
About the Completeness of Type Systems

Stefan Kahrs�

University of Edinburgh

Laboratory for Foundations of Computer Science

King�s Buildings�

Edinburgh EH� �JZ

United Kingdom

email� smk�dcs�ed�ac�uk

Abstract

The original purpose of type systems for programming languages was

to prevent certain forms of run�time errors� like using a number as a

function� Some type systems go as far as guaranteeing the absence of

run�time errors� e�g� the type system of Standard ML� One can call such

a type system �sound��

This raises the question of the dual notion of completeness� i�e� is

everything typable that does not have run�time errors� Or� to put it in

another way� does the type system restrict the expressive power of the

underlying implementation in an undesirable way�

To make this rather vague idea precise we de	ne an abstract notion of

�type system�� together with general notions of soundness and complete�

ness� We examine several type systems for these properties� for instance

�
� and PCF are both complete� but for very di
erent reasons�

� Introduction

The purpose of type systems for programming languages was originally to pre�
vent run�time errors like using a character as a pointer� etc� Nowadays people
have found additional uses of types� especially following the propositions�as�
types principle� However� for this paper our main interest in type systems is
the way they prevent errors� not in what way the typable terms can be viewed
as proof objects�

Robin Milner once stated the slogan �well�typed programs don�t go wrong��
This actually means that �if the type system is sound then	 programs that type�
check do not have run�time errors� Without the parentheses the statement is a
tautology� as this is just the de
nition of soundness� Thus� Milner�s statement

�The research reported here was supported by SERC grant GR�J������

�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

asserts the soundness of some type system� here it probably was the type system
of ML�

The above paragraph rests on one unexplained notion� the notion of run�
time error� What actually is a run�time error� This is not and cannot be an
absolute notion take for example the familiar �core dumped� error� if a program
terminates with message �core dumped� then it is unclear whether we had a real
run�time error or whether our program simply printed �core dumped� on the
screen and terminated� We need to de
ne which run�time scenarios we regard
as run�time errors� This is to some extent a matter of taste� we have a design
decision to make� Having said that� in most cases there is an obvious choice�

Trivially� an operational semantics without a notion of run�time error has
only sound type systems� But this is not very helpful to the programmer who
does make errors from time to time not all these errors can be detected by the
type system� but quite a few �the majority� actually	 can if the type system is
rich enough�

Suppose we have a run�time system plus a sound type system� Can we
turn Milner�s slogan around� is it true that �programs that don�t go wrong are
well�typed�� This is the completeness question for the type system which is
the subject of this paper� The question matters as the completeness of a type
system means that the expressive power of the underlying operational semantics
is not restricted by the type system�

To be a bit more precise� we are talking about unrestricted expressive power
w�r�t� the types the type system provides� In general this is quite di�erent from
the expressive power of the untyped language itself� For example� the simply
typed ��calculus �� is not Turing�complete� while the untyped ��calculus is� but
this does not directly imply the incompleteness of the simple type system� The
problem is that the missing terms would have to be given simple types� but it is
not obvious that we could do so without introducing errors �whatever we have
declared to be an error	�

Moreover� when we assess the expressive power of a language it is not so
much our concern which program texts pass the type�checker as which programs
do� where a program is simply an equivalence class of observationally equivalent
program descriptions� We shall call a type system bicomplete whenever all sound
programs are expressible up to observational equivalence for completeness� we
do not require equivalence but rather some information preorder between the
programs� Intuition� think of the partial order in domain theory � our notion
of completeness is satis
ed if we can always express a �larger� program�

� Typing Transition Systems

In order to talk about arbitrary type systems for arbitrary programming lan�
guages in any non�informal way we need an abstract notion of programming
language and an abstract notion of type system�

We shall
rst focus on the untyped world� To avoid too speci
c notions
of abstract programming language we
rmly base it on the notion of labelled

�

transition system� see e�g� ���� ��� ���

De�nition �

A transition system is a structure �Sta�Lab�Tra	 where

� Sta is a set of states�

� Lab is a set of labels� and

� Tra � Sta � Lab � Sta is the transition relation�

A transition system is called pointed if there is a distinguished initial state ��

As usual� we write s
l
�� s� for �s� l� s�	 � Tra also� s

w
�� s� with w � Lab� is

shorthand for that there exist states s�� � � � � sn and labels l�� � � � � ln with s � s��

s� � sn� w � l� � � � ln and si��
li�� si� If s

w
�� s� then s� is reachable from s a

state is reachable i� it is reachable from the initial state �� We write �� for the
reachability relation� i�e� s�� s� �	
w � Lab�� s

w
�� s��

Transition systems are traditionally studied as models for concurrent pro�
gramming� nondeterministic programming� etc� This is not our main objective
here� in particular we are interested in the ordinary deterministic scenario�

De�nition �

An TS is called deterministic if s
l

�� s� and s
l

�� s�� imply s� � s���

De�nition �

Given a transition system� a relation � on states is a simulation if the following
holds� If s� � s� then

�l � Lab� s�� � Sta� �s�
l

�� s�� �
s�� � Sta� �s�
l

�� s�� s�� � s��		�

A bisimulation is a simulation � such that � is a simulation as well�

The notions of simulation and bisimulation are usually studied in the context
of process algebra ��� or modal logic ����� However� the use of bisimulations we
have in mind in this paper is better indicated by Rutten�s observation ���� of the
duality between algebras and congruence relations on one hand and transition
systems �viewed as coalgebras	 and bisimulations on the other�

Here are a few useful observations on simulations and bisimulations� simu�
lations are closed under �arbitrary	 union and composition� hence the transitive
closure of a simulation is a simulation and there is always a largest simulation�
We write w for the largest simulation in a TS �which is necessarily a preorder	
and � for the largest bisimulation �which is necessarily an equivalence	� The
re�exive transitive closure of a simulation is also a simulation� since the iden�
tity relation obviously is one� Bisimulations are also closed under inversion and
hence under equivalence closure or partial equivalence closure� The symmetric
interior of a simulation is a bisimulation whenever the TS is deterministic�

There are several ways of de
ning an �information ordering� for any trans�
ition system� one is the familiar order on traces�

�

De�nition �

We de
ne a relation v on states as follows�

s� v s� �	 �w � Lab�� s�� � Sta� s�
w
�� s�� �
s�� � Sta� s�

w
�� s��

We write s � s� for s v s� s� v s�

Proposition � The relation v is a preorder�

Simulations and the trace preorder are connected� especially for determin�
istic or even pseudo�deterministic transition systems� We call a TS pseudo�

deterministic i� s
l

�� s� and s
l

�� s�� always imply s� � s���

Proposition � Any simulation is contained in v and any bisimulation in ��
If the TS is pseudo�deterministic then v � w and � � ��

We take pointed transition systems as our abstract notion of programming
language� with one modi
cation� we introduce a notion of error�state in order
to be able to express soundness�

De�nition �

An error transition system is a pair �T�Err	 such that T is a transition system
�Sta�Lab�Tra	 and Err � Sta is a set of error states� The strict part of an ETS
is the TS T� obtained from T by removing all error states and restricting the
transition relation accordingly�

The strict part of a pointed error transition system is pointed if � is not an error
state itself� A simulation �bisimulation	 of an ETS is a simulation �bismula�
tion	 of its strict part� For error transition systems there is a simple notion of
soundness�

De�nition �

A state s is sound i� no error state is reachable from s� A pointed ETS is sound
if no error state is reachable� For each ETS T � �X�Err 	 we de
ne another
ETS T � � �X� fs � StaX j �soundT �s	g	�

In particular� T �

� is the transition system in which all unsound states have been
removed�

Of course� we can construct only sound ETSs simply by setting Err � ��
but this is like denying that humans make errors� More useful is the following
setting� start with an unsound untyped ETS� restrict the set of labels to those
that pass the type�check of some type system� and then obtain a new ETS by
restricting the transition relation to these labels if this new error transition
system is sound then one can say that the type system is sound w�r�t� the
untyped ETS� We shall explore this later in more detail�

As well as soundness� we can de
ne a notion of completeness for an ETS�
For pointed transition systems� one could say that they are complete i� every
state is reachable upto bisimilarity� Dually to the view that one can implement

�

a partial function by a more complete function� it should be su�cient to reach
a state that simulates the other one� In error transition systems� we are not
interested in reaching error states or indeed unsound states� To sum up�

De�nition 	

For arbitrary transition systems� a state s is called complete i�

�s� � Sta�
s�� � Sta� �s�� s�� s� w s��	�

It is called bicomplete i�

�s� � Sta�
s�� � Sta� �s�� s�� s� � s��	�

A pointed TS is �bi�	 complete i� its initial state � is �bi�	 complete� An error
transition system T is strongly �bi�� complete i� T� is �bi�	 complete� and it is
called �bi�	 complete i� T � is strongly �bi�	 complete�

Any bicomplete ETS is complete� but the converse may not hold� We shall
later see that there is a large class of ETS that fall into this gap� In some sense
bicompleteness is therefore a more adequate notion�

The choice of � and w in the de
nition of bicompleteness and complete�
ness instead of other notions of equivalence and approximation �e�g� trace equi�
valence	 is motivated by the observation that the bisimulation equivalence on
transition systems is a concept dual to congruence relations on ��algebras for
an elaborate treatment of this idea see ����� In particular� we can view labelled
transition systems as models of a programming language amongst which the
fully abstract model is a terminal object the latter is also given by quotienting
any model by its largest bisimulation� Our notion of bicompleteness corresponds
to asking whether the terminal model satis
es the formula �s���� s�

� A Concrete Programming Language

We will now consider the pure ��calculus as a concrete programming language�
i�e� as an instance of the notion of pointed error transition system� The op�
erational semantics is provided by the untyped ��calculus with call�by�value
evaluation� This choice �call�by�value	 is somewhat arbitrary� but the questions
we address and the answers we
nd are not signi
cantly di�erent from what we
could do with other strategies�

We consider expressions over the abstract syntax as shown in table �� for
which we assume the usual notational conventions for the ��calculus�

The metavariable e ranges over expressions� m overmatches �a pair of a vari�
able and an expression	� and x ranges over a countably in
nite set of variables�
To de
ne an operational semantics for this language we need a notion of value
and environment� as de
ned in the right column in table �� The metavariable v
ranges over values which for this simple language are just closures � a closure is
a pair of an environment and a match� E ranges over environments �
nite lists

�

e ��� x j ��m	 j �e e�	

m ��� x�e

v ��� �E�m	

E ��� � j E�x �� v�

r ��� v j �

Table �� Abstract Syntax

x �� x� E � x� r

E�x� �� v� � x� r E�x �� v� � x� v

� � x� �

E � �m� �E�m	

E � e� �E�� x�e��	 E � e� � v E��x �� v� � e�� � r

E � �e e�	� r

E � e� �
E � �e e�	� �

E � e� v E � e� � �
E � �e e�	� �

Table �� Expression Evaluation

of pairs of variables and values r ranges over evaluation results� � is standing
for an evaluation that has �gone wrong��

Table � de
nes the evaluation of expressions in the usual SOS style �see ����	�
We have three rules for variable access� �i	 we skip irrelevant environment

entries� �ii	 we access value entries� and �iii	 we report an error when we access an
unbound variable� i�e� a variable in the empty environment� For this language
this is the only elementary form of error� All other errors result from error
propagation�

In the last rule we only propagate � when the
rst component reaches a
value� Without that requirement� an implementation of this dynamic semantics
would have to employ a parallel evaluation strategy �normally used for imple�
menting angelic non�determinism ���	 for the evaluation of applications�

Having variable access as the only source for unsoundness is not enough to
motivate a proper type system for preventing unsoundness and we will see later
why� But even in that limited setting we can already state and prove soundness
and completeness results by using techniques which can be adapted easily to
more sophisticated languages�

Based on this traditional large�step operational semantics� we can de
ne a
corresponding ETS�

De�nition

The ETS �v is de
ned as follows�

� Sta � Env � f�g

�

� � � �

� Lab � Exp �Var

� E
�e�x�
�� � �	 E � e� � and

E
�e�x�
�� E� �	
v � Val � E � e� v E� � E�x �� v�

� Err � f�g

Proposition � The ETS �v is deterministic�

The ETS �v is obviously unsound since the evaluation of a variable in �
results in �� Since an environment only binds
nitely many variables� any
environment in �v is unsound consequently� the notions of completeness and
bicompleteness are not de
ned for �v since ��v	

�

� has no states at all� As we
shall see later� �v is strongly bicomplete�

In order to establish some general results for this untyped language we need
a few auxiliary notions� context� free variable� etc�

For some meta�theoretic reasoning it is useful to have a notion of �expression
with a hole�� For our purposes it is su�cient to restrict this general idea of
context to more speci
c ones�

De�nition �

Contexts are de
ned over the following abstract syntax�

C ��� � j ���x�C	 e	

Given a context C and an expression e we write C�e� for the expression de
ned
as follows�

��e� � e

���x�C	 e�	�e� � ���x�C�e�	 e�	

De�nition ��

We de
ne concatenation of environments as follows �in
x notation	�

���E � E

E�x �� v� ��E� � �E ��E�	�x �� v�

We assume the usual de
nition of free variable for expressions FV�e	 and
generalise it to values and environments as follows�

De�nition ��

The domain of an environment E� DomE� is a
nite set of variables� de
ned
as� Dom� � � and DomE�x �� v� � fxg�DomE� The free variables of values
and environments are de
ned as follows�

FV�E�m	 � FV�E	 � �FV��m	 nDomE	

FV��	 � �
FV�E�x �� v�	 � FV�v	 � FV�E	

�

Intuitively� values and environments should not contain any free variables� But
we do not get this property for free� We will later establish a couple of results
which will enable us to ignore non�closed values and environments for all intents
and purposes�

For expressions� values� environments� etc� there is a notion of substitution�
e�g� E�e�x� is the environment obtained from E by replacing all free occurrences
of x by the expression e� Substitution is restricted to the case where the sub�
stitute is a closed expression this way there is no risk of name capture and
substitution is purely syntactic�

� Properties of Evaluation

To show certain properties of the simulation w we
rst de
ne a few other rela�
tions� some of which will turn out to be simulations or bisimulations�

De�nition ��

We de
ne a preorder � between values and a family of preorders
e

� �indexed
by expressions	 between environments as the smallest preorders satisfying �on
values	�

�E�m	 � �E��m	 �	 E
�m

� E�

For environments� E
e

� E� i� for all x � FV�e	� E � E� �� E��x �� v� �with
x �� DomE�	 implies that there are environments E�

�� E
�

� and a value v� with

E� � E�

� ��E�

��x �� v�� �and x �� DomE�

�	 such that v � v��

Intuitively� v � v� holds if v and v� are the same except that closures in v� may
have additional entries and may omit redundant ones a binding is redundant if
it binds a non�occurring variable�

Lemma � If E�

e

� E� and E� � e � v� then there is a value v� such that

E� � e� v� and v� � v��

Proof� By induction over the height of the derivation tree of E� � e� v��
For the evaluation of variables there are two �potentially	 succeeding rules�

so we have two cases to consider for deriving E� � x� v��

�� E�

��x �� v�� � x� v�� Then by de
nition of
x

� we have E� � E�

���E
��

� �x ��

v�� with x �� DomE�

� and v� � v�� From this we get E� � x� v��

�� Suppose E�

��x
� �� v� � x � v� from x �� x� and E�

� � x � v�� Clearly

E�

�

x

� E�

x

� E� and the result follows from the induction hypothesis for
E�

� � x� v��

For the evaluation of ��bindings the result is immediate from the de
nitions

of evaluation and ��
Closure application� if we derive E� � �e e�	 � v� from E� � e � �E�

��m	�
m � x�e��� E� � e� � v� and E�

��x �� v� � e�� � v� then we know by induction

hypothesis on e that E� � e� �E�

��m	 and �E�

��m	 � �E�

��m	 by induction hy�

pothesis on e� we have E� � e� � v� and v � v�� Now consider the environments

E��

� � E�

��x �� v� and E��

� � E�

��x �� v��� If we can show E��

�

e��

� E��

� then we get
the result by induction hypothesis on E��

� � e�� � v�� Considering an arbitrary
variable y free in e��� we either have y � x for which the result is immediate from

v � v�� or y �� x for which the result easily follows from �E�

��m	 � �E�

��m	� ut

De�nition ��

E � E� i� �e� E
e

� E�� E � E� i� E � E� E� � E�

For the relation � we immediately get from lemma � and determinism of �v �

Corollary � The relation � is a simulation and � a bisimulation�

The bisimulation � is already a rather powerful tool� For example� it allows
to show that the permutation and thinning of environment entries results in
bisimilar environments� In very similar style we can establish other bisimula�
tions� though we shall not go into the same detail� In particular� we want to get
rid of free variables in values and environments�

De�nition ��

We de
ne relations � on values and environments as the smallest equivalence
relations such that for all variables x� E � E���x� and v � v���x� where � is
the expression ��y�y y	 ��y�y y	�

Obviously� each ��equivalence class of values and environments has a closed
member� Moreover� this member is unique�

Proposition �

�v�
!v�� �v � v� FV�v�	 � �	 �E�
!E�� �E � E� FV�E�	 � �	

The idea behind � is that the � expression is just as good as an unbound
variable� because accessing an unbound variable during an evaluation results in
� and accessing � also fails to deliver a result� In other words�

Proposition 	 The relation � is a bisimulation�

Remark� the formal proof is technically slightly di�erent from the previous one�
as one has to allow the replacement of expressions by equivalent ones� where
the equivalence relation depends on the �domain of the	 current environment�

Based on what we have so far we can de
ne a new bisimulation equivalence
� as �� � �	� which allows us to combine the pumping of closures with the

"

replacement of free variables by �� Notice that we do not have to go through the
operational semantics again to show that� is indeed a bisimulation equivalence�
it is a bisimulation� because bisimulations are closed under arbitrary union and
under composition �and hence under transitive closure	� and it is an equivalence
relation because the transitive closure of any symmetric and re�exive relation
is one�

De�nition ��

We de
ne inductively a pair of relations	 between values and expressions and
between environments and contexts as follows�

�E�m		 C��m�� E 	 C

� 	 �

E�x �� v�	 C���x��	 e�� v 	 e E 	 C

Read v 	 e as �v is represented by e�� Clearly� all values and environments
have unique representants�

Proposition
 �v�
!e� v 	 e �E�
!C� E 	 C

Moreover� closed values have closed representants�

Proposition � �E�C� e� �E 	 C � FV�C�e�	 � FV�E	 � FV�e	 n DomE	
and �v� e� �v 	 e � FV�v	 � FV�e		

The idea behind representants is that if e represents v and we evaluate e
then we get v back� In this strict form this is �i	 meaningless� because for
an evaluation we have to give an environment as well� and �ii	 not true �for
any environment	� because at least closures may di�er in a certain way and
free variables in v could spoil the result� So we have to consider values and
environments modulo some bisimulation equivalence� What we can claim is the
following�

Lemma �� Let v be a closed value and E be a closed environment� Suppose
v 	 e and E 	 C� Then we have

�� �E��
v�� E� � e� v� v � v�

�� �v�� e�� ��FV�e�	 � DomE E � e� � v�	 �
�E��
v��� �E� � C�e��� v�� v� � v��		

Proof� By induction on the structure of v and E �notice that closedness is
preserved� i�e� �E�m	 is a closed value only if E is a closed environment� etc�	�

Closures� let v � �E��m	 and E� 	 C� therefore e � C���m�� We have
to show E� � e � v� and v � v� for some v�� Clearly E� � �m � �E��m	� so
we can apply the induction hypothesis for E� �second property	 and obtain the
result�

��

For environments� consider the empty environment� suppose � � a� v� and
FV�a	 � FV��	 � �� Then for any E� we have �

a
� E� by de
nition of

a
� and

hence by lemma � there is a value v�� such that E� � a� v�� and v� � v���
Non�empty environments� E � E��x �� v��� Suppose v� 	 e� and E� 	 C��

Take an arbitrary expression e� with FV�e�	 � DomE such that E � e� � v�

for some v�� Consider the expression e� � ��x�e�	 e�� We have E� � e� � v��

i� we also have E� � e� � v�� and E��x �� v��� � e� � v��� From the induction
hypothesis on v� we know that there is a v�� such that E� � e� � v�� and v� � v��
this implies E � E�� � E��x �� v��� and thus there is a v�� with E�� � e� � v��

and v� � v��� Now we can apply the induction hypothesis on E� and get for
any E� a value v��� with E� � C��e��� v��� v�� � v���� By transitivity of � we
have v� � v���� ut

Now� from lemma �� and proposition � it follows that for any value v there is
an expression e the evaluation of which reproduces in any environment a value
that bisimulates the original one�

Corollary �� Let E be a closed environment with E 	 C�
If E��E� � e� v then there is a v� � v such that E� � C�e�� v�� Conversely�
if E� � C�e�� v� then there is a value v � v� such that E ��E� � e� v�

Proof� Follows easily from lemma �� by induction on the length of E� For ex�
ample� the induction step for environments goes as follows �we omit the bisim�
ilarity argument for the values ev is the representant of v	�
E��x �� v� ��E� � e� v� �	 E� ��E� � ��x�e	 ev � v� �	
E� � C����x�e	 ev�� v� �	 E� � C�e�� v� ut

Because �v is deterministic we already know from lemma � that v is a
simulation and � a bisimulation� From the properties we have established about
� we can show something stronger� environment concatenation �� is monotonic
w�r�t� to v� and therefore the trace order on environments is directly re�ected
on values�

Theorem �� The ETS �v is strongly bicomplete�

Proof� We have to show that any environment is reachable from � upto �� We
show the stronger property that any E�x �� v� is reachable in a single step from
E� the theorem then follows by induction on the length of the environment� The
value v is bisimilar �via �	 to some closed value v� which has a representative
v� 	 e� Hence by lemma �� we have E � e � v�� with v � v�� and so by

de
nition of transition E
�e�x�
�� E�x �� v��� and by de
nition of � on values�

E�x �� v�� E�x �� v��� which implies E�x �� v� � E�x �� v���� ut

��

� Abstract Type Systems

What is common to all type systems� Typically� they come with a ternary
relation B � e � � which states that an expression e has type � in a type
environment B� Having this type � can be seen as an assertion that it is safe
to evaluate the expression e in any environment E that �
ts� B� We can
think of the type as standing for a class of values and the type environment
as standing for a class of �value	 environments� The �
tting� relation is a bit
vague in general� but in any case the empty environment should
t the empty
type environment� Therefore� the ingredients of a type system are similar �in
an informal sense	 to the ingredients of the programming language which it is
attached to�

The above argument is somewhat biased towards functional programming
languages� We are looking for the general scenario� i�e� type systems for arbitrary
pointed transition systems� What is a type system in this abstract setting�
Generalising from the observation we just made for functional programming� a
type system for a pointed TS should be another pointed TS� This is a bit like
taking the slogan �typing is an abstract interpretation� and turning it around�
�any abstract interpretation induces a type system��

To link the type system with the operational semantics we only need one
thing� a link between the syntaxes of both systems�

De�nition ��

A type system is a structure �A�B�
�
�	 such that A and B are pointed transition

systems and
�
� � LabA � LabB �

In the following we will concentrate on type systems with LabA � LabB and
where

�
� is the equality on labels�

What does it mean to have a type system� The original idea from functional
programming was to restrict the set of expressions to well�typed ones� A well�
typed expression is simply an expression that has a type� Dually� environments
have types� the corresponding type environments� The general picture is that
the states of the type system serve as types for the states of the other transition
system�

De�nition �	

Given a type system �A�B�
�
�	 we de
ne the associated untyped transition system

A � B as the pointed TS given as�

� the set of states StaA � StaB �

� the set of labels LabA � LabB �

� the initial state ��A� �B	�

� the transition relation�

�X�Y 	
�x�y�
�� �X �� Y �	 �	 x

�
� y X

x
�� X � Y

y
�� Y ��

��

In other words� the associated untyped transition system is just the pointwise
product � except for the labels which are synchronised via the label relation
�
�� Notice that the construction is symmetric� the transition system we get
from imposing A as a type system for B is isomorphic to the one we get from
switching their r#oles�

We do not have yet a notion of soundness or completeness � for this we
need again error states�

De�nition �

A type system for an ETSE � �T�Err	 is a type system �T�A�
�
�	� Its associated

error transition system E � A is �T � A�Err � StaA	�

The idea is that we reach an error whenever we reach an error in the underlying
untyped world� Instead of the above one could use ETSs themselves to type
ETSs� with the idea that error states in the type system represent type errors�
However� this would not change the break of symmetry�

We can lift the notions of soundness etc� from ETSs to ETSs with type
systems� a type system A for an ETS is called sound �complete	 i� the associated
ETS is sound �complete	� One can check that this gives indeed the usual notion
of soundness� In particular� for �v � a type system for �v is sound i� no expression
that type�checks in the initial type environment gives a run�time error in the
initial environment of the underlying untyped language�

Establishing the similarity or bisimilarity of states in the typed system can
be arbitrarily tricky� States that could be distinguished in the original system
might become indistinguishable due to the sudden lack of observers �labels that
pass the type check	� Indistinguishability is preserved though�

Proposition �� Let A and B be pointed transition systems� Let s� wA s� and
b� wB b�� Then �s�� b�	 w �s�� b�	 in A

�
� B for any

�
��

� Concrete Type Systems

What would a sound and complete type system for �v look like� We restrict
our attention to the situations in which the labels are equal and

�
� is the iden�

tity relation� A slightly unusual type system is given by the following pointed
transition system which we call ���

� states�
nite sets of variables with � as initial state�

� labels� as for �v � i�e� pairs of expressions and variables�

� transitions� M
�e�x�
�� N �	 N �M � fxg FV�e	 �M �

Since the only elementary error in �v is to access an unaccounted variable�
it should be intuitively clear that �� is sound for �v � Indeed�

Theorem �� �v � �� is sound�

��

Proof� We prove by induction on the derivation trees the stronger invariant that
whenever E � e � r and FV�e	 � DomE and FV�E	 � � then r �� � and
FV�r	 � �� Clearly DomE � M in any reachable state �E�M	 and hence it
follows that FV�E	 � � which means that � is unreachable� ut

What about completeness� This is not such a trivial question as one
rst
might think� because the restriction to closed terms a�ects extensional equality
�see ��� �	� Still� the pointed TS �� is bicomplete for �v �

Theorem �� �v � �� is bicomplete�

Proof� Take an arbitrary non�error state �E�M	� We have to show that it is
reachable �up to �	 if it is sound�

Suppose x �M nDomE� in this case the state is unsound since we can reach

� by the transition �E�M	
�x�x�
�� �� Therefore we can assume M � DomE�

De
ne E
M to be the restriction of E to variables occurring in M � By an
argument very similar to the proof of lemma � we have E
M

e
� E for all e with

FV�e	 � M � This implies �E�M	 � �E
 M�M	� By strong bicompleteness
of �v �theorem ��	 the environment E
 M is reachable up to �� Suppose

E
 M � E� and �
w
�� E�� Lemma �� implies that �E��M	 � �E�M	� The

domains of E� and E
 M are equal to each other �by bisimilarity	 and to M
�by the earlier assumption	� Moreover� the concrete w obtained from the proof
of theorem �� only consists of closed expressions� But for any closed expression

e we have the �� transition M
�e�x�
�� M � fxg and thus �E��M	 is reachable� ut

If we consider more traditional type systems for the ��calculus� for example
�� or other systems of the ��cube �see ���	� establishing soundness of these type
systems for �v is possible through proving a subject reduction property� These
systems typically exhibit the di�erence between completeness and bicomplete�
ness� The transition system for �� simply uses types as values and modus ponens
for application�

Theorem �� �v � �� is complete but not bicomplete�

Proof� Suppose �E�B	 is a sound state� Any reachable state of the form �E�� B	
simulates �E�B	 because all expressions that type�check in B are strongly nor�
malising in E� �by the SN property of �� 	� If there is no reachable state of
the form �E�� B	 then B contains bindings to uninhabited types� We can re�
place all occurrences of type � in B by � � � getting a new type environment
B� the state �E�B	 is simulated by �E�B�	� in particular all expressions that
type�check in B also type�check in B�� Moreover� all types in B� are inhabited�
so that we can
nd some reachable �E�� B�	 which by the previous argument
simulates �E�B�	 and �by transitivity	 �E�B	�

Bicompleteness fails� because we could give a variable x the type ��� �	�
�� � �	 and bind it to ��� z��	 where � is some non�terminating expression�
This is a sound pair� but it is not bisimilar to any reachable state� ut

��

One might regard the completeness argument in the proof as unsatisfactory as
we simply replaced all troublesome types by other types� The reason we could
do this is that types are not directly observable in �� � they are part of the states
and not part of the transitions� To forbid the change of types one could modify
transitions in �� from �e� x	 to �e� x� t	 where t is the type of x and e� This
change would ensure that types are preserved by simulation and it would imply
the incompleteness of the corresponding typed transition system�

The lack of bicompleteness of �v � �� due to the failure of expressing non�
termination may seem innocuous� but it is a bit more serious than one might
expect� With an argument very similar to the one used for the proof of the
completeness claim one can show that any two reachable states �E�B	 and
�E�� B�	 are bisimilar if B � B�� The reachable part of the transition system
�v � �� �divided by bisimilarity	 is like the minimal model of �� in which all
carrier sets are either singletons or empty� depending on whether the proposition
corresponding to the type is true or not� In particular� we cannot distinguish
di�erent Church�numerals� Even if we added a zero�tester and a predecessor�
di�erent Church�numerals would still be indistinguishable because we still have a
strongly normalising language� The further addition of a value that triggers non�
termination �like the counterexample to bicompleteness	 changes all that� non�
termination of a �v evaluation is observed at the transition system level as the
failure to make a transition with a certain label and thus it a�ects bisimilarity�

In other words� the completeness question is more interesting for type sys�
tems that allow non�termination� e�g� �� or PCF� PCF is essentially �� extended
by natural numbers and
xpoints� see �"�� Using call by value evaluation we as�
sume that it is an error to evaluate the PCF term �Succ x	 if x is not bound to a
natural number� This induces a partial logical equivalence relation on all values
�see ���	 and a PCF state �E�B	 is sound i� the environment E �restricted to
the domain of B	 is logically related to itself w�r�t� B� From this we can deduce
the bicompleteness of PCF�

Theorem �	 PCF is bicomplete�

Proof� Let �E�B	 be a sound �but unreachable	 PCF state� We want to con�
struct a reachable state �E�� B	 which is bisimilar to �E�B	� We do this point�
wise for all variables bound in B� We can do this by encoding the syntax of PCF
in PCF and writing the obvious evaluation functions for evaluating g$odelised
open expressions in a given �typed	 environment� Notice that we need one func�
tion for each combination of types for the environment and the expected type
for the expression� but for each concrete typed value
nitely many such func�
tions su�ce� ut

One might expect that the argument in the proof of theorem �� carries over to
arbitrary �Turing�complete	 programming languages� However� it is not always
possible to express an evaluation function within the language� i�e� traversing the
structure of an expression may already violate the typing rules� In particular�
Standard ML ��� is incomplete� for recursive datatypes which �mutate� during
recursion it is not possible to fully traverse their data� example�

��

datatype �a opent � ZZ � SS of ��a t� t � Var of int

datatype �a t � Z � S of ��a t� t

fun eval ZZ env � Z

� eval �SS x� env � S �eval x env�

� eval �Var n� �v��xs� �

if n�� then v else eval �Var �n	
�� xs

The function eval can be seen as evaluating �a subset of the	 encoded open
expressions of type �a t in a given environment� It is sound� but its de
nition
does not type�check in SML and it is not possible to de
ne this function by
other means either ����

� Conclusion and Related Work

We have de
ned a general notion of what it means to be a type system for an
arbitrary transition system� and express what it means for such a system to
be sound and%or complete� So far� the literature has focussed on looking at
particular notions of soundness of particular programming languages� e�g� ����
for Standard ML�

Related to the work presented here is a recent paper by Puntigam ����� Pun�
tigam aims at types for object oriented languages and uses the trace semantics
for typing� In several ways this is more speci
c than what we suggest here� but
it is based on the same fundamental idea of linking labelled transitions with
types� While Puntigam has a di�erent and more speci
c objective but uses sim�
ilar methods� van Raamsdonk and Severi ���� also aim at typing for transition
systems but do it very di�erently still� they also use states as types for states�

We showed the completeness and lack of bicompleteness of the type system
�� � It should be clear that the proof of the latter easily generalises to all type
systems in the ��cube as they admit the same counter�examples� but it is less
clear and indeed dubious whether the completeness argument goes through as
well� By construction� reachable environments are inhabited and therefore they
are tautologies when we interpret them as propositions using the Curry�Howard
isomorphism� Conversely� any environment that has a tautological type envir�
onment is reachable �up to simulation	� This holds for all strongly normalising
type systems for the ��calculus� We could show the completeness of �� by
exhibiting for any non�tautological type environment a tautological one that
type�checks the same �and more	 expressions� This trick does not carry over to
more expressive type systems than �� �

We also showed the bicompleteness of PCF� The proof of this property can
apparently be adapted to many other Turing�complete programming languages
still� Standard ML is �surprisingly	 incomplete�

��

References

��� Hendrik P� Barendregt� The Lambda�Calculus� its Syntax and Semantics�
North�Holland� �" ��

��� Hendrik P� Barendregt� Lambda calculi with types� In Handbook of Logic
in Computer Science� Vol��� pages ������"� Oxford Science Publications�
�""��

��� D� Gries and D� Jacobs� General correctness� a uni
cation of partial and
total correctness� Acta Informatica� ������ �� �" ��

��� Stefan Kahrs� Limits of ML�de
nability� �submitted	� �""��

��� Robin Milner� Communication and Concurrency� Prentice Hall� �" "�

��� Robin Milner� Mads Tofte� and Robert Harper� The De	nition of Standard
ML� MIT Press� �""��

��� J�C� Mitchell� Type systems for programming languages� In Jan van
Leeuwen� editor� Handbook of Theoretical Computer Science� volume B�
chapter � pages ������ � Elsevier� �""��

� � Gordon Plotkin� The ��calculus is ��incomplete� The Journal of Symbolic
Logic� �"��������� �"���

�"� Gordon Plotkin� LCF considered as a programming language� Theoretical
Computer Science� ���������� �"���

���� Gordon Plotkin� A stuctural approach to operational semantics� Technical
Report DAIMI FN��"� Aarhus University� �" ��

���� Sally Popkorn� First Steps in Modal Logic� Cambridge University Press�
�""��

���� Franz Puntigam� Types for active objects based on trace semantics� In
Proceedings FMOODS
��� pages ����� IFIP WG ���� �""��

���� Femke van Raamsdonk� Conuence and Normalisation for Higher�Order
Rewriting� PhD thesis� Vrije Universiteit Amsterdam� �""��

���� J�J�M�M� Rutten� A calculus of transition systems� In Alban Ponse�
Maarten de Rijke� and Yde Venema� editors� Modal Logic and Process Al�
gebra� pages �������� CSLI pubplications� �""��

���� Mads Tofte� Operational Semantics and Polymorphic Type Inference� PhD
thesis� University of Edinburgh� �" � CST���� �

���� Glynn Wynskel and Mogens Nielsen� Models for concurrency� In S� Ab�
ramsky� Dov M� Gabbay� and T�S�E� Maibaum� editors� Handbook of Logic
in Computer Science� volume �� pages ���� � Oxford Science Publications�
�""��

��

