
Lower-bound Time-complexity Analysis
of Logic Programs
Andy King1, Kish Shen2 and Florence Benoy11University of Kent at Canterbury, 2University of Manchester,
CT2 7NF, UK. M13 9PL, UK.fa.m.king, p.m.benoyg@ukc.ac.uk kish@cs.man.ac.uk

Abstract
The paper proposes a technique for inferring conditions on goals that, when satisfied, en-
sure that a goal is sufficiently coarse-grained to warrant parallel evaluation. The method is
powerful enough to reason about divide-and-conquerprograms, and in the case of quicksort,
for instance, can infer that a quicksort goal has a time complexity that exceeds 64 resolution
steps (a threshold for spawning) if the input list is of length 10 or more. This gives a simple
run-time tactic for controlling spawning. The method has been proved correct, can be im-
plemented straightforwardly, has been demonstrated to be useful on a parallel machine, and,
in contrast with much of the previous work on time-complexity analysis of logic programs,
does not require any complicated difference equation solving machinery.

1 Introduction

Automatic time-complexity analysis is useful to the programmer for algorithmic consider-
ations but has a special rôle in the development of efficient parallel programs [9, 6, 7, 12,
15]. The execution of a parallel program can break down into processes which are too fine-
grained for a multiprocessor. This can present a mismatch of granularity between the pro-
gram and the multi-processor which, in turn, can degrade performance. Time-complexity
analysis enables fine-grained processes to be identified and coalesced into more
coarse-grained units at run-time in a fully automatically way. This can unburden the pro-
grammer from awkward, machine-dependent and error-prone tactical programming deci-
sions like deciding which processes to spawn.

Automatic time-complexity analysis was first suggested as a way of controlling granu-
larity for logic programs in [21] where a simple, heuristic-based analysis was proposed. The
analysis, however, was crude and did not satisfactorily model recursive predicates. Recur-
sive predicates present difficulties because the quantity of computation (and therefore the
granularity) is data-dependent and is therefore difficult to determine at compile-time. Use-
ful complexity information can still be derived, however, by automatically inferring com-
plexity expressions formulated as functions on the size of the data [7]. Once the size of the
data is known at run-time, the time-complexity (and therefore the granularity) can be simply
calculated. Specifically, the size of the data can be checked against a threshold to determine
whether or not the goal should be evaluated in parallel.

Qs(l, s) <- Qs(l, s, []).
Qs([], l, l).
Qs([x | xs], h, t) <-

Pt(xs, x, l, g),
Qs(l, h, [x | m]),
Qs(g, m, t). Pt([], , [], []).

Pt([x | xs], m, [x | l], g) <-x � m, Pt(xs, m, l, g).
Pt([x | xs], m, l, [x | g]) <-m < x, Pt(xs, m, l, g).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To illustrate, consider the quicksort predicate implemented with difference-lists, and sup-
pose that the first argument of Qs/3 is known to be input. This, for example, might have
been inferred through mode analysis. (Note that Gödel notation is used throughout: vari-
ables are denoted by identifiers beginning with a lower case letter whereas constants begin
with an upper case letter.) The time-complexity of a Qs/3 goal, t, depends on the length,l, of its first argument. To be more precise, if time is measured by counting the number of
resolution steps, then tmin(l) � t � tmax(l) where tmin(l) and tmax(l) are the lower- and
upper-bounds on the time-complexity,tmin(0)=1tmin(l) =1 + l + tmin(b l�12 c) + tmin(d l�12 e)tmax(0)=1tmax(l) =1 + l + tmax(0) + tmax(l � 1)
and b:c and d:e denote the floor and ceiling integer rounding functions. Since the input list is
ground, we assume perfect indexing between the Pt/4 clauses so that failing computation
paths do not need to be considered. Granularity can be controlled by clamping tmin(l) andtmax(l) with closed-form expressions, l(blog2(l3)c � 23) � tmin(l) and tmax(l) = 1 +l(l+5)2 (either derived by hand or derived automatically) and then only sequentialising goals
for which tmax(l) � dmax [7] where dmax is granularity spawning threshold that depends
on the underlying machine architecture which, for example, relates to the cost of forking a
process. Another strategy for throttling the granularity is to only spawn goals with dmin �tmin(l) where dmin is another machine dependent threshold.

The tmax(l) � dmax method is the dual of the dmin � tmin(l) strategy [9]. Interest-
ingly, if tmax(l) is not a tight upper bound on dmax, then the first technique can still spawn
fine-grained tasks. Thus there is no guarantee that the first strategy will actually improve
the performance of a parallel system. In an extreme situation a parallel system might actu-
ally run slower than an equivalent sequential system. On the other hand, if tmin(l) is not a
tight lower bound on dmin, then there is no guarantee that any processes will be spawned
with the second method. Note, however, that the parallel system is unlikely to lead to slow-
down. The practicality of either technique depends on the inequalities tmax(l) � dmax anddmin � tmin(l) being solved for useful, non-trivial values of l.

Our contribution is to show how the dmin � tmin(l) inequality can be solved straight-
forwardly for useful, non-trivial values of l by bottom-up abstract interpretation. For exam-
ple, with dmin = 64, our analysis can infer for Qs/2 that if tmin(l) � dmin then l � 9.
Interpreted negatively, this means that if 10 < l then 64 = dmin < tmin(l). This is not an
exercise in aesthetics but has a number of important and practical implications:

precision – our analysis can straightforwardly solve dmin � tmin(l) for useful values ofl even for a number of divide-and-conquer problems, including quicksort, which are
difficult to reason about requiring, for example, extra analysis machinery in the dif-
ference equation approach [9].

implementation – in terms of practicality, our analysis builds on the argument-size analysis
of [2] and, like the analysis described in [2], the analysis can be implemented straight-
forwardly in a language with constraint support. In fact the initial prototype analyser
is less than 200 lines of code and took just two weeks to code and debug. Further-
more, the analysis does not require difference equation support to solve the equations
that normally arise in time-complexity analysis [6, 7]. The analysis reduces to solving
and projecting systems of constraints and machinery for these operations is provided
and already implemented in systems like CLP(R) and SICStus version 3.

correctness – time-complexity analysis is potentially very complicated and therefore the
correctness of an analysis is a real issue. For the analysis described in this paper,

safety has been formally proved through abstract interpretation. In more pragmatic
terms it means that the thresholding conditions inferred by the analysis guarantee that
fine-grained processes are never spawned.

Note, however, that not spawning fine-grained processes is not always enough to guarantee
a speedup (or even a no slowdown) since even the largest parallel machine will eventually
saturate!

The exposition is structured as follows. Section 2 outlines the analysis with a worked
example. Section 3 presents some preliminary theory. Sections 4 and 5 describe the trans-
formation and the fixpoint calculation that make up the body of the analysis. Section 6 de-
scribes how an implementation of the analysis has been used on a parallel machine and sec-
tions 7 and 8 present the related and future work. Finally section 9 summarises the work.
The paper assumes some familiarity with the s-semantics for CLP [3].

2 Worked example

Consider a time-complexity analysis for the predicate Qs/2 where dmin = 16. Analysis
divides into two stages: a fixpoint calculation that characterises how the time complexity
relates to argument sizes; and a post-processing phase that infers conditions for the time
complexity of a goal to exceed dmin resolution steps. By applying program transformation
(abstract compilation [13, 14]) time complexity analysis can be recast as the problem of in-
ferring invariants of a CLP(R) program. Analysis then, in effect, reduces to evaluating the
concrete (bottom-up) semantics of the CLP(R) program. The Qs/2 program listed below,
for example, is a CLP(R) program that is obtained from Qs/2 by a syntactic transforma-
tion in which each term in the first program is replaced by its size with respect to list length.
Note, however, that the first argument of each predicate in the CLP(R) (abstract) program
corresponds to a counter, d, that records the time-complexity. d is the sum of the resolution
steps required to solve the body goals with an increment for the single resolution step im-
plicit in goal-head unification. d is clamped by the constraint d � dmin to ensure that goals
whose time-complexity exceeds dmin are not considered in bottom-up evaluation.

All arguments but the first of an abstract predicate define an n-ary tuple of argument
sizes. The n-tuple represents the sizes of the n arguments of the corresponding (concrete)
predicate. Time-complexity analysis is performed by inferring relationships between the
time argument and the size arguments of the n-tuple. Other measures of term size, for in-
stance, term depth, can also be used [10, 19] to generate the abstract program.

Qs(d, l, s) <-d � 16, d = 1 + d1,
Qs(d1, l, s, 0).

Qs(d, 0, l, l) <- d � 16, d = 1.
Qs(d, 1 + xs, h, t) <-d � 16, d = 1 + d1 + d2 + d3,

Pt(d1, xs, , l, g),
Qs(d2, l, h, 1 +m),
Qs(d3, g, m, t).

Pt(d, 0, , 0, 0) <-d � 16, d = 1.
Pt(d, 1 + xs, m, 1 + l, g) <-d � 16, d = 1 + d1,

Pt(d1, xs, m, l, g).
Pt(d, 1 + xs, m, l, 1 + g) <-d � 16, d = 1 + d1,

Pt(d1, xs, m, l, g).
Suppose that the abstract program is denoted PA. The fixpoint phase of the analysis

amounts to computingTLin;PA "! =[i=0TLin;PA " iwhere TLin;PA is the immediate con-
sequence operator of the s-semantics for CLP instantiated for Herbrand equations and lin-
ear inequations [3] and TLin;PA " i+ 1 = TLin;PA(TLin;PA " i). Each iteration in the

fixpoint calculation takes an TLin;PA " i, dubbed an interpretation, as input and gener-
ates an TLin;PA " i+ 1, as output. TLin;PA " 0 = ; is the empty interpretation. To com-
pute TLin;PA " i+ 1, the body atoms of each clause of the program are unified with the
atom abstractions in interpretation TLin;PA " i. Since TLin;PA " 0 is empty, however,TLin;PA "1 will represent only those argument and time-complexity relationships embod-
ied in the clauses of PA that do not have user-defined body atoms.TLin;PA "1 = TLin;PA "0 [�Qs(1; 0; x2; x3) x2 = x3: Pt(1; 0; x2; 0; 0) true:	
The relationships asserts that if a Qs/3 goal can be solved in one resolution step, then the
first argument must (ultimately) be bound to [] and the second and third arguments must
(ultimately) be of equal length. Similarly, for the Pt/4 goal to solved in one step, the first,
third and fourth must be bound to []. Since the Pt/4 and Qs/2 predicates each have only
one unit clause, only one abstract atom for Pt/4 and Qs/2 is included in TLin;PA "1. In
calculating TLin;PA "2, however, two abstract atoms are generated from the two recursive
clauses of Pt=4.� Qs(2; 0; 0) true: Pt(2; 1; x2; 1; 0) true:Qs(4; 1; x2; x3) x2 = 1 + x3: Pt(2; 1; x2; 0; 1) true: �
To keep the size of each TLin;PA " i small and manageable, the sets of inequalities for each
predicate are collected and approximated by an over-estimate, the convex hull. The convex
hull can itself be expressed as a single set of inequalities so that TLin;PA " i needs only to
maintain one set of inequalities for each predicate at each depth. For example, to calculateTLin;PA "2 the convex hull is computed for two equation sets that define the argument sizes
for Pt=4 at depth 2, that is,

hull

�� x1 = 1; x3 = 1;x4 = 0 � ;� x1 = 1; x3 = 0;x4 = 1 �� = � x1 = 1; 0 � x3;x3 � 1; x4 = 1� x3 �
The first equation set x1 = 1; x3 = 1; x4 = 0 defines the second, fourth and fifth arguments
in the first abstract Pt/5 atom whereas x1 = 1; x3 = 0; x4 = 1 defines the arguments in
the second atom. The two equation sets are over-approximated with a single equation set
thereby leading toTLin;PA "2 = TLin;PA "1 [8<: Qs(2; 0; 0) true:Qs(4; 1; x2; x3) x2 = 1 + x3:Pt(2; 1; x2; x3; x4) 0 � x3; x3 � 1; x4 = 1� x3:9=;

Although the convex hull operation computes an approximation, useful argument size
relationships are still preserved since the convex hull corresponds to the smallest convex
space enclosing the spaces defined by the sets of inequalities. In the case of Pt/4, for ex-
ample, TLin;PA "2 asserts that if a Pt/4 goal can be solved in exactly two resolution steps
then the first argument is a list of length one, and the third and fourth arguments are lists
of length either zero or one. (Interestingly, the convex hull operation often produces deep
and unexpected argument size relationships [2].) The convex hull calculation is used in the
ensuing iterates.TLin;PA"3 = TLin;PA"2 [8<: Qs(5; 1; 1) true:Qs(8; 2; x2; x3) x2 = 2 + x3:Pt(3; 2; x2; x3; x4) 0 � x4; x4 � 2; x3 = 2� x4:9=;: : :TLin;PA"16= TLin;PA"15[�Pt(16; 15; x2; x3; x4) 0 � x4; x4 � 15; x3 = 15� x4	TLin;PA"17= TLin;PA"16

The iteration sequence will always converge within dmin + 1 iterations because of thed � dmin constraints and since there are a finite number of clauses in the abstract program.
Thus fixpoint termination techniques like widening are not required [4]. To useTLin;PA " !
to control spawning, however, we want to deduce conditions that guarantee that the time
complexity of a goal exceeds dmin resolution steps. A bounding box approximation ofTLin;PA " ! makes these conditions explicit.8>>>>>><>>>>>>: Qs(d; x1; x2) 0 � d; d � 14; 0 � x1; x1 � 3; 0 � x2; x2 � 3:Qs(d; x1; x2; x3) 0 � d; d � 13; 0 � x1; x1 � 3; 0 � x2; x2 � 3:Pt(d; x1; x2; x3; x4) 0 � d; d � 16; 0 � x1; x1 � 15; 0 � x3; x3 � 15; 0 � x4; x4 � 15:

9>>>>>>=>>>>>>;
Note how each argument, including d, is approximated as an interval so that the argument
sizes are represented as a box in the space IRn. The abstraction asserts (among other things)
that if the time-complexity of a Qs/2 goal is less or equal to dmin steps, then the first and
second arguments must ultimately be bound to lists with a length of less than four. Put an-
other way, if the length of argument is known to be greater or equal to four, then the com-
putation must either exceed dmin resolution steps or fail. Possible failure (or equivalently
definite non-failure) can be detected with a query-dependent non-failure analysis [8]. Thus
if the program is queried with a Qs/2 goal where the first argument is known to be a list of
integers, say, then non-failure can be deduced [8]. Hence, if the argument is also known to
have a length of greater or equal to four, then the goal is guaranteed to lead to a computation
that exceeds dmin resolution steps.

3 Preliminaries

Syntax of logic programs Let Func, Pred and V ar respectively denote the set of func-
tion symbols, predicate symbols and a denumerable set of variables. The non-ground term
algebra over Funct and V ar is denoted Term, where the set of atoms constructed from
the predicate symbols Pred is denoted Atom. A goal is a sequence of atoms. A logic pro-
gram is a finite set of clauses. A clause has the form h ~b where h, the head, is a atom
and ~b, the body, is a finite sequence of atoms. Also var(o) denotes the set of variables in
a syntactic object o, :: denotes concatenation, whereas �i(:) denotes vector projection, that
is, �i(hx1; : : : ; xni) = xi.

The set of idempotent substitutions from V ar to Term is denotedSub and the set of re-
namings (which are bijective substitutions) is denotedRen. A substitution�will sometimes
be represented as a finite set of pairs � = fu1 7! t1; : : : ; un 7! tng. Sub and Ren extend
in the usual way from functions from variables to terms, to functions from terms to terms,
to functions from atoms to atoms, and to functions from clauses to clauses. Syntactic ob-
jects, o and o0, are variants of one another, denoted o � o0, if there exists � 2 Ren such that�(o) = o0. The equivalence class of o under� is denoted [o]�. The restriction of a substitu-
tion � to a set of variables U and the composition of two substitutions � and ', are denoted
by � � U and � � ' respectively, and defined such that: � � U = fu 7! t 2 � ju 2 Ug and(� � ')(u) = �('(u)).

An equation is an equality constraint of the form a = b where a and b are terms or atoms.
Let Eqn denote the set of finite sets of equations. There is a natural mapping from substi-
tutions to equations, that is, eqn(�) = fu = t ju 7! t 2 �g, and mgu(E) denotes the set of
most general unifiers for an equation set E.

Operational semantics of logic programs An operational semantics is introduced to ar-
gue correctness. The semantics is described in terms of a transition system that defines re-
ductions between states. The set of states is defined by State = Atom� � Sub.
Definition 3.1 Let P be a logic program. The transition systemhState;!i where! � State� State is the least relation such thats! s0 , 8><>: s = h~a; �i ^ h ~b 2 P ^ h ~b � h0 ~b0 ^var(h0 ~b0) \ var(s) = ; ^ ' = mgu(f�(ai) = h0g) ^s0 = hha1; : : : ; ai�1i :: ~b0 :: hai+1; : : : ; ani; ' � �i
The notion of answer for a goal g are defined in terms of a transition system. Depth corre-
sponds to the number of resolution steps and is used as a measure of computational com-
plexity, that is, if h~a1; �1i ! h~a2; �2i ! h~a3; �3i : : : then h~a1; �1i !d h~a1+d; �1+di.
Definition 3.2 (answers and partial answers at a depth)� A goal g has a partial answer g0 at depth d iff hg; �i!dhg0; �i and g0 � �(g);� A goal g has an answer g0 at depth d iff hg; �i!dhtrue; �i and g0 � �(g).
Fixpoint s-semantics of constraint logic programs The semantics of the abstract pro-
gram is formalised in terms of the concrete s-style semantics for constraint logic programs
[3] and therefore, to make the paper reasonably self-contained, the semantics is summarised
below. The semantics is parameterised over a computational domain, C, of constraints.
We write c j= c0 iff c entails c0 and also c = c0 iff c j= c0 and c0 j= c. The interpre-
tation base BC for the language defined by a program P is the set of unit clauses of the
form p(~x) c quotiented by equivalence. Equivalence, again denoted �, is defined by:p(~x) c � p(~x0) c0 iff c � var(~x) = (c0 ^ (~x = ~x0)) � var(~x) where � denotes
projection. If C is the domain of equations over Herbrand terms, Herb say, then� is vari-
ance and � is restriction. The fixpoint semantics of a program P is defined in terms of an
immediate consequence operator like so: FC[[P]] = lfp(TC;P).
Definition 3.3 (fixpoint s-semantics for CLP [3]) The immediate consequence operatorTC;P : BC ! BC is defined by:TC;P (I) =8>><>>:[p(~x) c0]� ��������w 2 P ^ w = p(~t) c; p1(~t1); : : : ; pn(~tn) ^[wi]� 2 I ^ wi = pi(~xi) ci ^8i:var(w) \ var(wi) = ; ^ 8i 6= j:var(wi) \ var(wj) = ; ^c0 = ^ni=1(~xi = ~ti ^ ci) ^ (~x = ~t) ^ c ^ c0 is solvable

9>>=>>;
For the abstract programs of the analysis the domain C is Lin, that is, sets of (non-strict)
inequalities between linear expressions and equations between Herbrand terms. Thus, for
example, ff(a) = f(b); x � y + zg 2 Lin.

Fixpoint depth semantics for logic programs Correctness of the analysis is argued in
terms of the depth semantics of [1] since, although it was originally devised to reason about
termination, the semantics also expresses a natural notion of complexity. Again, to keep the
paper self-contained, we briefly summarise the relevant aspects of the depth semantics [1].
The interpretation base, denotedBTime for clarity, is the set of depth and clause pairs where
clauses are quotiented by variance, that is, hd; [h ~b]�i. Informally, the pair hd; [h ~b]�i

represents a partial (incomplete) computation from the atomic goal h to the goal~b in d steps.
Empty partial computations correspond to the set �P = fh0; [p(~x) p(~x)]�i j p 2 Predg
[1]. The set of partial answers for a depth d can be characterised with another immediate
consequence operator TTime;P .

Definition 3.4 (fixpoint clausal semantics with depth [1]) The immediate consequence op-
erator TTime;P : BTime ! BTime is defined by:TTime;P (I) =8>>>>>><>>>>>>:hd; ['(h ~b1 :: : : : :: ~bn)]�i ������������ w 2 P ^ w = h ~b ^hdi; [wi]�i 2 I [�P ^ wi = hi ~bi ^8i:var(w) \ var(wi) = ; ^8i 6= j:var(wi) \ var(wj) = ; ^d = 1 +Pni=1 di ^' = mgu(f~b = hh1; : : : ; hnig)

9>>>>>>=>>>>>>;TTime;P is continuous and defines the fixpoint semantics of a program P like soFTime[[P]]
= lfp(TTime;P). FTime[[P]] is consistent with FHerb[[P]] in that FHerb[[P]] =f[h]� j hd; [h true]�i 2 FTime[[P]]g [1]. The following theorem, adapted from [1],
formally asserts the relationship between partial answers and the fixpoint semantics.

Theorem 3.1 Let P be a logic program. A goal g is a partial answer at depth d for g0 iff
there exists hdi; [hi true]�i 2 FTime[[P]] such that 8i:var(hi) \ var(g0) = ; and8i 6= j:var(hi) \ var(hj) = ;, ' = mgu(fg0 = ~hg), g � '(g0) and d =Pi=1 di.
4 Abstract compilation

By applying program transformation (abstract compilation [13, 14]) the problem of infer-
ring how time complexity depends on argument size is recast as the problem of inferring the
invariants of a CLP(R) program. Our transformation is dubbed �. Size, as usual [10, 19],
is expressed in terms of norms that map terms to (possibly non-ground) constraint in Lin.
In the case of the list length norm [22, 19], for example, jj[]jjleng = 0, jj[x]jjleng = 1 andjj[xjy]jjleng = 1 + y. In addition, to ensure that the norm is always defined, if t cannot be
instantiated to a list we define jjtjjleng = z where z is a free (fresh) variable.

Definition 4.1 (program abstraction �)�[[w1; : : : ; wm]] =�clause[[w1]]; : : : ; �clause[[wm]]�clause[[p(~t) p1(~t1); : : : ; pm(~tm)]] =8>><>>: p(d :: ~x) d � dmin; d = 1 +Pmi=1 di;�eqns[[eqn(mgu(~x = ~t ^ ~x1 = ~t1 ^ : : : ^ ~xm = ~tm))]];p1(d1 :: ~x1); : : : ; pm(dm :: ~xm)�eqns[[e1; : : : ; em]] =�eqn[[e1]]; : : : ; �eqn[[em]]�eqn[[x = t]] =8<: x = ~y;x1 = ~y1; : : : ; xm = ~ym;jj�1(x)jj1 = jj�1(t)jj1; : : : ; jj�n(x)jjn = jj�n(t)jjn

where wi and ei respectively denote a clause and an equation, var(t) = fx1; : : : ; xmg,�i = fx 7! �i(~y); x1 7! �i(~y1); : : : ; xm 7! �i(~ym)g and the variables d, di and vectors of
variables ~x, ~xi, ~y and ~yi are fresh and distinct. The arities of ~y and ~yi are both n.

Note that the transform is parameterised by the machine dependent granularity constantdmin and the n norms jj:jj1; : : : ; jj:jjn. Multiple norms are useful when a unique norm can-
not be matched to an argument position, for example, because of a lack of type declarations
or because a type analysis is imprecise. The worked example corresponds to a (simplified)
special case for when n = 1 and jj:jj1 = jj:jjleng. Abstracting equations, �eqn, is the most
subtle part of the program abstraction � and so example 4.1 illustrates how �eqn is applied.

Example 4.1 Consider �eqn[[x = [x1jx2]]] when n = 2 and in particular jj:jj1 = jj:jjleng.
and jj:jj2 = jj:jjsize where jj:jjsize counts the number of function symbols in a term. If ~y =hy1; y2i, ~y1 = hy1;1; y1;2i and ~y2 = hy2;1; y2;2i then �1 = fx 7! y1; x1 7! y1;1; x2 7! y2;1g
and similarly �2 = fx 7! y2; x1 7! y1;2; x2 7! y2;2g so that (jj�1(x)jj1 = jj�1([x1jx2])jj1)
= (jjy1jjleng = jj[y1;1jy2;1]jjleng) = (y1 = 1 + y2;1) and (jj�2(x)jj2 = jj�2([x1jx2])jj2) =
(jjy2jjsize = jj[y1;2jy2;2]jjsize) = (y2 = 1 + y1;2 + y2;2). Hence�eqn[[x = [x1jx2]]] = � x = hy1; y2i; x1 = hy1;1; y1;2i; x2 = hy2;1; y2;2i;y1 = 1 + y2;1; y2 = 1 + y1;2 + y2;2 �
In practise, the abstract programs generated by � tend to include equations that can be elim-
inated, combined or simplified. Since the clauses of �[[P]] are used repeatedly to compute
a fixpoint, we have found it beneficial to simplify �[[P]] in a partial evaluation (local sim-
plification) phase that precedes the fixpoint calculation.

Example 4.2 Consider the Leng/2 predicate, listed in the left-hand column, which com-
putes the length of a list. Its (partially evaluated) abstract program is listed in the right-hand
column. The two norms are jj:jjleng and jj:jjnum where the latter gives the numeric value of
an integer. By using both norms together useful time complexity can often be inferred even
in an absence of type information [10, 19]. Our prototype analyser, for example, does not
perform type analysis and simply measures size with a set of pre-defined norms.

Leng([], 0).
Leng([| ys], l) <-

Leng(ys, ls),l = ls + 1.

Leng(1, h0; i, h ; 0i).
Leng(d, hz1; i, h ; z2i) <-d � dmin, d = 2 + d1, z1 = 1 + z3, z2 = 1 + z4,

Leng(d1, hz3; i, h ; z4i).
Note that the depth equation d = 2+d1 reflects the presence of the builtin =/2 in the clause.
Each builtin requires one addition resolution step. The partial evaluation phase has applied
the equations to the head and body of the clause to reduce the numbers of equations that
have to be solved at analysis time. This explains, for example, why the arguments of the
heads are not variables.

To formalise the relationship between a concrete program and its abstract program, the con-
cretisation mapping is introduced.

Definition 4.2 () Concretisation : }(BLin)! }(BTime) is defined by:(I) = �hd; [p(~t)]�i ���� [p(x0 :: ~x) c ^ (^i=1�i(~x) = ~yi)]� 2 I ^x0 = d ^ (^i=1 ^nj=1 �j(~yi) = jjtijjj) j= c �

Example 4.3 Suppose n = 2 where jj:jj1 = jj:jjleng. and jj:jj2 = jj:jjnum. If c = (x0 =y1;1 + 1)^ (x1 = hy1;1; y1;2i)^ (y2;2 = y1;1)^ (x2 = hy2;1; y2;2)i then(f[Leng(x0; x1; x2) c]�g) =fhd; [Leng(t1; t2)]�i j d = jt1jleng + 1 ^ jt2jnum = jt1jlengg
The concretisation mapping is used to link FTime[[P]] withFLin[[�[[P]]]] in the follow-

ing safety theorem. The theorem explains how the abstract program can be used to charac-
terise the time behaviour of the concrete program.

Theorem 4.1 (safety I)fhd; [h true]�i 2 FTime[[P]] j d � dming � (FLin[[�[[P]]]])
Because each clause in the abstract program includes the constraint d � dmin,FLin[[�[[P]]]]
can be finitely computed within dmin + 1 iterations. Thus termination techniques, like
widening [4], are not required to induce iteration. Finally, the corollary relatesFLin[[�[[P]]]]
to the operational semantics.

Corollary 4.1 (safety II) Let P be a logic program. If an atomic goal g had an answer g0 at
depth d then there exists hd; [h true]�i 2 (FLin[[�[[P]]]]) such that var(h)\var(g) =;, ' = mgu(fg = hg) and g0 � '(g).
5 Fixpoint computation

AlthoughFLin[[�[[P]]]] can always be computed within dmin +1 iterations, the number of
atoms in an interpretation (iterate) can become large. Thus, to constrain the growth of inter-
pretations, the sets of inequalities for each predicate are collected together and approximated
by their convex hull. To be more precise, the convex hull is used to over-approximate the
argument sizes for atoms at the same depth.

Example 5.1 Returning to the worked example, recall that the convex hull operation col-
lapses together the constraints for the two argument relationships for depth 2

hull

0@8<:[Pt(x0 :: ~x) x0 = 1; x1 = 0; x3 = 0; x4 = 0]�[Pt(x0 :: ~x) x0 = 2; x1 = 1; x3 = 1; x4 = 0]�[Pt(x0 :: ~x) x0 = 2; x1 = 1; x3 = 0; x4 = 1]�9=;1A =�[Pt(x0 :: ~x) x0 = 1; x1 = 0; x3 = 0; x4 = 0]�[Pt(x0 :: ~x) x0 = 2; x1 = 1; 0 � x3; x3 � 1; x4 = 1� x3]��
The hull operator is defined in terms of convex hull operation on sets of constraint sets.

Definition 5.1 (hull) The approximation operator hull : BLin ! BLin is defined by:

hull(I) = f[p(x0 :: ~x) cp;n]�j p 2 Pred ^ n 2 INg
where cp;n = hullvar(x0::~x)(fc � var(x0 :: ~x) j [p(x0 :: ~x) c]� 2 I ^ c j= (x0 = n)g),
hullX(;) = false and hullX(fc1; : : : ; cng) = hullX(c1; hullX(fc2; : : : ; cng)).
The binary hullX can be computed straightforwardly with a relaxation adapted from dis-
junctive constraint logic programming [5]. For simplicity, consider calculating

hullvar(~x)(c1; c2) where ~x is an n-ary vector and the constraints ci are represented in stan-

dard form Ai~x � ~bi, where Ai is an m� n matrix and ~bi in an m-ary vector. The convex
hull of the spaces defined by c1 and c2 can be computed by:8<:~x = ~x1 + ~x2 ^ �1 + �2 = 1 ^A1 ~x1 � �1 ~b1 ^ A2 ~x2 � �2 ~b2 ^��1 � 0 ^ ��2 � 0 9=; � var(~x)
Since the system of inequations is linear, the convex hull can be calculated by simply im-
posing the equations on the store of a constraint language and then applying projection [2].

Example 5.2 Continuing with example 5.1, combining the x1 = 1; x3 = 1; x4 = 0 andx1 = 1; x3 = 0; x4 = 1 equations for the Pt/5 atoms amounts to solving:8>>>>>>>>>><>>>>>>>>>>:
~x = ~x1 + ~x2 ^ �1 + �2 = 1 ^26666664 1; 0; 0; 0�1; 0; 0; 00; 0; 1; 00; 0; �1; 00; 0; 0; 10; 0; 0; �1

37777775 ~x1 � �1 26666664 1�11�100
37777775 ^ 26666664 1; 0; 0; 0�1; 0; 0; 00; 0; 1; 00; 0; �1; 00; 0; 0; 10; 0; 0; �1

37777775 ~x2 � �2 26666664 1�1001�1
37777775 ^��1 � 0 ^ ��2 � 0

9>>>>>>>>>>=>>>>>>>>>>; � var(~x)= � x1 = 1; 0 � x3; x3 � 1; x4 = 1� x3 	
The post-processing phase of the analysis boils down to computing a bounding box ab-

straction for the fixpoint that defines the maximum and minimum sizes of the arguments that
can occur for goals with a complexity between 1 and dmin resolution steps. The bounding
box approximation is the obvious lifting of a bounding box operator on sets of constraint
sets to interpretations.

Definition 5.2 (box) The approximation operator box : BLin ! BLin is defined by:

box(I) = f[p(~x) cp]�j p 2 Predg
where cp = boxvar(~x)(fc � var(~x) j [p(~x) c]� 2 Ig)

As with the convex hull, boxX(;) = false. There are several ways of calculating boxX .
One tactic that can be coded very simply in a constraint language offering projection and
an entailment check is to use boxvar(~x)(c; c0) = ^i=1(fe j e 2 c � var(�i(~x)) ^ c0 j= eg [fe0 j e0 2 c0 � var(�i(~x)) ^ c j= e0g). Note that c and c0 are themselves regarded as sets of
inequations e and e0. The final safety theorem states that the convex hull and bounding box
approximations do not compromise safety. When combined with the earlier safety results,
the theorem gives an efficient way of characterising fine-grained goals.

Theorem 5.1 (safety III)(FLin[[PA]]) � (box(hull(TLin;PA) " !))
Thresholding tests can then be inferred to test whether the input arguments of a goal

permit the goal to be a member of (box(hull(TLin;PA) " !)) and therefore possibly a
member of fhd; [h true]�i 2 FTime[[P]] j d � dming. If not, then the goal must either
lead to a computation that exceeds dmin steps or the goal must eventually fail. Input argu-
ments can be deduced with mode analysis whereas the non-failing goals can be detected by
non-failure analysis [8]. Thus the program can be annotated with granularity thresholding
tests that ensure that goals are only spawned when their granularity is guaranteed to exceeddmin.

6 Experimental results

The purpose of the experiment presented here is to study the effect of different granular-
ity sizes has on many programs, under different configurations of queries, and number of
processors used to run the program. The analysis was implemented in SICStus Prolog, and
used to infer thresholding tests for grains sizes of 16, 64, 256 and 1024 resolution steps for
the Fibonacci, Hanoi and quicksort programs. Fib(n, f) calculates the n0th Fibonacci
number f ; Hanoi(n, l) computes a list of moves, l, for n disks in the towers of Hanoi
problem; and Qsort(l, s) quicksorts a random list l of length n to give s. Hanoi and
Fibonacci are good candidates for granularity control since the parallelism is fine-grained
whereas quicksort is less predictable generating both fine-grained and course-grained pro-
cesses. The programs were hand annotated with the thresholding tests, and then timings
where taken on a Sequent Symmetry for 1, 2, 4 and 9 processors. We have used similar
benchmark programs to [12], and the same 20MHz 80386 processor Sequent. The and-
parallel Prolog system DASWAM [20] was used. The programs used were limited to inde-
pendent and-parallelism, because suspension complicates the granularity question for gen-
eral dependent and-parallelism. The programs were executed with different queries, which
affected the execution times of the program, but not the relationship between threshold and
grain-sizes.

none 16 64 256 1024
fib(17), 1108.1�0.3

1 1702.9�1.4 1688.2�4.4 1338.0�4.5 1177.1�1.4 1139.3�0.9
2 862.4�5.6 (1.97�) 848.8�4.0 (1.99�) 670.1�1.8 (2.00�) 589.9�1.4 (2.00�) 583.8�12.3 (1.95�)
4 440.2�1.6 (3.87�) 429.6�1.1 (3.92�) 341.1�1.1 (3.92�) 300.5�2.1 (3.92�) 331.1�0.2 (3.44�)
9 203.4�1.2 (8.37�) 201.0�3.4 (8.40�) 156.9�0.2 (8.53�) 140.5�0.2 (8.38�) 167.9�1.0 (6.79�)

fib(19), 2898.5�0.4
1 4470.8�1.9 5048.4�0.2 3476.1�3.3 3040.4�3.0 2949.2�1.1
2 2257.5�7.1 (1.98�) 2544.4�4.3 (1.98�) 1761.1�1.9 (1.97�) 1536.9�1.3 (1.98�) 1483.2�0.2 (1.99�)
4 1140.0�4.6 (3.92�) 1277.9�1.8 (3.95�) 882.1�1.7 (3.94�) 775.9�2.0 (3.92�) 766.2�6.5 (3.85�)
9 516.5�1.0 (8.66�) 577.8�2.0 (8.74�) 398.8�17.0 (8.72�) 351.4�2.5 (8.65�) 365.4�6.2 (8.07�)

hanoi(10), 441.7�0.3
1 727.0�4.0 522.0�2.6 466.3�1.4 454.5�0.4 453.1�0.1
2 363.1�2.0 (2.00�) 260.2�0.1 (2.01�) 230.9�0.2 (2.02�) 224.4�0.6 (2.02�) 223.1�0.1 (2.03�)
4 185.7�2.3 (3.92�) 132.1�0.2 (3.95�) 117.4�0.3 (3.97�) 114.5�0.4 (3.97�) 223.4�0.8 (2.03�)
9 87.8�1.1 (8.28�) 63.9�0.4 (8.17�) 60.6�0.3 (7.69�) 59.5�0.1 (7.63�) 224.2�1.9 (2.02�)

hanoi(16), 28061.6�11.6
1 46509.5�60.8 33054.6�11.5 29391.0�12.8 28656.4�14.8 28323.3�4.8
2 23210.6�138.1 (2.00�) 16522.3�2.7 (2.00�) 14730.9�4.2 (2.00�) 14273.7�3.4 (2.01�) 14322.9�16.5 (1.98�)
4 11594.8�15.3 (4.01�) 8265.5�9.8 (4.00�) 7376.2�4.5 (3.98�) 7147.9�2.7 (4.01�) 7092.9�4.3 (3.99�)
9 5209.6�14.5 (8.93�) 3694.6�3.4 (8.95�) 3287.6�2.1 (8.94�) 3191.9�2.4 (8.98�) 3298.3�2.8 (8.59�)

qsort(300), 816.8�1.5
1 909.5�0.1 912.6�2.9 888.9�2.3
2 509.7�0.6 (1.78�) 512.7�3.2 (1.78�) 498.5�0.7 (1.78�)
4 330.6�11.8 (2.75�) 334.2�9.0 (2.73�) 332.3�17.8 (2.68�)
9 272.1�0.6 (3.34�) 274.8�0.9 (3.32�) 278.0�0.8 (3.20�)

qsort(3200), 12239.1�3.1
1 13474.8�29.9 14083.9�3.2 13197.2�2.4
2 7452.1�3.5 (1.81�) 7701.4�3.2 (1.83�) 7337.8�1.4 (1.80�)
4 4822.6�9.8 (2.79�) 4925.5�26.5 (2.86�) 4771.9�19.9 (2.77�)
9 3724.0�10.1 (3.62�) 3766.6�29.8 (3.74�) 3741.6�4.7 (3.53�)

The table summarises our results. Timings, in milliseconds, were averaged over five
runs and are given with the standard deviation. Entries are not given for quicksort for grain
sizes of 256 and 1024 because the prototype analyser cannot infer the thresholds within a
minute and, we believe that for an optimisation to be practical, it should be reasonably fast.
The problem stems from the repeated computations in the fixpoint calculation. We believe
that this overhead can be removed by considering the strongly connected components of the
call graph of the program. More usually, thresholds can be inferred within a minute even for
the larger grain sizes for the benchmark3.tar.Z programs obtained from UPM Madrid.

The execution time for DASWAM running in sequential mode is given in the headings.
The results confirm those of [12], showing that granularity control is useful even for a Se-

quent Symmetry which has relatively low task creation overheads. The results show, as
expected, that controlling the granularity has two main effects:� It reduces the total execution time for the program by reducing the frequency of par-

allel execution and thus parallel overheads. The larger the granularity threshold, the
smaller the parallel overhead. The limit is the sequential case, with no parallel over-
head at all.� It reduces the amount of available parallelism. The larger the granularity threshold,
the lesser the available parallelism.

Reducing the parallel overhead tends to improve the total amount of computation (work and
overhead), but at the same time, it reduces parallelism. These two factors need to be bal-
anced to give the best results. For any program, the best granularity size can be affected by
the particular query being solved and the number of workers the system is using. In addi-
tion, the best size changes from program to program, and we also expect it to change from
system to system. For some programs, such as quicksort, the overhead of testing for the
threshold can be sufficiently expensive so that it actually degrades performance instead of
improving it. Thus what is best for one configuration is not necessarily best for another.

It may be possible to take some of these factors into account (such as the type of thresh-
old test being performed), but some factors cannot be controlled, such as what query the
user want to solve, and to a lesser extent, how many workers the user choose to use. Thus,
a compromise threshold has to be chosen that works well (but not best) for a range of con-
figurations. Looking at the results in general, if the grain size is set too high, say 1024 reso-
lution steps, then the granularity control mechanism limits the parallelism to the extent that
the processors are not properly utilised. hanoi(10) on 9 processors is one extreme exam-
ple. Conversely, if the grain size is set too low, say 16 resolution steps, then the cost of the
threshold check is not repaid by reduced task creation, so the overall performance is worse
with granularity control than without. The grain size should thus balance machine utilisa-
tion against reduced task creation overheads. For the Sequent and the programs that we have
analysed and tested, grain sizes of around 64 resolution steps seem to give consistently good
results for our granularity control scheme. Moreover, since the Sequent has low task cre-
ation overheads, a granularity control scheme is also likely to be useful (and perhaps even
more useful) on a more coarse-grained multiprocessor such as a loosely-coupled system.

7 Related work

Imperative programming Cousot and Halbwachs [4] mention how extra counters can
be added to loops and how polyhedral abstractions might be used to infer bounds for the
number of iterations of a loop. The link with time-complexity analysis is not reported.

Functional programming Most similar to our work is that of Huelsbergen, Larus and
Aiken [15] in the context of parallel functional programming. The analysis reported in [15],
like ours, is based on an abstract semantics that calculates lower bounds on the time com-
plexity by instrumenting the semantics with counters. Termination, again, is not an issue
since the depth of computations is bounded. Coincidently, a granularity control experiment
is reported for quicksort, coded in SML, on an eight processor Sequent Symmetry. Our work
adds weight to theirs since Huelsbergen et al. conclude that with lower bound time com-
plexity analysis “large reductions (> 20%) in execution time” are possible. Interestingly, the
thresholds used in the experiment do not seem to be derived automatically [15]. Our exper-
iments suggest that this is because non-trivial thresholds cannot be derived without convex

hull approximations. Convex hull approximations are, in fact, essential if the analysis is
to be collapsed into something manageable. Furthermore, we have shown how an analysis
for logic programs can be formulated elegantly as abstract compilation, established correct-
ness, and shown how it can be implemented straightforwardly in a language with constraint
support.

Logic programming Time-complexity analyses [6, 7] for logic programs have tended to
cast the problem of inferring argument relationships in terms of solving difference equa-
tions. The analyses focus on deriving upper bound time complexity expressions like, for
example 1+ l(l+5)2 , for quicksort. Mode analysis is first applied to trace the input and out-
put arguments of a clause and derive a data dependency graph for the clause literals. Pro-
totype difference equations are then extracted from the recursive clauses, boundary condi-
tions derived from the non-recursive clauses, and finally a difference equation is solved to
yield a closed-form time-complexity expression. Although, the difference equation method
is potentially useful, it requires sophisticated machinery just to manipulate and solve the
equations. By way of contrast, our approach is formulated in terms of linear constraints.
Also, divide and conquer algorithms can be particularly difficult to reason about with dif-
ference equations requiring special techniques [9, 18]. Moreover, additive argument size
relationships, like x1 = x3 + x4 for Pt/4, cannot be expressed [18]. On the other hand,
the efficiency of the difference equation approach does not depend on the grain size whereas
our approach may well become inefficient for coarse-grained systems, like multi-processor
farms, that may require a very high granularity threshold.

A lower-bound time-complexity calculation for Fib/2 is sketched in [12]. Difference
equations are used to derive a non-trivial time complexity expression but what is not clear is
the extent to which the method can be automated. The paper also discusses the cost analy-
sis for or-parallelism, and reports some granularity control experiments. The authors justify
granularity analysis by demonstrating that it is possible to obtain improved performance on
a fixed configuration of four processors for different grain sizes [16]. The question of vari-
ations with different program sizes and range of number of processors and programs, does
not seem to have been considered. For a configuration of four processors Sequent, a thresh-
old test of n > 15 (which corresponds to� 4096 resolution steps if builtins are assumed
to have a non-zero cost) was found to be useful for solving the query Fib(19, f). Our
experiments have found that although the threshold is close to ideal for Fib(19, f) on
four processors, it gives practically no parallelism for Fib(17, f) and severely limits
parallelism for Fib(19, f) on more than four processors. Our work suggests that (for
DASWAM at least) a much lower threshold is necessary if granularity control is to be use-
ful across a range of processors numbers and goal sizes, and that these thresholds can be in-
ferred automatically. The lower-bound time-complexity work of [12] is further developed
in [9] which develops some special tactics for reasoning about divide-and-conquer algo-
rithms. The methodology can infer a useful lower bound of 4n+ 1 for quicksort (where n
is the length of the first argument). It is not yet clear whether or not our method can improve
on this degree of precision.

A technique for reducing the cost of calculating term size is proposed in [17]. The tech-
nique is based on finding predicates which are called before a term size test and which tra-
verses the terms whose size need to be determined. As we basically use the same annotation
methods as [12], we expect this technique to be applicable to our work.

Very recently, Gallagher and Lafave [11] have shown abstract programs can instrumented
with trace terms that abstract the shape of the computation to derive control flow informa-
tion for program specialisation. The depth counter, d, is another way to abstract the shape
of the computation.

8 Future work

The prototype analyser cannot (yet) infer thresholds for coarse grained loosely coupled sys-
tems very quickly and future work is required on the implementation to make the approach
fast and efficient. Furthermore, integration with a norm derivation analysis [10] and a non-
failure analysis is required [8]. Orders of magnitude speedup are possible, however, by care-
fully limiting the size of the interpretation. The tradeoff is between speed and safety. This
unusual tradeoff is possible since, when used for granularity control, the analysis does not
affect program correctness only program efficiency. All that matters is that the threshold is
reasonably precise. Future work will examine how limitating the enumeration impacts on
precision and analysis time. This is likely to be a study within itself. We also suspect that
computation size alone may not be the best metric to use for controlling granularity, and we
intend to research into other metrics. Finally, we shall also investigate how the method can
be adapted to infer closed-form time-complexity expressions.

9 Summary

An analysis has been presented for inferring size conditions on goals that, when satisfied,
ensure that a goal is sufficiently coarse-grained to warrant parallel evaluation. The anal-
ysis is precise enough to infer useful thresholding conditions even for a number of prob-
lematic divide-and-conquer programs, can be implemented straightforwardly in a language
with constraint support, and, finally, has been proved correct.

Acknowledgements

Thanks are due to Nai-Wei Lin, Jon Martin and Andy Verden for stimulating discussions
that motivated the investigation; Pedro López Garcı́a for his comments and suggestions;
Manuel Hermenegildo and Vı́tor Santos Costa for hosting some of the work; and
Mats Carlsson and Christian Holzbaur for their invaluable help with SICStus.

References
[1] R. Barbuti, M. Codish, R. Giacobazzi, and M. Maher. Oracle Semantics for Prolog. Information

and Computation, 22(2):178–200, 1992.

[2] F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In LOPSTR’96.
Springer-Verlag, 1996.

[3] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: theory and appli-
cations. Journal of Logic Programming, 1991.

[4] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In POPL’78, pages 84–97, 1978.

[5] B. De Backer and H. Beringer. A CLP language handling disjunctions of linear constraints. In
ICLP’93, pages 550–563. MIT Press, 1993.

[6] S. Debray and N.-W. Lin. Cost Analysis for Logic Programs. ACM TOPLAS, July 1992.

[7] S. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs. In
PLDI’90, White Plains, New York, 1990. ACM.

[8] S. Debray, P. López Garcı́a, and M. Hermenegildo. Non-Failure Analysis of Logic Programs.
In ICLP’97. MIT Press, 1997.

[9] S. Debray, P. López Garcı́a, M. Hermenegildo, and N. Lin. Lower Bound Cost Estimation for
Logic Programs. Technical Report TR Number CLIP20/95.0, T.U. of Madrid (UPM), Facultad
Informática UPM, 28660-Boadilla del Monte, Madrid-Spain, 1995.

[10] S. Decorte, D. De Schreye, and M. Fabris. Automatic Inference of Norms: A Missing Link in
Termination Analysis. In ICLP’93, pages 420–436. MIT Press, 1993.

[11] J. Gallagher and L. Lafave. Regular Approximation of Computational Paths in Logic and Func-
tional Languages. In Partial Evaluation, pages 115–136. Springer-Verlag, 1996.

[12] P. López Garcı́a, M. Hermenegildo, and S.K. Debray. A Methodology for Granularity Based
Control of Parallelism in Logic Programs. Journal of Symbolic Computing, 11(3–4):217–242,
1996.

[13] R. Giacobazzi, S. K. Debray, and G. Levi. Generalized Semantics and Abstract Interpretation
for Constraint Logic Programs. Journal of Logic Programming, 3(25):191–248, 1995.

[14] M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Practical Compila-
tion Tool. JLP, 13(4):349–366, 1992.

[15] L. Huelsbergen, J. R. Larus, and A. Aiken. Using the Run-Time Sizes of Data Structures to
Guide Parallel-Thread Creation. In LFP’94. ACM Press, 1994.

[16] P. López Garcı́a. Personal communication on granularity control for &-Prolog with a Sequent.
December 1996.

[17] P. López Garcı́a and M. Hermenegildo. Efficient Term Size Computation for Granularity Con-
trol. In ICLP’95, pages 647–661. MIT Press, 1995.

[18] P. López Garcı́a and N.-W. Lin. E-mail exchanges on argument size analysis and time complexity
analysis of divide and conquer algorithms. September 1996.

[19] J. Martin, A. King, and P. Soper. Typed Norms for Typed Logic Programs. In LOPSTR’96.
Springer-Verlag, 1996.

[20] K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. JLP, 29(1–3),
1996.

[21] E. Tick. Compile-time Granularity Analysis for Parallel Logic Programming Languages. New
Generation Computing, 7:325–337, 1990.

[22] A. Van Gelder. Deriving constraints among argument sizes in logic programs. Annals of Math-
ematics and Artificial Intelligence, 3, 1991.

