
A model for evolution of services in
distributed systems

T. Senivongse and I.A. Utting
University of Kent at Canterbury
Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent,
CT2 7NF, UK. Tel: +44 (0)1227 764000. Fax: +44 (0)1227 762811.
email: ftsna,iaug@ukc.ac.uk

Abstract
Large software systems are never static. They exist in an environment that is subject to constant
changes in both functionality and technology. This is particularly a problem for large-scale dis-
tributed systems, where different components may be subject to different, divergent, pressures.
This paper describes work carried out on an RM-ODP-based model for evolution of distributed
application services under such conditions. It examines problems that may occur when services
evolve to their new versions without corresponding evolution in their clients and presents a
mechanism to preserve such old services as are still needed. The model uses the idea of ‘map-
ping’ to provide the impression of old services using their new versions. A prototype of the
model has been implemented on the ANSAware platform, giving an example of how the model
can be applied in a working distributed environment.

Keywords
Evolution, transparency, RM-ODP, interoperability, distributed systems

1 INTRODUCTION

One of the causes of the current trend towards distribution of information processing system
components is the need to exchange information between interconnected systems both within one
organisation and between cooperating organisations. A major requirement for the construction
of such distributed systems is to mask from clients details and differences in the mechanisms
used to provide a particular service. This leads to the goals of ‘transparency’, typically hiding
details of location, failure, and access mechanisms. To these familiar transparencies, we add
‘evolution’, hiding from clients (where necessary) the details of the changes occurring to a
service over time.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A model for evolution of services in distributed systems

1.1 Problems in evolution of distributed services

Lehman and Belady (1985) remarked that software systems are never completed; they just
continue to evolve. Requirements for new functionality or for improvements in the system are
likely to result in modification in the design and implementation of a service. Such modification
often has effects on the environment and poses the following problems:

� As client/server systems are loosely-coupled and autonomous, but share resources, there is a
conflict between the needs of servers and clients. If a particular system, providing a shared
service that can be accessed both locally (from the server’s own domain) and remotely, needs
to modify the service it provides, clients will be affected by the change unless the new service
is strictly compatible with the old one.
Evolution usually preserves the functionality of old services but possibly results in strictly
incompatible new services. Incompatibility means the new version cannot directly substitute
for the old counterpart, as clients are not able to interact with it in the same way. Some
provision is consequently required for clients to continue using the service.
Normally, all should be fine for local clients because they and the server follow the same
local policy, and any changes in the service should be propagated to them. Remote clients
may be tied to a different policy and may prefer not to change anything; the old service may
serve them well enough for their requirements. It may even be that clients are not aware of
changes in remote services at all. In large-scale distributed systems, informing all clients of
changes to all the services they use may impose an intolerable load on the maintainers of
client systems.
This problem is a result of a limited view of the compatibility relationship in distributed
object models which is usually restricted to incremental subtyping. A more general meaning
for compatibility (i.e. compatibility of functionality) needs to be assumed rather than what
interface subtyping normally provides.

� Although evolution of services is a useful activity as it leads a system to an appropriate
current state, it is a complicated and inconvenient process. Apart from introducing a new
service, the evolver who arranges the evolution may have to decide what should be done to
the old service and whether clients need any notification of the changes.
In the case of completely incompatible new versions, changes must be reported to all clients so
that any necessary conversions can be made to them to upgrade their behaviour appropriately.
The evolver will also need to consider whether and how evolution of a service has an impact
on other services. Subtype services are usually affected by evolution of their supertypes as
they inherit behaviour from them.

In practice, the problem of incompatibility is common among different areas of interest.
W. Brookes and Yang (1995) studied differences in the type systems of various distributed
platforms that inhibit interoperability between distributed domains, comparing type systems
that differ in both syntax and semantics, and including RM-ODP-based system, ANSAware,
DCE, CORBA as well as Liskov and Wing’s work (Liskov and Wing, 1993) and America’s
work (America, 1991) on type systems in object-oriented applications. The difficulty addressed
arises when applications from different domains with different type models must interwork
when selection and matching of resource types can cross platform boundaries. The proposed
solution assumes one-to-one mappings between type models with a type manager in each type

INTRODUCTION 3

domain querying other federated type managers about the differences among type systems and
maintaining information for automatic inter-domain type matching.

There have also been efforts to accommodate schema evolution in object-oriented databases
by class modification (J. Banerjee and Korth, 1987; Penney and Stein, 1987) and class versioning
(Skarra and Zdonik, 1988; Björnerstedt and Hultén, 1989; Monk and Sommerville, 1993). Unlike
class modification which takes an existing class definition and converts its instances into those
of the modified class definition, class versioning allows multiple versions of a class to coexist
by retaining the old class definition as well as creating a new version.

The ENCORE database (Skarra and Zdonik, 1988) supports class versioning by using excep-
tion handling to cope with mismatches between the version of the object expected by the query
and the actual version of the instance. All incarnations of a class definition are collected in a
version set whose version set interface contains every attribute, with every value declared valid
for it, and every operation ever defined by a version of the class. Each class version is associated
with handlers that correspond to the behaviour that is not defined by itself but by others. The
AVANCE project (Björnerstedt and Hultén, 1989) adopts a similar approach to ENCORE, using
exception handlers to service the query with values appropriate to the version expected by the
query. Monk and Sommerville (1993) introduced the CLOSQL system that emphasises changes
in the underlying semantics of the data as well as the structure of the database. The system uses
update and backdate functions that are defined between each pair of consecutive versions to
dynamically convert a particular instance of a version to that of the version implied in the query.

In the context of databases, it may be possible to allow multiple versions of a class definition
and their instances to truly coexist as the nature of the object data is generally static. In distributed
environment, it may be the case that only one version (the new version) can be allowed if the
old and new versions rely upon the same changing data (e.g. a clock) and the semantics of the
object type requires that there is one instance of such data. To avoid the possible inconsistency
problem, this paper aims to achieve the virtual coexistence of service versions by giving only
the appearance of the availability of the old services.

The work described above resembles that described here in trying to overcome incompatibility
by using some form of mapping to support interoperability and to provide evolution transparency
to clients of distributed services. The model presented in this paper provides client objects with
transparency of location, access, and persistence over time. The impression of old services will
persist after evolution and clients can still access those services in the same way although the
services have migrated (in time) to their new versions. The model aims to resolve the possible
conflict between a server and its clients as well as to ease the evolver’s job. It focuses on
changes of service interfaces that would influence the behaviour of the objects interacting with
them, evolution not requiring such changes being handled by the type system of the supporting
distributed object model.

1.2 Evolution and distributed processing standards

Even though the idea of service evolution has not been a focus of distributed systems develop-
ment, standardisation efforts have acknowledged its importance and declared it a feature which
distributed systems should support.

RM-ODP
RM-ODP describes evolution as a characteristic of an open distributed system. It supports
the idea that a system generally has to face many changes during its working life, which are

4 A model for evolution of services in distributed systems

motivated by technical progress enabling better performance at a better price or by changing
goals (ISO/IEC, 1995a). However, it does not impose any requirements on how the system
should respond to evolutionary pressures.

RM-ODP defines the concept of behavioural compatibility between two objects if the first
object can replace the second in some environment without the environment being able to notice
the difference in the object’s behaviour with respect to a set of criteria (ISO/IEC, 1995b). The
environment should be capable of fully exercising the original behaviour without any unexpected
results. The criteria may permit coerced behavioural compatibility by allowing modification of
an otherwise incompatible object so that it behaves as an acceptable replacement.

In practice, a service undergoing evolution is unlikely to maintain behavioural compatibility
with its old version because evolution tends to stem from changes in behaviour. To mask the
incompatibility from clients who are parts of the environment, some modification or concealment
may be necessary to force the new service to imitate the behaviour of its original counterpart.

OMA
The Object Management Architecture (OMA) of Object Management Group (OMG, 1990)
defines an extensible and dynamic nature as one of the objectives that technology supporting
applications based on distributed interoperating objects should accomplish. That is, it should be
possible to dynamically change the implementation of objects without affecting other objects.
For the time being, however, OMA emphasises the technology to support adding new implemen-
tations (e.g. new classes) and replacing implementations without changing object interfaces. The
issue of replacing implementations where the interface is changed is a secondary, and largely
unaddressed, goal.

Changes in the interface would affect the environment that interacts with the object and
OMA requires that a mechanism be provided so that existing objects can continue to use older
implementation, suggesting a versioning mechanism or a dynamic upgrade facility that allows
existing objects to use the new interface correctly.

Distributed processing standards have clearly expressed concerns about the evolution of
services. Their consideration strengthens the need for a facility to support the evolution activity.
Section 2 of this paper presents a model that facilitates this process; section 3 illustrates the
model by describing a prototype system that has been implemented on the ANSAware platform;
section 4 draws conclusions from the present work and discusses future research directions.

2 THE MODEL

The model proposed to accommodate distributed service evolution is founded on the object-
based model described in RM-ODP. The model presents a dynamic upgrade mechanism that
coerces compatibility between versions of evolving services. Similarly to the related work
discussed in section 1.1, it adopts the idea of using version mappings to allow existing client
objects to correctly use new service interfaces without notice of the changes. The model also
automates the process of evolution as much as possible as an aid to those responsible for the
modification of services.

THE MODEL 5

2.1 The scope and assumptions

The scope of the proposed model is as follows:

� Only evolution in the interface definition of a service type can be managed automatically,
since it is only the interface part which is visible to the outside world and by which object
compatibilty is determined.

� Only operational interfaces are considered.
� The evolution is restricted to a version chain; that is there is only one new version evolving

from an old service type at any one time. However, the new version is not restricted to being
expressed in only one new interface type. That is to say that evolution may result in more
than one new interface type but there must be only one set of corresponding interfaces that is
meant to replace an old interface.

� The model only aims to bridge incompatibility between versions of a service and facilitate
the evolution process. It does not guarantee that the incompatibility will be completely
transparent, as it is possible that mappings cannot be generated. In such a case, it is the
responsibility of the evolver to suggest an appropriate course of action.

The model makes the following assumptions:

� The old and new service versions do not truly coexist. This is to avoid the issue of maintaining
consistency between their underlying state. The new version alone is responsible for providing
the underlying service after evolution.

� The definition of evolution implies that there are no drastic changes to the service. The new
version still preserves, in some sense, the original functionality.

� All newly created object instances are bound to the current version at creation time. Client
objects will always refer to the versions of services that are current at the time they are
created.

� The evolver must bear in mind when changing to a new version that they need to prepare to
cope with the incompatibility that may result from the changes.

2.2 Evolution function

In RM-ODP, a trading function is provided by a third party object to mediate the advertisement
of a server object’s interfaces and the discovery of those interfaces by client objects. A client
obtains a reference to a server’s interface that matches its requirements from a trading object
and uses the interface reference to interact with the server. Such a request to the trading object
would fail if the server’s interface type has migrated to a new version incompatible with the
original one and the trading object cannot find another compatible service that can fulfil the
client’s requirements.

The model proposes an evolution function that manages the evolution of services so that
evolution transparency is accomplished. Its strategy is to conceal the fact of changes in services
from their clients by the means of version mapping. It controls the use and the generation of
mappings that are the key components in dealing with version incompatibility.

6 A model for evolution of services in distributed systems

Reference to AImport A

Mapping
Operator

New
Server

Request to A

Result of A

Request to A’

Result of A’

Trading
Object

Client
A’A

Figure 1 The model for a mapping operator.

The mapping operator
The model uses the existing new server to serve clients on behalf of the old server. Due to the
incompatibility between the two versions, the clients access the new service interface indirectly,
and conversion is required to transform messages of one version into those of the other version.
The evolution function defines such conversion as the responsibility of a mapping operator.

The mapping operator is a special service that enforces compatibility in a pair of incompatible
service versions. The evolution process requires that the mapping operator object be created
at the time a service evolves to a new version and allows the creation to be as automatic as
possible.

The mapping operator is the middleman between clients and the new server. Figure 1 shows
how it is placed in the general invocation model to support evolution transparency. To provide
a client with indirect access to the new interface type (A�), it impersonates a server of the old
interface (A) by exporting an offer of the old type to the trading object and, at the same time,
acting as a client of the new server. The mapping operator intercepts the client’s request to the
old interface and communicates with the new server before returning the result of interaction
back to the client. It uses mapping functions to generate the new version request out of the old
version and to convert the new version result back to the form required by the old version. Thus,
the client is given the impression of the existence of the old service.

The evolution function will be more transparent if the mapping operator makes use of the
relocation function defined in RM-ODP in such a way that the original service is migrated to the
mapping operator object. This helps prevent clients who already possess the service interface
reference from noticing the invocation failure that results from the absence of the original
interface after the evolution.

The generation of mapping functions
The evolution process requires that mapping functions for a pair of service versions be generated
as automatically as possible. Basically, to bridge incompatibility, knowledge of the behaviour of
the services is necessary. Since this mapping involves the semantics of services, evolvers must
cooperate and supply such information.

Figure 2 depicts two sources of mapping functions. The generation involves the comparison of

THE MODEL 7

Old Interface
Definition

New Interface
Definition

Compatible
Parts

Incompatible
Parts

Semantically

Semantically

Structurally
Incompatible
Parts

Parts
Compatible
Structurally

Comparison
Interface

Incompatibility
Query

Checking
Semantic

Direct

Generation
Functions
Mapping

Functions
from Evolver

Mapping Functions
Mapping

Direct
Mapping
Functions

Mapping
Operator

Figure 2 The generation of mapping functions.

the two interface definitions. The new interface type is structurally checked to determine whether
it is a subtype of the old interface type using the subtyping rules defined in ISO/IEC (1995c).
Structurally compatible definitions need further examination for semantic compatibility. Any
incompatibility found in the comparison needs the evolver’s involvement to specify appropriate
mapping functions in the form of procedural code. The evolution function can often define
mapping functions automatically if changes are trivial e.g. semantically compatible. These
mapping functions are then used by the mapping operator.

2.3 Supported changes in evolution

A change of type structure (Figure 3) involves changes in the signatures of the operations
embedded in the interface, whereas a change in type hierarchy implies changes in behaviour
inherited from related interfaces. The node ‘Change of Semantics’ of a parameter indicates that
although a parameter of the operation may look the same as it did before the evolution, its
meaning may have changed.

Note that it is possible that changes to the interface definition have an impact on the hidden state
of the interface. In this case, the evolver must intervene to maintain cross-version consistency
of the state.

2.4 Mapping chain

A service type may evolve several times during its lifetime. Simplistically, as shown in Fig-
ure 4(a), the evolver has to go through the evolution process n � 1 times, once for each older
version when introducing version n of the type. The evolver thus needs knowledge of all ver-
sions in the history to resolve all incompatibility effectively. This is particularly difficult if the
history line is long or more than one evolver is involved in the evolution history. In addition,
all previous mapping operators and mapping functions must be discarded when a new version
is created.

Practically, only one new mapping operator and one new set of mapping functions between
the last version and the new one are needed at each evolution point (Figure 4(b)). To compute
a mapping between version i and j (i � j), a composition of all pairwise mappings between

8 A model for evolution of services in distributed systems

Change of
Operation

Addition Removal
Operation Name
Renaming of

Parameter
Change of

Parameter Name
Renaming of

Parameter Type
Change ofRemovalAddition Change of

Semantics

Change of Type Change of Type Definition

Type Structure
Change of

Type Name
Change of

Type Hierarchy
Change of

Change of Type

Addition
of Type

Removal
of Type

Figure 3 Supported changes to an interface type.

Mapping
n-2 and n

Mapping
n-1 and n

Mapping
1 and n

...

Version
1

Version
n-1

(a) Version
n

1 and 2
Mapping

n-2 and n-1
Mapping

n-1 and n
Mapping

...

Version
1

Version
n-1(b)

n
Version

Figure 4 Application of mapping: (a) one-to-one mapping (b) mapping chain.

version i and j is necessary. The mapping chain yields no extra work for the evolver in going
back through the history of the service and all mappings are always kept for subsequent use.

2.5 Evolution and inheritance

If an interface type that has a subtype evolves, the subtype also evolves at the same time, as
it inherits the supertype’s behaviour. Such propagation of changes results in a new version of
the subtype that is itself a subtype of the new version of the original type. However, defining
a subtype for a type usually requires a deep understanding of the semantics of the two related
types. In some cases, it may not be appropriate to propagate changes to the subtype as the type

THE PROTOTYPE 9

may evolve in such a way that its new version should no longer have such a subtype. A subtype
may belong to a particular version of the type and not to all versions.

The model does not require automatic propagation of changes in a type to its subtypes as it
may not be correct to automatically assume a relationship between evolving types. In the case
that any subtype needs to change accordingly, the evolver has to evolve it separately, ensuring
that all mapping functions, created when evolving the supertype, are available for reuse to reflect
a mapping for the inherited behaviour that has changed.

3 THE PROTOTYPE

A prototype of the model has been developed on the ANSAware 4.1 platform running on a
SUN workstation. This section shows how the model can be put to use in this environment and
identifies some limitations of the current system.

3.1 The ANSAware system

ANSAware is a software framework developed to demonstrate and validate the ANSA archi-
tecture for open distributed processing (APM, 1992). It provides a basic platform and software
development support in the form of system management applications and tools for the design
and construction of distributed applications.

A trader in ANSAware provides the trading function referred to above. It organises exported
offers of services by type space and context space. The hierarchical type space keeps track of all
interface types that the trader manages together with their compatibility relationships. Subtyping
in ANSAware is limited to incremental subtyping such that the subtype must have at least the
operations that the supertype provides, but at present ANSAware does not provide any mech-
anism to examine such type conformance. The context space is the hierarchical administrative
name space where offers are placed when they are exported. When an offer is published to the
trader, its interface type, context and optionally, some instance properties are specified.

The specification of an interface is written in the Interface Definition Language (IDL) which
provides primitive data types, constructors for building more complex data types, and a method
for specifying operation signatures. IDL supports inclusion of interface types through an [IM-
PLEMENTATION] IS COMPATIBLE WITH clause which permits inheritance of the specifi-
cation of included types.

3.2 The implementation

The evolution manager is the main component that supports evolution function. It controls
the interaction between evolvers and the prototype system, as well as the creation of mapping
functions and mapping operators. An evolver invokes the evolution manager to carry out an
evolution process.

Different versions of a service must have different interface names under ANSAware, as it
distinguishes interface types by their names and not by their structures. This is to ensure that a
request to an old server after its evolution is directed to its mapping operator and not to a new
server with similar interface name but incompatible interface specification.

The evolver specifies evolution information including the interface pair and instances of the
two versions involved. The evolution manager parses the interface definitions and structurally

10 A model for evolution of services in distributed systems

compares them according to the RM-ODP subtyping rules. The evolver is asked to confirm the
semantic compatibility and to supply mapping functions for any incompatibilities found. The
evolution manager then automatically produces program code for the mapping operator.

Although we are considering evolution of interface types, the actual activity occurs at instance
level. As there may be several instances of an interface type that are exported with different
properties and contexts, evolving an interface type eventually involves evolving its instances.
The new version interface is instantiated in such a way that there is at least one new interface
instance that corresponds to each old interface instance and is ready to act as its replacement.

The number of old interface instances in the mapping operator object is determined by the
number of old interface instances being evolved. The evolver can either choose a fixed instance
selection to specify which old interface instance maps to which new interface instance or specify
a selection condition that the mapping operator can use to match an old interface instance with
a new one dynamically.

The prototype is able to handle all the changes to an interface type illustrated in Figure 3. It can
also deal with changes in user-defined data types, as this kind of change simply reflects changes
in parameter types. Changes in supertype, defined by [IMPLEMENTATION] IS COMPATIBLE
WITH, are handled by expanding the clause and considering changes in the inherited behaviour.
With respect to the old version, a mapping function is defined for each operation and each
argument/result parameter of the operation. The evolver supplies all nontrivial mapping functions
whereas the evolution manager is responsible for creating mapping functions for direct matching
only.

The prototype maintains a history database whose function is to keep track of the evolution
of service types. This helps the evolution manager when generating program code for mapping
operators as well as when creating direct mappings for interface reference data types. It has a
checkpoint mechanism to keep the database stable and a log mechanism to facilitate recovery
from failure.

There remain some limitations in this implementation. Though clients are provided with
evolution transparency through the prototype, evolvers are assisted in the evolution process
only to a certain extent as they still have to be aware of the existence of mapping operators.
In the current implementation, mapping operators are not automatically instantiated. Evolvers
are provided with their program code but need to instantiate them manually. Additionally, the
evolution manager does not incorporate ANSAware’s relocation function into the prototype to
prevent clients who already possess a reference to an old interface from invocation failure. In
this instance, re-trading for a new reference always solves the problem.

3.3 An example

The following example illustrates how the evolution process is accomplished in the prototype.
An interface type Emp provides a service to access the employee database of a company

that comprises two branches, north and south. It provides an operation Fetch that takes an
employee’s name (name) and branch name (branch) and returns the employee’s department
name (dept) and annual salary (salary) (Figure 5(a)). For some reason, the company decides
to split the database into two so that each database contains only the data of the employees in
the branch and the recording of salary is changed to a monthly basis. The company also decides
to evolve the interface Emp to BrEmp to track the database reorganisation. BrEmp takes only
the employee’s name (empname) and returns department name (dept) and monthly salary
(salary) (Figure 5(b)).

THE PROTOTYPE 11

Emp : INTERFACE =
BEGIN
 Branch : TYPE = {north,south};
 Fetch : OPERATION [name : ansa_String; branch : Branch]

 RETURNS [dept : ansa_String; salary : ansa_Real];

BrEmp : INTERFACE =
BEGIN
 Fetch : OPERATION [empname : ansa_String]

 RETURNS [dept : ansa_String; salary: ansa_Real];

(a)

(b)

END.

END.

Figure 5 Versions of a service interface: (a) old (b) new.

ctxt=/ansa/service

Emp
prop=branch northandsouth

Mapping
Operator

New

New
ctxt=/ansa/service
prop=branch northandsouth
Emp

north

south

ctxt=/ansa/service
prop=branch north
BrEmp

BrEmp
prop=branch south
ctxt=/ansa/service

Old

Figure 6 The relationship between old server, mapping operator, and new server.

The single instance of the interface Emp is replaced by two instances of the interface BrEmp.
Their exported properties correspond to the branch they are for. The evolution manager will
create a mapping operator that has only one interface instance of type Emp with its exported
property and context similar to those of the old server (Figure 6).

As also shown in Figure 6, the evolver can specify the condition for the mapping operator
to perform dynamic instance selection whenever a Fetch request is made. The condition is: if
branch is north, forward the request to the new server whose property is branch north
otherwise choose the new server with property branch south.

On comparing the two interfaces, an incompatibility is found forname andempname together
with a semantic incompatibility for salary. The evolver has to specify a forward mapping to
obtain empname from the arguments of the old version request and a backward mapping to
get the annual salary from the new version results (Figure 7). A direct mapping function for
dept, which is semantically consistent in both versions, is created by the evolution manager.

12 A model for evolution of services in distributed systems

Forward Mapping:

{ strcpy(*BrEmp_empname, Emp_name);
return Ok;

}

Backward Mapping:

{ *Emp_salary = BrEmp_salary*12;
return Ok;

}

int maparg_Fetch_empname(ansa_String Emp_name, Branch Emp_branch, ansa_String *BrEmp_empname)

int mapres_Fetch_salary(ansa_String BrEmp_dept, ansa_Real BrEmp_salary, ansa_Real *Emp_salary)

Figure 7 User-defined mapping functions.

4 CONCLUSION AND FUTURE WORK

The proposed model provides evolution transparency to clients when services evolve. It supports
forward compatibility such that clients can continue using the services without having to change
their existing programs or track any changes. In addition, it is able to cope with evolution in
semantics as well as in structure. The model extends the concept of interface type compatibility,
defined in distributed object models, from structural compatibility to functional compatibility.

The model alleviates evolvers’ responsibility at evolution time by putting as much automation
as possible in the process. It aids cross-version transformation by automatically generating direct
mapping functions and all program code necessary for providing evolution transparency.

The prototype in the ANSAware environment demonstrates the application of the model.
A better user interface and inclusion of the relocation service in the prototype are required to
improve its use.

The model should be extended to cope with nonlinear versioning. There is a possibility that
more than one evolver, working in parallel, will propose different new versions for the same
service. The model must be enhanced to cover version hierarchies and the criteria to select an
appropriate new version when a view of an old version is needed.

A further investigation of evolution in stream interfaces is envisaged. It is likely that the use of
mappings can also be applied to manage evolution of this kind of interfaces. However, evolving
stream interfaces may be achieved in different ways depending on their characteristics and how
they evolve. In the case that the evolution involves changes in hardware or protocol, the use of
interceptors may be helpful to provide appropriate conversion.

REFERENCES

America, P. (1991) Designing an Object-Oriented Programming Language with Behavioural
Subtyping, in Foundations of Object-Oriented Languages, number 489 in Lecture Notes in
Computer Science, REX School/Workshop, Noordwijkerhout, The Netherlands. Springer-
Verlag.

APM Ltd. (1992) ANSAware 4.1 Application Programmer’s Manual. APM Ltd., Cambridge,
UK.

Banerjee, J., Kim, W., Kim, H.J. and Korth, H.F. (1987) Semantics and Implementation of
Schema Evolution in Object-Oriented Databases, in ACM SIGMOD Proceedings, San Fran-

CONCLUSION AND FUTURE WORK 13

cisco, 311–322.
Björnerstedt, A. and Hultén, C. (1989) Version Control in an Object-Oriented Architecture, in

Object-Oriented Concepts, Databases, and Applications (ed. W. Kim and F.H. Lochovsky),
ACM Press, 451–485.

Brookes, W., Indulska, J., Bond, A. and Yang, Z. (1995) Interoperability of Distributed Platforms:
a Compatibility Perspective, in Proceedings of ICODP’95, Brisbane, Australia, 53–64.

ISO/IEC (1995a) ISO/IEC 10746-1 ODP Reference Model Part 1: Overview.
ISO/IEC (1995b) ISO/IEC 10746-2 Open Distributed Processing - Reference Model - Part 2:

Foundations.
ISO/IEC (1995c) ISO/IEC 10746-2 Open Distributed Processing - Reference Model - Part 3:

Architecture.
Lehman, M.M. and Belady, L.A. (1985) Program Evolution: Processes of Software Change.

Academic Press.
Liskov, B.H. and Wing, J.M. (1993) A New Definition of the Subtype Relation, in Proceed-

ings of ECOOP’93 (ed. O. Nierstrasz), number 707 in Lecture Notes in Computer Science,
Kaiserslautern, Germany. Springer-Verlag, 1811–1841.

Monk, S.R. and Sommerville, I. (1993) Schema Evolution in OODBs Using Class Versioning.
SIGMOD Record, 22(3), 16–22.

OMG (1990) Object Management Architecture Guide 1.0, OMG TC Document 90.9.1. Object
Management Group.

Penney, D.J and Stein, J. (1987) Class Modification in the GemStone Object-Oriented DBMS,
in Proceedings of OOPSLA’87, Orlando, Florida, 111–117.

Skarra, A.H. and Zdonik, S.B. (1988) Type Evolution in an Object-Oriented Database, in
Research Directions in Object-Oriented Programming (ed. B. Shriver and P. Wegner), MIT
Press, 393–415.

BIOGRAPHY

Twittie Senivongse is currently a Ph.D. student in Computer Science at the University of Kent at
Canterbury. She received a B.Sc. degree in Statistics from Chulalongkorn University, Thailand,
in 1989, and an M.Sc. degree in Computer Science (Conversion) from Imperial College, UK, in
1992. Her research interests in distributed systems include Open Distributed Processing, system
interoperability, and distributed object models.

Ian Utting gained a B.Sc. degree in Computers and Cybernetics from the University of Kent
at Canterbury in 1978. After spending four years in commercial office systems research and
development, he returned to Kent to research into electronic publishing and distributed systems.
He has been a lecturer in Computer Science since 1986, and his current research is focused on
issues in the engineering of large-scale distributed systems.

