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1 Introduction

Backwards proof search and theorem proving with the standard cut-free sequent
calculus for the propositional fragment of intuitionistic logic, Gentzen’s LJ , is
inefficient for three reasons. Firstly the proof search is not in general terminat-
ing, due to the possibility of looping. Secondly it will produce proofs which are
essentially the same; they are permutations of each other, and correspond to the
same natural deduction. Thirdly there are choice points where it has to be decided
which of several rules to apply.

The sequent calculus MJ for intuitionistic logic was introduced (with another
name, LJT ) by Herbelin in [5]. This uses Girard’s idea of a special place for
formulae in the antecedent, the stoup first seen in [4]. The calculus was developed
by Dyckhoff and Pinto ([1], [2]) because it has the property that proofs are in
1-1 correspondence with the normal natural deductions. MJ is a permutation-
free sequent calculus; it avoids the problems of permutations that the cut-free
sequent calculus of Gentzen has. The propositional fragment of the calculus MJ
is displayed in Figure 1. This removes the second of the problems (and partly
addresses the third). However, the naı̈ve implementation of this calculus will lead
to the possibility of looping.
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 is multiset union.

Figure 1: Propositional Fragment of the calculus MJ .

Looping may easily be removed by checking whether a sequent has already
occurred in a branch. Implementation of this is extremely inefficient as it requires
too much information to be stored. Recent work by Heuerding et al [6] (the intu-
itionistic case of which is closely related to that of Gabbay in [3]) shows how to
use a history to prevent looping in a far more efficient way.

In this paper the history mechanism is developed in two ways and applied to
MJ . Both have advantages and disadvantages. The resulting calculi are then
implemented in prolog to give efficient theorem proving and partial proof search.
We call the new calculus MJHist, the two varieties ‘Swiss’ and ‘Scottish’.
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2 The Use of Histories to Prevent Looping

Looping can very easily occur in MJ , for example:

....
�p � p� � p� p

....
�p � p� � p� p

�p � p� � p� p � p
��R�

�p � p� � p
p
�� p

�ax�

�p � p� � p
�p�p��p
�� p

��L�

�p � p� � p� p
�C�

The sequent �p � p� � p � p may continue to occur in the proof tree for this
sequent using the MJ calculus. We can see that there is a loop, but we want to be
able to automate this intuition. We need a way to detect and prevent such loops.

One way to do this is to add a history to each sequent. The history is the set
of all sequents that have occurred so far in a proof tree. After each backwards
inference the new sequent (without its history) is checked to see whether it is a
member of this set. If it is we have looping and we backtrack. If not the new
history is the union of the new sequent (without its history) and the old history,
and we try to prove the new sequent, and so on. Unfortunately this method is very
inefficient as it requires long lists of sequents to be stored by the computer, and all
of this list has to be checked at each stage. When the sequents are stored we are
keeping far more information than is necessary. It would be nice to cut down the
amount of storage and checking to the bare minimum needed to prevent looping
from occurring.

The basis of the reduced history is the realisation that one need only store
goal formulae in order to loop-check. The rules of MJ are such that the context
cannot decrease; once a formula is in the context it will remain in the context of all
sequents above it in the proof tree. For two sequents to be the same they obviously
need to have the same context. We may empty the history every time the context
is extended, since we will never get any of the sequents below the extended one
again. All we need store in the history are goal formulae. If we come across a
goal already in the history we have the same goal and the same context as another
sequent, that is, a loop.

There are two slightly different approaches to doing this. There is the straight-
forward extension and modification of the calculus described in [6] (which I shall
call a Swiss history), and there is an approach which involves storing more for-
mulae in the history, but that detects loops more quickly. This we will describe as
the Scottish history, and the implementation is in some cases more efficient than
the Swiss method. The calculus for the Swiss approach is displayed in Figure 2
and for the Scottish approach in Figure 3 (� denotes the empty history).
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Figure 2: The propositional calculus MJHist, Swiss style
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Figure 3: The propositional calculus MJHist, Scottish
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3 Theorem Proving Using the Swiss History

In this section we shall first look at the theory of the Swiss calculus, and then we
shall look at an implementation of this calculus in prolog. Before continuing, we
should point out that the calculi we describe as Swiss are significantly different
from the one in [6]. This is partly because of the stoup in MJ and partly because
as we are trying to focus on the history mechanism, we have not included the
subsumption checks that the calculus in [6] uses.

3.1 Theory forMJHist, Swiss style

First note that whereas in MJ negation was defined via the equivalence �A 	
A � �, in MJHist it has its own rules. These rules are just special cases of the
rules for �. For the case of ��L� there is only one premiss since the other that
would be produced by ��L� is an instance of ���, and is not needed.

Also notice that there are two rules for ��R�. These correspond to the two
cases where the formula is and isn’t in the context. As noted above this is very
important for MJHist. Finally note that the context is a set, not a multiset. We
may only have one copy of a formula in the context, but the formula in the stoup
may also be in the context.

The calculus works in a similar way to that of [6]. Right rules are applied to a
sequent until the goal formula is either a propositional variable, falsum, or a dis-
junction (note that disjunction isn’t covered in [6], and requires special treatment).
Then a formula from the context is selected and placed in the stoup by the �C�
rule, and left rules are applied to it (this focussing obviously does not occur in [6]).
The history loop checking occurs in the ��L� rule. The left premiss of this rule
has the same context as the conclusion, but the goal is likely to be different. We
store the goal of the conclusion in the history and then continue backwards proof
search on the left premiss. The loop detection also occurs at this same point. If
the goal of the conclusion of the ��L� rule is already in the history, then there is
a loop (the context can’t have been extended and the goal is the same as in some
other sequent), and so this branch is not pursued. We look elsewhere for a proof.
Likewise for ��L�.

There is another place where the rules are restricted in order to prevent loop-
ing. This is the condition placed on the ��L� rule. For the ��R� rule (which
attempts to extend the context) there are two cases corresponding to when the
context is and isn’t extended. Something similar is happening for the ��L� rule.
In both the premisses of the rule a formula may be added to the context. If both
contexts really are extended, then we continue building the proof tree. If one or
both contexts are not extended then the sequent with the non-extended context will
be the same as some sequent at a lesser height in the proof tree. That is, there is a
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loop. This is easy to see: the context and goal of this premiss are the same as that
of the conclusion, the sequent before the stoup formula (or a formula containing
it as a subformula) was selected into the stoup must be the same as the premiss
sequent.

Next we need to prove that MJHist and MJ are equivalent, that is, they prove
the same sequents. First we prove that MJHist without restriction � on the �C�
rule is equivalent to MJ , then we shall prove the admissibility of the restriction.

First we need definitions for the measures that we will use in inductive proofs.

Definition 1 The height of a sequent in a proof tree is defined as follows: The
root of the tree has height 0. If sequent T is a premiss of rule �R� with conclusion
S of height n, then sequent T has height n+1.

Definition 2 The depth of a proof is defined as follows: The leaves of the proof
tree have depth 1. If sequent T is obtained from sequent S with proof of depth n
by forward application of a one premiss rule, then the proof of T has depth n+1.
If sequent T is obtained from sequent S with proof of depth n and sequent R with
proof of depth m by forward application of a two premiss rule, then the proof of T
has depth max(n, m)+1.

Definition 3 The complexity of a formula is defined as follows: Let c(F) de-
note the complexity of formula F. If X is a propositional variable, then c(X)=1.
Also, c(�)=1. Then define inductively, c(A � B)=c(A)+c(B), c(A � B)=c(A)+c(B),
c(A�B)=c(A)+c(B)+1, c(�A)=c(A)+2.

Lemma 1 Weakening is an admissible rule of MJ . That is, if � � B (or �
S
��

B) is provable in MJ then A��� B (A, �
S
�� B) is too. i.e.

�� B
A��� B

�W �
�

S
�� B

A��
S
�� B

�W �

are admissible.

PROOF: An easy induction. Omitted. �

Theorem 1 The systems MJ and MJHist (without �) are equivalent. That is, a
sequent S is provable in MJ if and only if S� � (the sequent with empty history) is
provable in MJHist (without �).

PROOF: a) If S� � is provable in MJHist then S is provable in MJ . This result
is trivial. Given the proof in MJHist, simply strip the history from each sequent
of the proof tree. Where before we had an MJHist inference we now have a valid
MJ inference. The only exception to this is where the MJHist rule is ��R�� (and
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analogously ��R�). However, by noting that an implicit weakening has occurred
at this point we can (by adding an extra step) make a valid MJ inference of the
form required. We transform the MJHist inference to an MJ one as follows:

��� A� B�H

��� A� A � B�H
��R��

is transformed to
��� A� B

��� A�A� B
�W �

��� A� A � B
��R�

completing the result.
b) If S is provable in MJ then S� � is provable in MJHist. Take any proof

of S in MJ . By definition of a proof in MJ the proof tree is finite, that is, all
branches of the tree terminate with success at a finite height. Using a successful
proof tree for sequent S in MJ we construct a successful proof tree for sequent
S� � in MJHist.

We need a notion of correspondence between branches of fragments of MJ
and MJHist proof trees: The root of an MJ tree corresponds to the root of an
MJHist proof tree if (when multisets are considered as sets, and the history is
ignored) they are the same sequent. If branchAMJ and branch AMJH correspond,
then if one branch is extended by backward application of a one premiss rule,
and the other is extended by the same rule in its system then the two extended
branches correspond. Likewise for a two premiss rule, where we have two new
branches with the obvious correspondences. If a proof tree is altered by cutting
bits out, then the new MJHist branch will correspond to the MJ branch following
the appropriate premiss. An MJ and an MJHist proof tree correspond if every
unfinished branch of the MJHist tree corresponds to an unfinished branch of the
MJ tree, and all unfinished branches of the MJ tree correspond to unfinished
branches of the MJHist tree.

We start the MJHist proof tree with root S� �, corresponding to the root S
of the MJ proof tree. Given a fragment of an MJHist proof tree corresponding
to a fragment of the given MJ proof tree, we look at a branch, B, which is un-
finished in the fragment of the MJ proof tree we are looking at. This will have
a top sequent S at height n. We look at branch B� of the MJ tree, which is B
extended by backward application of the next rule �R�. B� has top sequent (or
sequents) that are at height n+1. We now build a fragment of an MJHist proof
tree corresponding to a larger fragment of the MJ proof tree.

If the next rule on the MJ branch (i.e. �R�) is such that the corresponding
rule in MJHist is one without side conditions (i.e. ��R�, ��L��, ��L��, ��R��,
��R��, �ax�, ���, �C�) then the MJHist proof tree corresponding to the extended
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proof tree in MJ (i.e. with B � instead of B) is gained simply by applying the
appropriate rule to the appropriate branch. For example, if the next inference in
the MJ proof tree is:

� � A �� B
�� A �B

��R�

then the next inference in the MJHist is:

�� A�H �� B�H
� � A �B�H

��R�

The cases with side conditions are ��R�, ��R�, ��L�, ��L� and ��L�. The
negation rules can be treated analogously to the implication rules, and are dis-
cussed no further. For the ��R� rule we simply apply the version appropriate,
depending on the context. (The possibility that the MJ sequents will have differ-
ent contexts due to multiple occurrences of formulae is irrelevant to this process).
For the ��L� and ��L� rules, if the side conditions are satisfied, then we simply
build the MJHist proof tree by applying the appropriate rule. If the side condi-
tions are not satisfied it means that there is a loop and more work needs to be
done.

We consider first the ��L� rule. When the conditions aren’t met we have to
remove bits from the MJHist proof tree rather than add them. Note that in a

sequent �
A�B
�� C�H the formula A � B must be a subformula of some formula

F which was placed in the stoup by rule �C�. This is easily seen by inspection of
the rules of MJHist. (On backwards application of rules to an unstouped sequent,
a formula may only enter the stoup via �C�. Suppose there is a sequent at height
n�� with stoup S. Then for any sequent at height n (with stoup T ) it may follow
from, S is a subformula of T ).

Suppose that A�B � �. We cannot apply the ��L� rule to the top MJHist

sequent. But if we did we would have:

�� C �� C

�
A�B
�� C�H

��L�

Consider the application of �C� which placed F in the stoup:

�� F
F
�� G�H

�� F � G�H
�C�

What are � and G? As we are supposing that all the sequents in the proof tree

between �� F
F
�� G�H and �

A�B
�� C are stouped, then inspection of rules

immediately gives us that �� F � � and thatG � C . So in fact �� C is�� F �
G. We are trying to prove the same sequent. So we cut off and throw away all
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of the MJHist proof tree above �� F � G�H. This fragment of MJHist proof
tree corresponds to a fragment of the MJ tree. It is obviously a valid MJHist tree
fragment, and we continue to build on it, following, in this case, either branch of
the MJ proof. In throwing away part of the proof tree we may have thrown away
some unfinished branches. The new MJHist proof tree fragment corresponds to
the old MJ fragment with B extended to B � and with all branches corresponding
to cut out MJHist branches (and any branches above) finished (i.e. all subsequent
branches end with leaves that are successful axiom or ��� rules).

Now suppose that A � � and that B �� �. Again the ��L� rule is not applic-
able. If we applied it we would have:

�� C �� B � C

�
A�B
�� C�H

��L�

We have an almost identical situation to the previous one and by chopping off the
same part of the proof as before we get a valid MJHist branch in the same way.
We now follow the MJ branch above the left premiss. Obviously the A �� �,
B � � case is similar, but in this case we follow the right premiss in MJ .

Finally we consider the ��L� rule. This is the rule in which the history mech-
anism does something to prevent looping. If the history condition isn’t met, it tells
us that the part of the MJHist proof tree built so far has the form (with C � H�,
i.e. the history is not reset):

�� A �
B
�� C

�
A�B
�� C�H�

��L�

....
�� C�H�

....
�� X�C�H

....

�
X�Y
�� C�H

��L� C �� H

....
�� C�H

This contains the loop which is the reason why the condition on the rule failed to
be satisfied. The new branch in the MJHist proof tree is formed by removing all
the sequents above � � C�H up to and including the sequent � � C�H�. The
occurrences of H� in the tree above this point are replaced by occurrences of H.
It is seen that where before ��L� failed it will now succeed as the condition on
the rule is met. The new branch is valid in MJHist and the new tree corresponds
to the extended MJ tree with the branches corresponding to those cut out being
finished.
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As has been noted, MJ proof trees are finite and at each stage we have a
MJHist proof tree corresponding to strictly more of the MJ tree. The process
of building the MJHist proof tree has only a finite number of stages and so must
come to end. At the end of each branch (or at each leaf, if you like) of the MJ
proof tree, there is an application of �ax� or ��� (since the tree is, by assumption,
a success). Therefore the last rule of each branch of the MJHist proof tree must
also be �ax� or ���. Hence the proof tree is a success and we have a proof of the
sequent in MJHist. �

Lemma 2 The calculus MJ with condition � placed on rule �C� is equivalent to
MJ (without the extra condition).

PROOF: a)If sequent S is provable in MJ with � then it is provable in MJ without
�. Trivial.

b)If sequent S is provable in MJ without � then it is provable in MJ with
�. The only inferences that we can make in the calculus without � that we cannot
make in the calculus with � are contractions with implication, negation or conjunc-
tion as the goal. Negation is a special case of implication and will be discussed no
further.

The proof is by induction on the depth of the proof and the complexity of
formulae.

i) The formula selected for the stoup is a propositional variable. This case is
not possible, for if it did happen, we could not have an axiom as the premiss and
no rule is applicable to a sequent with a propositional variable in the stoup.

ii) The formula selected for the stoup is �.

���
�
�� A � B

���

��� � A � B
�C�

���
�
�� A � B

���

��� � A �B
�C�

If the above are valid then the following are too:

A����
�
�� B

���

A���� � B
�C�

��� � A � B
��R�

���
�
�� A

���

���� A
�C�

���
�
�� B

���

��� � B
�C�

��� � A �B
��R�

By induction on the complexity of the goals of the conclusions of �C� we get the
result.

iii) The formula selected for the stoup is a disjunction.

X���X � Y � A � B Y���X � Y � A � B

��X � Y
X�Y
�� A � B

��L�

��X � Y � A � B
�C�
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and
X���X � Y � A �B Y���X � Y � A �B

��X � Y
X�Y
�� A �B

��L�

��X � Y � A � B
�C�

By induction on the depth of the proof we have MJ with � proofs of:

X���X � Y � A � B Y���X � Y � A � B

X���X � Y � A �B Y���X � Y � A �B

Therefore we have proofs of the above sequents whose next step are right
rules. And so we have:

A�X���X � Y � B A�Y���X � Y � B

A���X � Y
X�Y
�� B

��L�

A���X � Y � B
�C�

��X � Y � A � B
��R�

and (where �� = ��X � Y )

X��� � A Y��� � A

��X � Y
X�Y
�� A

��L�

��X � Y � A
�C�

X��� � B Y��� � B

��X � Y
X�Y
�� B

��L�

��X � Y � B
�C�

��X � Y � A �B
��R�

And by induction on the complexity of the goals of the conclusions of the �C� rule
we get the result.

Alternatively we could have axioms:

A���X � Y
X�Y
�� B

�ax�

A���X � Y � B
�C�

��X � Y � A � B
��R�

....
��X � Y

X�Y
�� A

��X � Y � A
�C�

��X � Y
X�Y
�� B

�ax�

��X � Y � B
�C�

��X � Y � A �B
��R�

And we get the result by induction on the complexity of the goal formulae in the
contractions.

iv) The formula selected for the stoup is a conjunction.

��X � Y
X
�� A � B

��X � Y
X�Y
�� A � B

��L�

��X � Y � A � B
�C�

��X � Y
X
�� A �B

��X � Y
X�Y
�� A �B

��L�

��X � Y � A �B
�C�
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It is possible that the top sequent is an axiom, that is:

��X � Y
A�B
�� A � B

�ax�
��X � Y

A�B
�� A � B

�ax�

in which case we have the following (where X = A � B):

A���X � Y
A
�� A

�ax�

A���X � Y � A
�C�

A���X � Y
B
�� B

�ax�

A���X � Y
A�B
�� B

��L�

A���X � Y
X�Y
�� B

��L�

A���X � Y � B
�C�

��X � Y � A � B
��R�

and (where X = A �B)

��X � Y
A
�� A

�ax�

��X � Y
A�B
�� A

��L�

��X � Y
X�Y
�� A

��L�

��X � Y � A
�C�

��X � Y
B
�� B

�ax�

��X � Y
A�B
�� B

��L�

��X � Y
X�Y
�� B

��L�

��X � Y � B
�C�

��X � Y � A � B
��R�

In these cases we get the result by induction on the complexity of the goal formula
in the contractions.

If we don’t have axioms, the result follows by induction on the complexity of
the stoup formula.

v) The formula selected for the stoup is an implication.

��X � Y � X ��X � Y
Y
�� A � B

��X � Y
X�Y
�� A � B

��L�

��X � Y � A � B
�C�

or
��X � Y � X ��X � Y

Y
�� A � B

��X � Y
X�Y
�� A �B

��L�

��X � Y � A �B
�C�

By the weakening lemma for MJ we may prove A���X � Y � X . It is
possible that the right premiss is an axiom, that is:
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��X � Y
A�B
�� A � B

�ax�
��X � Y

A�B
�� A � B

�ax�

In which case we have (where �� = ��X � Y and Y = A � B):

....
A��� � X

A���
A
�� A

�ax�

A��� � A
�C�

A���
B
�� B

�ax�

A���
A�B
�� B

��L�

A���
X�Y
�� B

��L�

A��� � B
�C�

�� � A � B
��R�

and (again with �� = ��X � Y and Y = A �B):

....
�� � X

��
A
�� A

�ax�

��
A�B
�� A

��L�

��
X�Y
�� A

��L�

�� � A
�C�

....
�� � X

��
B
�� B

�ax�

��
A�B
�� B

��L�

��
X�Y
�� B

��L�

�� � B
�C�

�� � A �B
��R�

We get the result by induction on the complexity of the goal formulae in the con-
tractions.

If we do not have the axiom case we get the result by induction on the com-
plexity of the stoup formula. �

Theorem 2 The calculus MJHist with condition � placed on rule �C� is equival-
ent to MJHist without the extra condition.

PROOF: a)If a sequent S is provable in MJHist with � then it is provable in
MJHist without �. Trivial.

b)If sequent S is provable in MJHist without � then it is provable in MJHist

with �. Given a proof of �� A�H inMJHist without �, strip away the history (as
in the proof of Theorem 1a)). We then have an MJ proof of �� A. By Lemma
2 we have a proof of � � A in MJ with �. By the construction in Theorem 1b)
we get a proof of �� A� � in MJHist with �. �

3.2 Implementation ofMJHist in the Swiss Style

In this section we give an implementation of MJHist with a Swiss history. All
sets are represented by lists. The implementation is in SICStus Prolog. The code
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uses an abstract syntax so that translations from other systems can be achieved
using only a small program on top of the given code.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We need to use the prolog library use module(library(lists)).
% for the predicates member and non member.
%
% Operators are defined for each of the connectives
% of the calculus. Propositional variables are
% given a prefix operator pv().
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:-op(500, xfy, imp).
:-op(500, yfx, and).
:-op(500, yfx, or).
:-op(300, fx, not).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The two place predicate prove will attempt to
% prove non-stouped sequents, Context => Goal.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prove(G, Context):-
provenostoup(G, Context, []).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The three place predicate provenostoup deals with
% sequents with a history, but no stoup,
% Context => Goal ; History. Using first argument indexing we
% first deal with implications, negations and conjunctions,
% with the appropriate checks. Next the three cases of the
% contraction rule with the restriction implemented. Finally
% we have the disjunction rules, whose application may
% necessarily have to be delayed, and hence are last.
% The predicate takes arguments
% provenostoup(Goal, Context, History)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

provenostoup(A imp B, Context, ):-
non member(A, Context), !,
provenostoup(B, [A | Context], []), !.

provenostoup(A imp B, Context, History):-
member(A, Context), !,
provenostoup(B, Context, History), !.

provenostoup(not(A), Context, History):-
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non member(A, Context), !,
provenostoup(falsum, [A | Context], []), !.

provenostoup(not(A), Context, History):-
member(A, Context), !,
provenostoup(falsum, Context, History), !.

provenostoup(A and B, Context, History):-
provenostoup(A, Context, History), !,
provenostoup(B, Context, History), !.

provenostoup(pv(A), Context, History):-
member(X, Context),
provestoup(X, pv(A), Context, History), !.

provenostoup(falsum, Context, History):-
member(X, Context),
provestoup(X, falsum, Context, History), !.

provenostoup(A or B, Context, History):-
member(X, Context),
provestoup(X, A or B, Context, History), !.

provenostoup(A or B, Context, History):-
provenostoup(A, Context, History), !.

provenostoup(A or B, Context, History):-
provenostoup(B, Context, History), !.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The four place predicate provestoup attempts to
% prove a sequent with a history and a stoup
% formula, of form Context ->(Stoup) G ; History.
% Again we have first argument indexing. The cut in the axiom
% rule prevents prolog from trying to redo the axioms.
% The predicate takes arguments
% provestoup(Stoup, Goal, Context, History).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

provestoup(A, A, , ):-!.

provestoup(falsum, , , ).

provestoup(A imp B, G, Context, History):-
non member(G, History), !,
provestoup(B, G, Context, History), !,
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provenostoup(A, Context, [G | History]), !.

provestoup(not(A), G, Context, History):-
non member(G, History), !,
provenostoup(A, Context, [G | History]), !.

provestoup(A and B, G, Context, History):-
provestoup(A, G, Context, History), !.

provestoup(A and B, G, Context, History):-
provestoup(B, G, Context, History), !.

provestoup(A or B, G, Context, ):-
non member(A, Context), !,
non member(B, Context), !,
provenostoup(G, [A | Context], []), !,

provenostoup(G, [B | Context], []), !.

4 Theorem Proving with a Scottish History

In this section we shall briefly discuss the second calculus presented. The calculus
adds to the history at several points rather than just the one as in the case of the
Swiss history, and so has to store a larger set. It also checks for looping more
often than in the Swiss history, and so proof trees do not have to be so large.

4.1 Theory for the non-SwissMJHist

With the Swiss style history all of the action takes place at one point; in the ��L�
rule. This has the advantage that loop checking only forms part of one rule, and
so for other rules less work has to be done than might otherwise be the case. We
have also noted that this style of history mechanism ensures that only a very small
amount of information is stored in the history (consisting of only propositional
variables, falsum and disjunctions, when condition � is included). However there
is a tradeoff between these advantages and the obvious disadvantage of not look-
ing for loops very often. We will find loops more quickly if we look for them at
more points. That is, we might continue building a tree needlessly, when a loop
might already have been spotted. This is the motivation for the alternative calcu-
lus. It has a larger history, but this allows us to check for loops more often, the
idea being that in certain situations this might be an advantage. For example, the
sequent:

p� q� �p � q � r� � r� p � q � r
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will give the following in the Swiss style MJHist (where � = p� q� �p � q �
r� � r):

�� p � q � r� frg �
r
�� r� �

�ax�

�
�p�q�r��r
�� r� �

�C�

�� r� �
��R�

� � q � r� �
��R�

�� p � q � r� �
��R�

and we have to go through all the inference steps again (in the branch above
the left premiss) before the loop is detected. However, in the alternative calculus
we get:

�� p � q � r �
r
�� r� fr� q � r� p � q � rg

�
�p�q�r��r
�� r� fr� q � r� p � q � rg

��L�

�� r� fr� q � r� p � q � rg
�C�

�� q � r� fq � r� p � q � rg
��R�

�� p � q � r� fp � q � rg
��R�

The final inference, ��L�, is not valid, due to the left premiss having a goal
sequent, p � q � r, which is already in the history. That is, the loop is detected,
and is detected more quickly than in the Swiss style calculus.

We may prove the two equivalence theorems for this second calculus, analog-
ously to those for the Swiss-style calculus. The proofs work in the same way,
although the detail is different. Details are omitted.

Theorem 3 The calculi MJ and MJHist (without �) are equivalent. That is, a
sequent � � A is provable in MJ if and only if � � A�A (the sequent with its
trivial history) is provable in MJHist (without �).

PROOF: Similar to proof of Theorem 1. �

Theorem 4 The calculus MJHist with condition � placed on rule �C� is equival-
ent to MJHist without the extra condition.

PROOF: Similar to proof of Theorem 2. �

4.2 Implementation of the ScottishMJHist

Again the Prolog implementation is much the same as for the Swiss calculus. All
that is changed is that formulae are added to the history lists in the appropriate
places and the extra history checks are added.

18



5 Proof Search inMJHist

5.1 What are we Searching For?

A proof of a sequent in MJ is a completed proof tree in that calculus. Proof
search is the process of looking for all different proofs of a certain sequent, where
two proofs are different if they correspond to different normal natural deductions.
As MJ is designed so that deductions in MJ are in 1-1 correspondence with
normal natural deductions, the challenge is to enumerate all possible proof trees
for a given root. As MJHist is designed for theorem proving, and does not allow
loops, it cannot possibly find all proofs, as many proofs contain loops. However,
we can perform partial proof search, finding a subset of the proofs. Namely, all
loop free proofs.

To perform proof search, we obviously do not want restriction �, as this would
prevent us finding many proofs. We also do not want the cuts in the implementa-
tion. Notice also that the two versions of MJHist will find different proofs. The
Swiss version has the delayed loop checking mentioned above. This allows some
proofs with a single loop in them to be valid in the calculus. For example, consider
the sequent:

� �p � p� � �p � p�

Both versions of the calculus (without �) allow the following two proofs (with
the relevant histories omitted):

p � p
p�p
�� p � p

�ax�

p � p� p � p �C�

� �p � p� � �p � p�
��R�

p� p � p
p
�� p

�ax�

p� p � p� p �C�

p � p� p � p ��R�

� �p � p� � �p � p�
��R�

But the Swiss-style history also allows this (but no other proofs):

p� p � p
p
�� p� fpg

�ax�

p� p � p� p� fpg
�C�

p� p � p
p
�� p� �

�ax�

p� p � p
p�p
�� p� �

��L�

p� p � p� p� � �C�

p � p� p � p� � ��R�

� �p � p� � �p � p�� �
��R�

and all the proofs in MJ are described by:
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....
P�P � P � P P�P � P

P
�� P

�ax�

P�P � P
P�P
�� P

��L�

P�P � P � P
�C�

P�P � P
P
�� P

�ax�

P�P � P
P�P
�� P

��L�

P�P � P � P
�C�

P � P � P � P
��R�

� �P � P � � �P � P �
��R�

plus the first proof given for the non-Swiss history.

5.2 Implementation

In this section we give an implementation of partial proof search using MJHist.
The code presented is for the Scottish calculus, the code for the Swiss calculus is
similar. The main difference in the code (apart from the addition of arguments to
save and print out proofs) is that the cuts are removed from the �ax� rule. This is
so that in backtracking these can be undone and different proofs found. The other
main difference is that the contraction rule is now one single general rule rather
than three specific rules, so that now any formula can be placed in the stoup,
again increasing the number of proofs that can be found. That is, we don’t have
restriction �.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We need use module(library(lists)) for nth, member
% and non member.
%
% The two place predicate show is used to
% display the proofs (see results).
% ’s’ is used as a marker, to indicate
% when the proof tree splits
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

show([], N).

show([s | X], N):-!,
nth(1, X, A),
nth(2, X, B),
nth(3, X, C),
nth(4, X, D),
show([A | B], N),
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show([C | D], N).

show([X | Y], N):-!,
ttytab(N),
write(X), nl,
NewN is (N+3),
show(Y, NewN).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% proofsearch finds a proof, displays it and
% then uses fail to make prolog backtrack to
% find another proof.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

proofsearch(G, Context):-
prove(G, Context, Tree),
show(Tree, 0), nl, nl,
fail.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% From hereon, the code is much the same as for
% the theorem provers, with the addition of an
% extra argument which stores the proof so far
% as a list of ordered triples and quadruples.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prove(G, Context, [(G, Context, [G]) | Tree]):-
provenostoup(G, Context, [G], Tree).

provenostoup(A imp B, Context, , [(B, [A | Context],
[B]) | Tree]):-

non member(A, Context),
provenostoup(B, [A | Context], [B], Tree).

provenostoup(A imp B, Context, History, [(B, Context,
[B | History]) | Tree]):-

member(A, Context),
non member(B, History),
provenostoup(B, Context, [B | History], Tree).

provenostoup(not(A), Context, History, [(falsum,
[A | Context], [falsum]) | Tree]):-

non member(A, Context),
provenostoup(falsum, [A | Context], [falsum],

Tree).

provenostoup(not(A), Context, History, [(falsum, Context,
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[falsum | History]) | Tree]):-
member(A, Context),
non member(falsum, History),
provenostoup(falsum, Context, [falsum | History],

Tree).

provenostoup(A and B, Context, History, [s, (A, Context,
[A | History]), Tree1, (B, Context, [B | History]), Tree2]):-

non member(A, History),
non member(B, History),
provenostoup(A, Context, [A | History], Tree1),
provenostoup(B, Context, [B | History], Tree2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The use of a variable as the first argument of member
% allows any formula to be selected by member, and on
% backtracking the next member is selected.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

provenostoup(A, Context, History, [(X, A, Context, History)
| Tree]):-

member(X, Context),
provestoup(X, A, Context, History, Tree).

provenostoup(A or B, Context, History, [(A, Context,
[A | History]) | Tree]):-

non member(A, History),
provenostoup(A, Context, [A | History], Tree).

provenostoup(A or B, Context, History, [(B, Context,
[B | History]) | Tree]):-

non member(B, History),
provenostoup(B, Context, [B | History], Tree).

provestoup(A, A, , , []).

provestoup(falsum, , , , []).

provestoup(A imp B, G, Context, History, [s, (B, G, Context,
History), Tree1, (A, Context, [A | History]), Tree2]):-

non member(A, History),
provestoup(B, G, Context, History, Tree1),
provenostoup(A, Context, [A | History], Tree2).

provestoup(not(A), G, Context, History, [(A, Context,
[A | History]) | Tree]):-

non member(A, History),
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provenostoup(A, Context, [A | History], Tree).

provestoup(A and B, G, Context, History, [(A, G, Context,
History) | Tree]):-

provestoup(A, G, Context, History, Tree).

provestoup(A and B, G, Context, History, [(B, G, Context,
History) | Tree]):-

provestoup(B, G, Context, History, Tree).

provestoup(A or B, G, Context, , [s, (G, [A | Context], [G]),
Tree1, (G, [B | Context], [G]), Tree2]):-

non member(A, Context),
non member(B, Context),
provenostoup(G, [A | Context], [G], Tree1),

provenostoup(G, [B | Context], [G], Tree2).

6 Results

6.1 Theorem Proving

The issue we are concerned with here is that of speed, how quickly we find out
whether or not a certain sequent or formula is provable. We tested the two theorem
provers on a sample of problems, some easy, some more problematic.

The programs were run using SICStus Prolog2.1 on a SUN SparcStation 10.
The times given are runtimes (in milliseconds), i.e. ”CPU time used whilst ex-
ecuting, excluding time spent garbage collecting, stack shifting or in system calls”
[7]. The times are averages. We first give the formula represented with the nor-
mal symbols, then as it is coded for the the program. Next we give a result of
provable/unprovable, followed by times for two calculi.

Example 1.
��A � B � C� � �D � E � F � � �G �H � J� � �K � L �M�� �
�A �D� � �A � G� � �A �K� � �D �G� � �D �K� � �G �K� �
�B � E� � �B �H� � �B � L� � �E �H� � �E � L� � �H � L� �
�C � F � � �C � J� � �C �M� � �F � J� � �F �M� � �J �M�

((pv(a) or pv(b) or pv(c)) and (pv(d) or pv(e) or pv(f)) and
(pv(g) or pv(h) or pv(j)) and (pv(k) or pv(l) or pv(m))) imp
((pv(a) and pv(d)) or (pv(a) and pv(g)) or (pv(a) and pv(k))
or (pv(d) and pv(g)) or (pv(d) and pv(k)) or (pv(g) and pv(k))
or (pv(b) and pv(e)) or (pv(b) and pv(h)) or (pv(b) and pv(l))
or (pv(e) and pv(h)) or (pv(e) and pv(l)) or (pv(h) and pv(l))
or (pv(c) and pv(f)) or (pv(c) and pv(j)) or (pv(c) and pv(m))
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or (pv(f) and pv(j)) or (pv(f) and pv(m)) or (pv(j) and pv(m)))
provable
Swiss history 1388

Scottish 1701

Example 2.
��A � B� � �D � E� � �G �H��
� �A �D� � �A �G� � �D �G� � �B � E� � �B �H� � �E �H�

((pv(a) or pv(b) or pv(c)) and (pv(d) or pv(e) or pv(f))) imp
((pv(a) and pv(d)) or (pv(b) and pv(e)) or (pv(c) and pv(f)))
unprovable
Swiss history 15

Scottish 21

Example 3.
�A � B� � �A � C� � �A � �B � C��

(pv(a) imp pv(b)) imp (pv(a) imp pv(c)) imp (pv(a) imp (pv(b)
and pv(c)))
provable
Swiss history 0.2

Scottish 0.2

Example 4.
�A � �A� � B

(pv(a) and not(pv(a))) imp pv(b)
provable
Swiss history 0.1

Scottish 0.1

Example 5.
�A � C� � �A � B� � �B � C�

(pv(a) or pv(c)) imp (pv(a) imp pv(b)) imp (pv(b) or pv(c))
provable
Swiss history 0.6

Scottish 0.8

Example 6.
����A � B���B � A�� � �A�B�C������B � C���C � B�� � �A�B�C���
���C � A� � �A � C�� � �A �B � C��� � �A � B � C�

((((pv(a) imp pv(b)) and (pv(b) imp pv(a))) imp (pv(a) and
pv(b) and pv(c))) and (((pv(b) imp pv(c)) and (pv(c) imp
pv(b))) imp (pv(a) and pv(b) and pv(c))) and (((pv(c) imp
pv(a)) and (pv(a) imp pv(c))) imp (pv(a) and pv(b) and pv(c))))
imp (pv(a) and pv(b) and pv(c))
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provable
Swiss history 11

SCottish 14

Example 7.
����P � P � � P � � ��P � �P � � ���P � ��P � � ���P � P �

((not(not(pv(p))) imp pv(p)) imp pv(p)) or (not(pv(p)) imp
not(pv(p))) or (not(not(pv(p))) imp not(not(pv(p)))) or
(not(not(pv(p))) imp pv(p))
provable
Swiss history 0.5

Scottish 0.5

Example 8.
���G � A� � J� � D � E� �
���H � B� � I� � C � J � �A � H� � F � G �
���C � B� � I� � D� � �A � C� � ���F � A� � B� � I� � E�

(((pv(g) imp pv(a)) imp pv(j)) imp pv(d) imp pv(e)) imp
(((pv(h) imp pv(b)) imp pv(i)) imp pv(c) imp pv(j) imp (pv(a)
imp pv(h)) imp pv(f) imp pv(g) imp (((pv(c) imp pv(b)) imp
pv(i)) imp pv(d)) imp (pv(a) imp pv(c)) imp (((pv(f) imp
pv(a)) imp pv(b)) imp pv(i)) imp pv(e))
provable
Swiss history 2.2

Scottish 2.6

Example 9.
A � B � ��A � B � C� � C� � �A � B � C�

pv(a) imp pv(b) imp ((pv(a) imp pv(b) imp pv(c)) imp pv(c))
imp (pv(a) imp pv(b) imp pv(c))
unprovable
Swiss history 0.4

Scottish 0.5

Example 10.
�
y�x�f�x� y�� �
�f�x� z� � f�z� x���
Instantiated over a two element universe.

provable
Swiss history 10082

Scottish 47
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6.2 Proof Search

In this section we will give some examples of the results returned when proof
search is performed. The program was run with the same software and hardware
as in the previous section.

Given the number of different proofs that exist for any complicated formula,
all we shall do is demonstrate the output for a couple of very simple examples.

The layout is as follows. The sequents are given as order triples or quadruples,
depending in on whether they are stouped or unstouped. The unstouped sequents
are given as triples (Goal, Context, History), the stouped sequents are given as
quadruples (Stoup, Goal, Context, History). The proof trees are given upside
down. That is, the first sequent given is the root. A half centimetre indent indicates
that a sequent is above the previous one. Left branches are written first.

Example1.
�P � P � � �P � P �
(pv(p) imp pv(p)) imp (pv(p) imp pv(p))

Scottish output
(pv(p) imp pv(p)) imp (pv(p) imp pv(p)), [], [(pv(p) imp pv(p)

imp (pv(p) imp pv(p))]
pv(p) imp pv(p), [pv(p) imp pv(p)], [pv(p) imp pv(p)]

pv(p), [pv(p), pv(p) imp pv(p)], [pv(p)]
pv(p), pv(p), [pv(p), pv(p) imp pv(p)], [pv(p)]

(pv(p) imp pv(p)) imp (pv(p) imp pv(p)), [], [(pv(p) imp pv(p)
imp (pv(p) imp pv(p))]

pv(p) imp pv(p), [pv(p) imp pv(p)], [pv(p) imp pv(p)]
pv(p) imp pv(p), pv(p) imp pv(p), [pv(p) imp pv(p)],

[pv(p) imp pv(p)]

Swiss output
(pv(p) imp pv(p)) imp (pv(p) imp pv(p)), [], []

pv(p) imp pv(p), [pv(p) imp pv(p)], []
pv(p), [pv(p), pv(p) imp pv(p)], []

pv(p), pv(p), [pv(p), pv(p) imp pv(p)], []

(pv(p) imp pv(p)) imp (pv(p) imp pv(p)), [], []
pv(p) imp pv(p), [pv(p) imp pv(p)], []

pv(p) imp pv(p), pv(p) imp pv(p), [pv(p) imp pv(p)], []

(pv(p) imp pv(p)) imp (pv(p) imp pv(p)), [], []
pv(p) imp pv(p), [pv(p) imp pv(p)], []

pv(p), [pv(p), pv(p) imp pv(p)], []
pv(p) imp pv(p), pv(p), [pv(p), pv(p) imp pv(p)], []

pv(p), pv(p), [pv(p), pv(p) imp pv(p)], []
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pv(p), [pv(p), pv(p) imp pv(p)], [pv(p)]

pv(p), pv(p), [pv(p), pv(p) imp pv(p)], [pv(p)]

Example2.
�A �B� � �B � A�
(pv(a) or pv(b)) imp (pv(b) or pv(a))

Swiss proof
(pv(a) or pv(b)) imp (pv(b) or pv(a)), [], []

pv(b) or pv(a), [pv(a) or pv(b)], []
pv(a) or pv(b), pv(b) or pv(a), [pv(a) or pv(b)], []

pv(b) or pv(a), [pv(a), pv(a) or pv(b)], []
pv(a), [pv(a), pv(a) or pv(b)], []

pv(a), pv(a), [pv(a), pv(a) or pv(b)], []
pv(b) or pv(a), [pv(b), pv(a) or pv(b)], []

pv(b), [pv(b), pv(a) or pv(b)], []

pv(b), pv(b), [pv(b), pv(a) or pv(b)], []

There is only one Scottish proof, which is the same as above with the appro-
priate changes made to the history.

7 Conclusion

The use of a pared down history makes for seemingly efficient loop detection.
However as other intuitionistic theorem provers (and there are not that many) are
written in different languages, are run on different machines and (in most cases)
deal with first order formulae, comparison is hard. Of the two implementations
given here, the one with the smallest history and the least checking (the Swiss one)
can become inefficient (see example 10) when delay in loop checking compared
with the other version allows many extra branches to be pursued. The inefficiency
of the increased history is more than counterbalanced by the extra loop checks.
We should point out that the times here compare badly with the implementation
of the contraction-free LJT .

For proof search neither calculus is really suited, as they only find loop free
proofs (plus a few more in the Swiss case), but if that is all you are after then these
calculi will suit your purposes well.
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