
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Kahrs, Stefan (1996) Limits of ML-definability. In: UNSPECIFIED.

DOI

Link to record in KAR

http://kar.kent.ac.uk/21337/

Document Version

UNSPECIFIED

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Limits of ML�de�nability

Stefan Kahrs

University of Edinburgh
Laboratory for Foundations of Computer Science

King�s Buildings�
Edinburgh EH� �JZ
United Kingdom

email� smk�dcs�ed�ac�uk

Abstract� It is well�known that the type system of ML is overly re�
strictive in its handling of recursion� certain intuitively sound terms do
not pass ML�s type�check� We formalise this intuition and show that the
restriction is semantical� there are computable 	semantical
 functions

which cannot be expressed by well�typed 	syntactical
 terms�

Keywords� de�nability� polymorphism� recursion� ML� completeness

� Introduction and Outline

Are all computable functions de�nable in ML� One should think so� after all
ML supports general recursion and it is easy to de�ne natural numbers with all
their primitive operations using ML�s datatypes�

But what about computable functions on other types� for example function
types and inductive datatypes� Is ML �complete	 w�r�t� to those types as well�
Can we invert Milner�s slogan �well
typed programs don�t go wrong	 and type

check programs that always go right� Before we address this speci�c question
we shall de�ne a general notion of completeness in a more abstract context�

��� Type Systems for Labelled Transition Systems

We �rst look at a general notion of type system for labelled transition systems�
This is explored at greater depth in ��� The idea is to view the operational
semantics of a programming language as a labelled transition system and de�ne
an appropriate notion of completeness on this abstract level� Moreover� imposing
a type system on a programming language can be viewed as an operation on
transition systems�

De�nition ���� A transition system is a structure �Sta�Lab�Tra� where

� Sta is a set of states�
� Lab is a set of labels� and
� Tra � Sta� Lab� Sta is the transition relation�

A transition system is called pointed if there is a distinguished initial state ��

As usual� we write s
l
�� s� for �s� l� s�� � Tra� also� s

w
�� s� with w � Lab�

is shorthand for� there exist states s�� � � � � sn and labels l�� � � � � ln with s � s��

s� � sn� w � l� � � � ln and si��
li�� si� If s

w
�� s� then s� is reachable from s� a

state is reachable i� it is reachable from the initial state �� We write s�� s� for
the reachability relation �w � Lab�� s

w
�� s��

De�nition ���� Given a transition system� a relation � on states is a simula�
tion if the following holds� If s� � s� then

�l � Lab� s�� � Sta� �s�
l
�� s�� 	 �s�� � Sta� �s�

l
�� s��
 s�� � s�����

A bisimulation is a simulation � such that � is a simulation as well�

Here are a few useful observations on simulations and bisimulations� simu

lations are closed under �arbitrary� union and composition� hence the transitive
closure of a simulation is a simulation and there is always a largest simulation�
We write w for the largest simulation in a TS �which is necessarily a preorder�
and � for the largest bisimulation �which is necessarily an equivalence�� The
re�exive transitive closure of a simulation is also a simulation� since the iden

tity relation obviously is one� Bisimulations are also closed under inversion and
hence under equivalence closure or partial equivalence closure� The symmetric
interior of a simulation is a bisimulation whenever the TS is deterministic�

For pointed transition systems� one could say that they are complete i� every
state is reachable� However� this tends to be a stronger condition than we are
really interested in� we only want to reach states up to bisimilarity�

De�nition ���� A state s is called complete i� �s� � Sta� �s�� � Sta� �s�� s��

s� w s���� It is called bicomplete i� �s� � Sta� �s�� � Sta� �s�� s��
 s� � s���� A
pointed TS is �bi
� complete i� its initial state � is �bi
� complete�

For a corresponding notion of soundness we could declare a subset of states
as error states with the idea of declaring a TS as sound if no error state is
reachable and a state s as sound if no error state is reachable from s� In the
presence of error states� the notion of completeness should be modi�ed� i�e� we
are only interested to reach each sound state �up to bisimilarity��

De�nition ���� A typed transition system �short� TTS� is a structure �A�B� ��
such that A and B are pointed transition systems and � � LabA � LabB� Given
a TTS �A�B� �� we de�ne the associated untyped transition system A � B as the
pointed TS given as�

� the set of states StaA � StaB �
� the set of labels LabA � LabB�
� the initial state ��A� �B��
� the transition relation�

�X�Y �
�x�y�
�� �X �� Y �� � x � y
X

x
�� X �
 Y

y
�� Y ��

It is beyond the scope of this paper to motivate the de�nition of TTS in depth
��� However� the reader may observe in the course of this paper how the general
de�nition neatly specialises to type systems for functional programming�

��� Completeness and ML

Traditionally ��� the operational semantics of ML is de�ned through a ternary
relation E � e� v� meaning that the expression e evaluates in the environment
E to the value v� We can turn this into a transition system M by taking
environments as states and de�ning transitions as follows�

E
�e�x�
�� E�x �� v � E � e� v

In other words� we can evaluate an expression and bind the resulting value to
a variable� This corresponds very closely to the behaviour of an SML interpreter
which �on top
level� evaluates declarations rather than expressions� We can turn
M into a pointed TS by choosing the empty environment as initial state�

The structure of a type system for ML is similar� we have a similar ternary
relation� with type environments instead of environments and types instead of
values� The labels �e� x� are exactly the same� We can therefore turn a type sys

tem into a corresponding pointed transition system T and form a TTS �M�T� ��
where ��	 is the equality relation� While M can be seen as the underlying un

typed language� M � T is the typed one in which we only evaluate well
typed
expressions� each state in M � T is a pair of a type environment and a �value�
environment� and in each reachable state the types and values ��t	 in a certain
sense� One can identify various primitive error scenarios in ML which should not
occur on run
time� e�g� using a number as a function� We can add corresponding
transitions to error states whenever these scenarios occur � by the soundness of
ML�s type system these error states are unreachable� The completeness question
is whether there are unreachable states in which the types and values still �t
�i�e� the state is sound�� but which cannot be simulated by reachable ones�

ML�s type system limits the way a recursive function can be used in its
own de�nition� although the function is polymorphic� the recursive calls cannot
exploit this polymorphism�

fun f x � f f

This function declaration does not type
check in SML� although f is perfectly
sound �for type � � ��� it is the totally unde�ned function� moreover� the
declaration would type
check in an extension of ML�s type system that guar

antees soundness ��� But the example only shows that certain sound function
declarations do not type
check� The corresponding value is still ML
de�nable�

fun g x � g x

which does type
check such that the value of g is equivalent to the value of f
w�r�t� all function types� i�e� replacing one by the other in some environment E
results in a bisimilar E� and thus this example does not show incompleteness�

Let us have a look at another example that makes use of these features and
is limited by ML�s approach to recursion in a more substantial way�

datatype �a lift � One � An of �a

�� unlift� ��a lift� list 	
 �a list ��

fun unlift �� � ��

� unlift �An x��xs� � x��unlift xs

� unlift �One��xs� � unlift xs

datatype �a lam �

Var of �a � App of �a lam � �a lam � Lam of ��a lift� lam

�� fvars� �a lam 	
 �a list ��

fun fvars �Var x� � �x�

� fvars �App �tu�� � fvars t � fvars u

� fvars �Lam t� � unlift �fvars t�

The idea of the example is that the type �a lam is the type of �
calculus terms
with de Bruijn indices ��� where we leave the control over increasing and de

creasing indices to the type system� For example� the named �
term �x��y�x
has a de Bruijn representation of ��� which is expressed as Lam�Lam�Var �An

One���� The function fvars is supposed to compute the list of free vari

ables of a term� We can observe that this function de�nition does not type

check in SML� because the last recursive call uses fvars in the type instance
��a lift� lam� ��a lift� list�

Thus we have a similar problem as in the earlier example� a sound function
declaration that is rejected by ML�s type system� The similarity ends here�
This time there is no way to de�ne an equivalent environment in SML and we
shall later see why� The problem arises whenever we try to de�ne a non
trivial
recursive function on a recursive datatype with a non
regular recursive structure�

One could argue how useful these types are in practice� but this is not the kind
of question I am concerned with in this paper� It is my opinion that completeness
is a desirable property from a language design point of view� Completeness for
ML can be achieved by either extending the type system of ML to support poly

morphic recursion� or restricting it by banning non
regular recursive datatypes�
Strictly speaking� the �rst part of this claim is a conjecture� since the standard
argument to show completeness �� does not go through for this language�

��� Sketch of Incompleteness Proof

How can we show there is no ML
function that implements fvars�
Given a term of type �a lam it is clear that any implementation of fvars has

to �look at	 all Lam constructors in its argument� �Looking at	 a constructor
means to match it through pattern matching� i�e� each Lam is matched by a cor

responding pattern� Notice that nested occurrences of Lam have di�erent types�
ML type checking guarantees that we only match values of type t against pat

terns of type t� so how does a well
typed implementation of fvars �nd patterns

of all these types� The answer is� it can�t� One can eliminate ML polymorphism
by making enough syntactic copies of the polymorphic bits� but this technique is
doomed to fail for proper polymorphic recursion where �enough	 means� arbit

rarily many� Technically� the proof proceeds by showing that a certain relation
between environments and type environments which holds for all reachable en

vironments forbids an implementation of fvars� it is the same relation one would
typically use for a soundness proof�

There is a connection with the pumping
lemma of formal language theory�
if we view the type �a lam as an in�nite tree in the style of �� then we can
observe that this tree is not regular� it has in�nitely many di�erent subtrees�
ML functions can only fully recognise values of regular types�

� Operational Semantics

To make the claims precise we present here the operational semantics for a small
functional programming language with recursion and pattern matching�

e ��� x j b j c j ��m� j
�e e�� j �e� e�� j
let x � e� in e j
�x x � e� in e

m ��� p�e j p�e�m

p ��� x j b j �c p� j �p� p��

v ��� b j c j c � v j �v� v�� j �E�m�

w ��� v j hei

E ��� � j E�x �� w

R ��� E j �

Table �� Abstract Syntax

We consider expressions over the abstract syntax as shown in left
hand
column of table �� for which we assume the usual notational conventions for
enriched �
calculi� regarding the omission of parentheses etc� The metavariable
e ranges over expressions� p over patterns� and m over matches �lists of pairs of
patterns and expressions�� x ranges over a set of variables and b and c over a
set of constructors where b are thought to be nullary constructors� The set of
variables is assumed to be countably in�nite� In a match p��e�� � � � � pn�en the
variables in pi bind variables in ei� Expressions of the form �xx � e� in e model
recursive bindings� i�e� x is recursively de�ned by e��

This language is in similar form included in most functional programming
languages� However� it is signi�cantly more complex than the simple expression
languages usually considered in related research papers� for example ��� The
reason for this complication lies in the issues we want to address which are
inextricably linked with both pattern matching and recursion�

To de�ne an operational semantics for this language we need a notion of value
and environment� as de�ned in the right column of table �� The metavariable v

ranges over values which are either constructors� constructor applications� pairs
of values� or closures� w ranges over environment entries which are either values
or expressions� the latter being a special way of representing �xpoints� E ranges
over environments� �nite lists of pairs of variables and environment entries� R
ranges over pattern matching results which are either environments or �� where
� indicates that matching has failed�

We now can de�ne the mentioned ternary evaluation relation E � e� v� We
also de�ne two �
place relations� E� v � p� R meaning that the value v matches
the pattern p giving rise to the matching result R� E� v � m� v� meaning that
the function denoted by m �with free identi�ers determined by E� evaluates to
v� when applied to the argument v�

��� Pattern Matching and Function Application

The rules for pattern matching can be given independently from the others� see
table �� The rules for pattern matching are straightforward and follow essen

tially the rules for SML �� with � playing the r�ole of FAIL� The only notable
di�erence is that instead of returning the environment consisting of exactly the
bindings caused by the pattern matching� we return the extension of the current
environment with such bindings�

E� v � x� E�x �� v

E� b � b� E

b �� b�

E� b� � b� � E� c � v � b� �

E� v � p� E�

E� c � v � �c p�� E�

c �� c�

E� c� � v � �c p� � � E� b � �c p� � �

E� v � p� E� E�� v� � p� � R

E� �v� v�� � �p� p��� R

E� v � p� �

E� �v� v�� � �p� p�� � �

Table �� Pattern Matching

The rules for function application �table �� and expression evaluation are mu

tually recursive� Function application is also de�ned very similar to ��� patterns
are tried from left to right�

��� Expression Evaluation

The rules for expression evaluation in table � di�er from SML�s� because we have
chosen a di�erent and slightly more expressive method of unravelling recursion�

We have three rules for variable access� �i� we skip irrelevant environment
entries� �ii� we access value entries� and �iii� we unravel recursive entries� The
evaluation of constructors and �
abstractions �nishes instantly� as they are more

E� v � p� E� E� � e� v�

E� v � p�e� v�

E� v � p� � E� v � m� v�

E� v � p�e�m� v�

E� v � p� E� E� � e� v�

E� v � p�e�m� v�

Table �� Function Application

x �� x� E � x� v

E�x� �� w � x� v E�x �� v � x� v

E�x �� hei � e� v

E�x �� hei � x� v

E � b� b E � c� c E � ��m�� �E�m�

E � e� v E � e� � v�

E � �e� e��� �v� v��
E � e� c E � e� � v

E � �e e��� c � v

E � e� �E��m� E � e� � v E�� v � m� v�

E � �e e��� v�

E � e� � v E�x �� v � e� v�

E � let x � e� in e� v�

E�x �� he�i � e� v

E � �x x � e� in e� v

Table �� Expression Evaluation

or less considered values themselves� The rules for pairs and constructor ap

plication are self
explanatory� Closure applications are de�ned in terms of the
judgement form E� v � m � r� The rule for let does what one would expect�
�x is similar� but the binding is recursive and the evaluation is delayed until the
recursive identi�er is used� So one can use �x to simulate lazy evaluation�

��� Properties

As already mentioned we can de�ne a pointed transition system based on the
operational semantics�

De�nition ���� The pointed transition system M is de�ned as follows� envir

onments are states� the empty environment � is the initial state� transitions are
de�ned as�

E
�e�x�
�� E�x �� v � E � e� v

A transition of M can be viewed as evaluating a declaration in an ML inter

preter� the states of M correspond closely to those states of an �untyped� ML
interpreter the user can interact with�

Proposition ���� M is deterministic� more speci�cally�

�� Let E � e� v and E � e� v�� Then v � v��

�� Let E� v � m� v� and E� v � m� v��� Then v� � v���
	� Let E� v � p� R and E� v � p� R�� Then R � R��

Determinism simpli�es the reasoning about programs signi�cantly� In par

ticular� bisimulation equivalence and trace equivalence coincide for deterministic
transition systems� this means here that two environments are indistinguishable
i� they evaluate the same sequences of expressions� One can sharpen that result�
two environments are indistinguishable i� they evaluate the same expressions�

Since the bindings for program variables are purely syntactic� environments�
values and expressions can be seen as terms over some many
sorted �rst
order
signature and similarly the three judgement forms �plus the inequality of con

structors and variables� as �rst
order predicate symbols� This allows the reading
of our speci�cation of the evaluation relation as a �rst
order logic program �a
set of Horn clauses�� which has exactly the desired meaning once we augment it
with some symbols for the formation of constructors and program variables and
the appropriate clauses for the inequality predicates for these sorts�

Consequences of this logic program are not only the judgements of the opera

tional semantics but also certain open judgements� e�g� E� b � b� E is not only
derivable for any concrete E and b but also as an open judgement where E and
b are meta
variables ranging over environments and constructors� Remark� we
have notationally suppressed injections into coproducts� As always� derivable
judgements are closed under substitutions �of meta
variables�� For simplicity�
we shall only consider meta
variables for values and not for other sorts�

Terms with meta
variables can be preordered by the subsumption preorder
�see for instance ���� t � u � ��� b��t� � u� We write b� for the homomorphic
extension of a substitution � to a function on �rst
order terms�

De�nition ���� Suppose J is a derivable judgement� A principal judgement
for J is a derivable judgement J� such that J� � J and for all J � � J we have
J� � J ��

In other words� a principal judgement of J is an initial object in the preordered
category of derivable judgements �with order �� with terminal object J � We
simply say that J is principal if it is a principal judgement of itself�

Proposition ���� For any derivable judgement there is a principal judgement�

One can show this proposition by constructing a principal judgement for a de

rivable judgement J � take its derivation tree� form the principal judgements of
the premises and �nd the mgu for a uni�cation problem that makes them �t
the premises of the last applied rule� This is a well
de�ned construction because
each derivable judgement �of this language� has a unique derivation tree�

Given an �open� judgement J � we say that a meta
variable x occurs negat�
ively in J i� it occurs �left from �	� e�g� x occurs negatively in the application
judgement E� v � m� v� i� it occurs in either E or v or both�

Lemma ���� Let J be a principal judgement� Then no meta�variable occurs
more than once negatively in J �

Proof� Sketch� by induction on the derivation tree� we simply replace shared by
distinct meta
variables and obtain a more general derivable judgement� ut

For lemma��� it is vital that we have restricted ourself to meta
variables of value
sort� meta
variables for constructors or program variables may well be shared
negatively in principal judgements�

Lemma ��	� Let J � J ��c � v�x be a principal judgement such that x occurs
negatively in J �� Then the derivation tree of J contains a subtree with conclusion
of the form E� c � v � �c p�� E��

Proof� Sketch� the proof goes by induction on the height of the derivation tree
of J � The argument is typically as in this example� let J be the judgement
E � �e e�� � v�� Unless e evaluates to some c� �a case we ignore here� it must
have been derived from the premises J� � E � e � �E��m�� J� � E � e� � v���
and J� � E�� v�� � m � v� for some E�� m� and v��� We can consider the
principal judgements J �i for the judgements Ji and observe that J is derived
from the mgu of a system of equations �making the components of the J �i �t
to the schema of the closure
application rule� none of which mentioning the
constructor c� This means that at least one of these principal judgements has
a negative occurrence of some c � v� �which is mapped by the mgu to c � v��
we can apply the induction hypothesis to the corresponding premise and obtain
the desired result by applying the mgu to the derivation trees of the principal
judgements� ut

Lemma ��� says informally that when we need to read a constructor in order
to get a result we have to do so by matching a constructor pattern against the
value that has this constructor on top� This should hardly be surprising� The
restriction to negative occurrences is necessary� because we can produce a con

structor value in a positive occurrence by evaluating a constructor application�

Consider the values vn � Lamn�Var�Ann�v��� �we use superscript for iterating
functions� and v�n � Lamn�Var�Ann���One��� of type t lam where t is the type
of v� Clearly� vn �contains a free variable	 and v�n does not� In other words�

Lemma ��
� Suppose �E�m� implements fvars�

�� The judgements J � E� vn � m � c � �v� b� and J � � E� v�n � m � b are
derivable
 where b is � � and c the list constructor ���

�� The principal judgement of J � has the form E�� v
�
n � m� b�

Proof� The �rst part is obvious as this is the required behaviour of fvars� Sup

pose the principal judgements of J and J � are E�� v

��
� � m � vc and E�� v

��
� �

m� vb� respectively�
By assumption there are substitutions 	i mapping Ei to E� alsoc	��v��� � � v�n

which implies v��� � v�n� By lemma ��� the meta
variables in v��� and E� are
disjoint� If v��� � v�n then we also have v��� � vn and by the previous observation
there is a substitution
 such that b
�v��� � � vn and b
�E�� � E� In particular� we

can derive E� vn � m� b
�vb�� By determinism and the fact we can derive J we
must have b
�vb� � c � �v� b�� We also have c	��vb� � b� Since b and c are di�erent
constructors� vb must be a meta
variable� By determinism and substitutivity of
judgements vb must occur in either E� or v��� � It cannot occur in v��� � because
b � c	��vb� does not occur in v�n� it cannot occur in E� either� because the
substitutions
 and 	� agree on E�� Hence the assumption v��� � v�n leads to a
contradiction and we must have v��� � v�n since v�n is ground� ut

Lemma ��� means that we can apply lemma ��� to all constructors in v�n� e�g�
for each Lam there has to be a corresponding pattern match� Since this is true
for the principal judgement it trivially follows for J � itself�

Corollary ���� Consider the judgement J � of lemma ��� �for some given n�
Its derivation tree contains pattern matching judgements of the form
Ek� Lam

k�Var�Ann���One��� � �Lam pk�� E�
k for all k
 � � k � n�

Claim� For any occurrence of a pattern p �or� expression e�� matchm�� in the
derivation tree of E � e � v �including v� there is a corresponding occurrence
of p �or e�� m�� respectively� in either E or e� we make analogous claims for
derivation trees of E� v � m� v� and E� v � p� E��

That any occurrence of a piece of syntax can be traced back to E or e is
obvious from the shape of the rules� no rule uses �free	 syntax in their premises�
A pattern p may occur several times in E and�or e� but each occurrence of p in
the derivation tree can be traced to a particular occurrence of p in either E or
e� because no rule uses repeated patterns in its conclusion� One could make this
tracing precise by giving patterns unique labels� similarly to labelling techniques
for the �
calculus used for the tracing of residuals of redexes�

��� let�expansion

The presence of let
expressions in the language only becomes signi�cant once
we type them in a special way� operationally� the expression let x � e in e� is
clearly equivalent to ��x� e�� e� but ML�s typing rules di�er� However� there is
a di�erent way of removing let
expressions that preserves well
typedness� it is
expressed by the second
order rewrite rule letx � e inZ�x� � Z�e�� This rule
replaces all free occurrences of x in e� by e�

The rule is only correct if we prevent the free program variables of e to
be bound by the substitution� This is automatically taken care of if we use
higher
order abstract syntax for the programming language such that its binding
constructs �let� �x� and �� are all expressed in terms of the binding construct
of the rewrite language� Alternatively� we can stick to �rst
order terms and
�rst
order rewriting and explicitly rename bound program variables whenever
necessary� We leave the details to the imagination of the reader and use � for
the pre
congruence closure of this rewrite relation�

Proposition ��� The relation� �on environments and values is a subrelation

of w� also
 E
�e�x�
�� E� and e� e� imply �E��� E

�e��x�
�� E�� and E� w E���

Proposition ��� can be proved most easily for a �rst
order presentation of ��
The statement is only in terms of w rather than � since the expression e in
let x � e in e� needs to be evaluated for the evaluation of the whole expression
but this might be avoided by the expansion� most notably if x does not occur at
all in e��

Proposition ����� The relation � is strongly normalising�

As a consequence any environment has a normal form w�r�t� the relation� which
simulates it� the normal forms of� do not contain let
expressions� Thus for any
implementation �E�m� of fvars its let
free normal form �E��m�� implements
fvars as well�

� Type System

We brie�y repeat here the type system of SML �� adapted to our little language�
First we give an abstract syntax for types� type schemes and type environments�
Types t are �rst
order terms over a signature with two distinguished binary func

tion symbols ��	 and ��	� A type scheme 	 has the form ���� � � � ��k�t which
we abbreviate as ��k� t� Type environments B associate �program� variables
with type schemes� the notation is analogous to environments�

Type schemes can be seen as polymorphic types� The � sign in ��� 	 is a
variable binder� i�e� FV���� 	� � FV�	� n f�g� and for types� FV��� � f�g and
FV�f�t�� � � � � tn�� �

S
��i�nFV�ti�� Free variables for type environments are

analogous to environments� FV�B�x �� 	� � FV�	� � FV�B�� FV��� � �� We
write 	 � t i� for some type variables ��� � � � � �k and some types t�� t�� � � � � tk we
have 	 � ���� � � � ���k� t� and t��t����� � � � � tk��k � t� We write ClosB�t� for
some type scheme ��k� t such that f��� � � � � �kg � FV�t� n FV�B��

In the following we will assume the existence of a function A that maps
constructors to type schemes� Moreover� this function should have the following
properties� �b��f� t�� � � � � tk�A�b� � ��n�f�t�� � � � � tk�
f �� f���g which is the
assumption that there are no nullary constructors for function and product types
and similarly for non
nullary constructors� �c� �f� t� t�� � � � � tk� A�c� � ��n� �t�
f�t�� � � � � tk��
 f �� f���g
 FV�t� �

S
��i�k FV�ti�� The condition on FV�t�

ensures that the type checking equivalent of pattern matching is deterministic�
i�e� whenever B� t � p � B� and B� t � p � B� then B� � B�� This property is also
crucial for the soundness of pattern matching�

Similar to the presentation of evaluation� the type system is given in three
parts� rules for type checking abstractions of the form B � m � t� rules for
type
checking patterns of the form B� t � p � B� and rules for type
checking
expressions of the form B � e � t�

As one would expect� the rule that crucially restricts the interaction between
recursion and polymorphism is the typing rule for the �x construct� By replacing
the premise B�x �� t� � e� � t� in that rule by the two premises B�x �� 	 � e� � t�

and ClosB�t
�� � 	 we could transform the type system into one with full
blown

polymorphic recursion�

B� t � p � B� B� � e � t�

B � p�e � t� t�
B � p�e � t B � m � t

B � p�e�m � t

B� t � x � B�x �� t

B� t � p � B� B�� t� � p� � B��

B� t� t� � �p� p�� � B��

B � b � t
B� t � b � B

B � c � �t� � t� B� t� � p � B�

B� t � �c p� � B�

A�b� � t
B � b � t

A�c� � t
B � c � t

B � m � t
B � �m � t

	 � t
B�x �� 	 � x � t

x �� x� B � x � t
B�x� �� 	 � x � t

B � e � �t� � t� B � e� � t�

B � �e e�� � t
B � e � t B � e� � t�

B � �e� e�� � t� t�

B � e� � t� 	 � ClosB�t
�� B�x �� 	 � e � t

B � let x � e� in e � t
B�x �� t� � e� � t� B�x �� t� � e � t

B � �x x � e� in e � t

Table �� Type System

De�nition ���� The pointed transition system T is de�ned as follows� type
environments are states� the empty type environment � is the initial state� trans

itions are de�ned as�

B
�e�x�
�� B�x �� 	 � �t� B � e � t
 ClosB�t� � 	

Although T is not deterministic �an expression can have many types�� it is
still the case that bisimulation and trace equivalence coincide and we also have
a similar compression property as in the operational semantics� i�e� two type
environments are equivalent i� they type
check the same expressions� More
speci�cally� it is not di�cult to see that two type environments are equivalent i�
they have the same domain and are pointwise equivalent� where the equivalence
of type schemes just means that they can instantiate to the same types� This
equivalence is exactly the equality of type schemes and static environments in
the static semantics of SML ���

Proposition ��� carries over to the transition system T � judgements are sub

stitutive and free syntactic type variables are just like meta
variables for types�
The let
expansion then operates on types and type schemes like a �
reduction�
As a consequence� the let
free normal form of any well
typed expression is well

typed �in the same type environment�� Together with the original proposition ���
this means in particular that any well
typed implementation of fvars gives rise
to a well
typed let
free implementation�

From M and T we can de�ne the typed transition system M � T determined
by the relation l � l� � l � l� between labels� The states and transitions of

v � ��� t
v � t�t���

v � 	
v � ��� 	

v � t v� � t�

�v� v�� � t� t�
E � B B � m � t

�E�m� � t
� � b � t
b � t

� � c � �t� � t� v � t�

c � v � t
� � c � t
c � t

� � �
v � 	 E � B

E�x �� v � B�x �� 	
E � B B�x �� t � e � t
E�x �� hei � B�x �� t

Table 	� Types of Values and Environments

M � T capture the states and evaluations of a typed ML interpreter� we only
ever evaluate expressions which are well
typed in the current environment and
the resulting value is asserted the type we obtained from this type
check� One
can formalise and prove a subject reduction theorem for M � T by de�ning a
well
typedness predicate P for its states and showing that P is an invariant� the
soundness of M � T would additionally require that the initial state satis�es P �

There is another way of de�ning exactly the same transition system� simply
by de�ning judgements like �E�B� � e� �v� t� as the combination of E � e� v
and B � e � t� By considering the various cases for e we can derive inference
rules for this judgement form which are largely de�ned in terms of themselves�
For example� for closure application we get the following derived rule�

�E�B� � e� ��E��m�� t� � t� �E�B� � e� � �v�� t�� E�� v� � m� v

�E�B� � �e e��� �v� t�

In general� the application judgement E�� v� � m � v of this derived rule has
no corresponding typing judgement� In order to get such a thing we need some
assumptions about the relationship between E and B� Table � de�nes such a
relation E � B� which intuitively means that E has �type	 B� Notice that this
typing judgement is decidable and consequently it is much more restrictive than
a proper semantic notion of type inhabitance would be like� Claim� if E � E�

and E � B then E� � B�
The relation E � B is an invariant of the transition system M � T � i�e� states

�E�B� satisfying E � B have only transitions into other such states�

Proposition ���� Let E � B and �E�B� � e� �v� t�� Then v � t�

Proof� Sketch� we make analogous claims for pattern matching and function
application and prove the result by induction on the height of the derivation tree�
The non
trivial cases are closure application and the unravelling of recursion�

Consider our derived rule for closure application� We can apply the induction
hypothesis to the premise �E�B� � e� ��E��m�� t� � t� which gives us �E��m� �
t� � t� By the rules for types of values this is the case i� there is a B� such E� � B�

and B� � m � t� � t� Thus we also have �E�� B��� �v�� t�� � m� �v� t�� Moreover�
E� � B� as we have already seen and v� � t� follows from the induction hypothesis
of the second premise� Thus we can apply the induction hypothesis to this
statement as well �its derivation height is equal to the height of E�� v� � m� v�
and get the result�

Unravelling recursion� Assume E � E��x �� hei with �E�B� � x � �v� t�
and E � B� The �rst condition means B � x � t and E � e� v� from the second
condition we get B � B��x �� t� and B � e � t�� Thus B��x �� t� � x � t which
implies t � t�� Putting all of this together gives us �E�B� � e � �v� t� and we
can use the induction hypothesis� ut

Corollary ���� For any reachable state �E�B� in M � T we have E � B�

Proposition ��� can be regarded as a subject reduction theorem of the typed
language and its corollary as a �part of a� soundness statement� The subject
reduction proof proves a bit more than just the proposition� from E � B and
�E�B� � e � �v� t� it constructs a derivation tree in which all evaluation �ap

plication� pattern matching� steps are of such a guarded form�

Consider any pattern match �E�� B��� �v�� t�� � p � �E�� B�� in the deriva

tion tree of �E�B� � e� �v� t� such that B contains only types �no proper type
schemes� and E and e are let
free� As we mentioned earlier� the pattern p can be
traced back to either E or e� In the former case� the judgement B�� t� � p � B�

occurs in the derivation tree of E � B� in the latter case in the derivation tree of
B � e � t� This follows from the way these trees are constructed in the subject
reduction proof� The absence of polymorphic bindings is vital� whenever an
identi�er x is accessed then we can create a proof that v � t �its value v has type
t� from the proof that E � B� if B is monomorphic then this derivation occurs
as a subderivation of E � B� The further absence of let
expressions is necessary
to maintain the absence of type schemes for the full attributed derivation tree�

Theorem ���� No reachable state in M � T contains an implementation of
fvars�

Proof� Suppose �E�B� were reachable and contained such an implementation
�E��m��� We know E � B from corollary ���� From proposition ���� we know
that E has a let
free normal form E �� E� and it is easy to see that E� � B� By
proposition ��� we have E w E�� In particular� if we have E�� v

�
n � m� � b �v�n

and b as mentioned earlier� then we also have E�
�� v

�
n � m�

� � b for the let
free
normal form �E�

��m
�
�� with a corresponding typing judgement B� � m�

� � t� t��
From corollary �� we know for any n that the derivation tree of E�

�� v
�
n � m

�
� � b

contains judgements of the form Ek� Lam
k�Var�Ann���One��� � �Lam pk� � E�

k

�for any � � k � n� each of which having a corresponding typing judgement
Bk� tk � �Lam pk�� B�

k�
If B� is monomorphic then we know that these typing judgements occur in

the proofs of either E� � B� or B� � m�
� � t � t�� But this is impossible because

each tk is �must be� di�erent and for su�ciently large n there simply are not
enough types in these proofs� If B� is not monomorphic then we can transform

�B��m
�
�� E

�
�� into something equivalent but monomorphic by linearising �E�

��m
�
��

in its polymorphic program variables� if x is used in di�erent type instances in
the proofs of E�

� � B� and B� � m�
� � t � t� then we introduce a fresh program

variable xt�� for every type instance t�� of x�s type scheme that occurs in these
proofs and replace each occurrence of x in m�

� by the corresponding xt�� � we bind
xt��to t�� and the old value of x� respectively� Notice that thunks hei are never
polymorphic� i�e� x must be bound to some v �never hei� in E�

� if it is bound to
a proper type scheme in B�� ut

Corollary ���� M � T is incomplete�

� Final Remarks

We have shown that ML�s type system is incomplete� there are values that
can be soundly given a type t which cannot be expressed in ML� even modulo
observational equivalence� One can show with a standard argument �see ���
that ML�s type system is complete for datatypes with a regular tree structure�
Considering the extended �undecidable� type system of ��� it seems likely that
it is complete as well but the mentioned standard argument does not apply here�

Acknowledgements

Thanks to Claudio Russo for carefully reading an earlier version of this paper�
Also thanks to the PLILP referees for some helpful suggestions�

The research reported here was supported by SERC grant GR�J������

References

�� F� Cardone and M� Coppo� Two extensions of Curry�s type inference system� In
P� Odifreddi� editor� Logic and Computer Science� pages ����� Academic Press�
�����

�� N� G� de Bruijn� Lambda calculus notation with nameless dummies� a tool for
automatic formula manipulation� Indagationes Mathematicae� ����������� ����

�� Nachum Dershowitz and Jean�Pierre Jouannaud� Rewrite systems� In Jan van
Leeuwen� editor� Handbook of Theoretical Computer Science� volume B� chapter ��
pages �������� Elsevier� �����

�� Fritz Henglein� Type inference with polymorphic recursion� ACM Transactions on

Programming Languages and Systems� ��	�
��������� �����
�� Stefan Kahrs� About the completeness of type systems� In Proceedings ESSLLI

Workshop on Observational Equivalence and Logical Equivalence� ����� 	to appear
�
�� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML�

MIT Press� �����
� Mads Tofte� Operational Semantics and Polymorphic Type Inference� PhD thesis�

University of Edinburgh� ����� CST�������

