ISO�IEC JTC
�SC�
�WG�� Basic reference model of Open Distributed Processing � Parts

	�
� July 
����

�
�� S� King� Z and the re�nement calculus� In D� Bjorner� C�A�R� Hoare� and H� Langmaack�
editors� VDM ��� VDM and Z � Formal Methods in Software Development� LNCS ����
pages 
���
��� Kiel� FRG� April 
���� Springer�Verlag�

�

� P� F� Linington� Introduction to the Open Distributed Processing Basic Reference Model�
In J� de Meer� V� Heymer� and R� Roth� editors� IFIP TC� International Workshop on Open

Distributed Processing� pages ��
�� Berlin� Germany� September 
��
� North�Holland�

�
�� B� Potter� J� Sinclair� and D� Till� An introduction to formal speci�cation and Z� Prentice
Hall� 
��
�

�
�� B� Ratcli�� Introducing speci�cation using Z� McGraw�Hill� 
����

�
�� K� A� Raymond� Reference Model of Open Distributed Processing� a Tutorial� In J� de Meer�
B� Mahr� and O� Spaniol� editors� �nd International IFIP TC� Conference on Open Dis�

tributed Processing� pages ��
�� Berlin� Germany� September 
����

�
�� R� Sinnott� An Initial Architectural Semantics in Z of the Information Viewpoint Language

of Part � of the ODP�RM� 
���� Input to ISO�JTC
�WG� Southampton Meeting�

�
�� J�M� Spivey� The Z notation� A reference manual� Prentice Hall� 
����


