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1. Introduction

1 . 1 What is Blue?

Blue is an object-oriented programming language especially designed for
teaching.  Its emphasis is on conceptual clarity and consistency, suitability for
first year teaching and support for “good” software design.

1 . 2 The Blue Environment

Blue is intended to be used in an integrated programming environment.  The
environment itself will not be described in this document, but is important for
the overall character of Blue programming.  In order to obtain a complete
picture of programming in Blue, the reader is encouraged also to read “The
Blue Programming Environment”.

1 . 3 About this Document

This document describes the Blue language.  The Blue programming language
is part of the Blue programming system.  The language and some of the most
important standard libraries (such as those for standard I/O) will be described
in this document.  However, most standard libraries will not be included here,
but will be described in a separate document “The Blue Libraries”.

It is assumed that the reader is familiar with a Pascal- or C-like language and
with object-oriented concepts.  This document does not give an introduction
to object-oriented programming in general.  It is assumed that the most basic
ideas of object-orientation are known.

At some points this document also includes thoughts and reasoning beyond
pure description of the language.  These comments typically include reasons
for specific decisions made during language design.  They may be skipped by
readers interested only in the language, or read by someone interested in the
design process itself.

Comments about reasons for specific design decisions are set in greyed
boxes like this and may be skipped without losing information about the
Blue language.

Descriptions of language constructs always include a formal syntax
description in EBNF.  A complete syntax description in EBNF can be found
in Appendix A.
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1 . 4 Blue Programming

Blue does not include a concept of programs.  All programming is performed
using classes.  All code is part of a class.  The classical idea of a program is
represented in Blue as a collection of classes (called a project in Blue).
Running a program is done by creating an instance of  a class, and calling
interface routines of that class.

A simulation of a classical “program” (a single entry point executable) can
easily be achieved by having one designated top-level object with one
interface routine which in turn creates and calls all other objects involved in
the execution of the program.  (This is the standard execution model in most
existing object-oriented languages.)  It is, however, only a small subset of the
possible ways to execute code in Blue.

In the Blue environment, all classes in the project may be used to interactively
create objects of that class and all those objects can immediately be used to call
their interface routines (that is: without the necessity of writing test program
shells).  This changes programming in at least two ways: it allows very
flexible (incremental) testing and incremental software development.  All low
level classes may immediately be used and tested for correct behaviour.  It
also allows the construction of software with more than one entry point,
avoiding common awkward dispatch mechanisms envoked by command line
options.

Classes are types1.  So all programming comes down to the definition of
types.  This is why type declarations are the first major part of this document:
They specify the overall structure of Blue programs.

2. Aliases

All types in Blue are classes and all data are objects.  This general rule
simplifies the language design.  There are, however, a number of data types
for which it is convenient to use syntax other than the Blue object call to
perform one of their operations.  The reason for this can be:

• Another syntax is commonly used and is therefore more intuitive (e.g.
3 + 5 for integer addition, rather than 3.add (5)  ).

• Another syntax simplifies use of elementary constructs which should be
used by beginners before the underlying language concepts need to be
understood, e.g.

print (“result=“, 42)
 instead of

output.write (“result=“.concat (42.toString))
• Another syntax is more convenient (usually because it is shorter, see

above).

                                                
1 It is not strictly true that classes and types are the same, but most of the time each class
represents exactly one type.  This is not true when it comes to generic classes (which do not
represent a type, but rather a type pattern).  The difference will be explained in detail in
section 17.  For most of this document, however, this simplification is not a problem and
makes expressing things a bit easier.
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For these reasons, several operations on the predefined classes are supported
by special syntax.  This special syntax is allowed in addition to the standard
object-call syntax generally available for all classes, and is referred to as
aliases.

The prime reason for the introduction of aliases is to make the reading and
writing of simple programs performing elementary tasks easy.  Aliases
provide an easy, intuitive syntax for the most common operations and
considerably increase the ease with which Blue can be used by beginners.

Aliases will be learnt as statements or expressions in their own right by
beginners, making it unnecessary to understand all underlying concepts right
from the start.  The expert programmer or compiler implementor, however,
will appreciate the unifying concept for all data types.

Note that aliases are a pure syntactic addition which does not add any
functionality to the language.  They do not affect the semantics or the
theoretical language description of Blue (although they are part of the
language), and are purely intended to increase readability and intuitivity of
statements.

Some common aliases and their resolutions are:

alias                                       resolution    

3+6 3.add (6)
b1 or b2 b1.or (b2)
a[i] a.getElem (i)
str (num) num.toString
str (a, b, ...) a.toString.concat (b.toString.concat (...))
print (a, b) output.write ( str (a.b) )

The list of existing aliases is short and fixed – programmers cannot define
additional aliases.  

Where aliases exist for a construct explained in this document, they will be
mentioned when that construct is introduced.  A full list of aliases is given in
Appendix B.

3. Classes and their Operations

All types derive from classes. Classes for the most commonly used data types
are predefined in the language.  The language offers customised syntax for
these classes.

The predefined classes are:

• Integer
• Real
• Boolean
• String
• Array <T> (generic)

Two different kinds of classes exist: manifest classes and dynamic classes.
The following sections will introduce manifest and dynamic classes, describe
operations that are available on all classes, and then list the predefined classes
and their operations.  Finally, user defined classes are described.
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3 . 1 Manifest vs. Dynamic Classes

Manifest classes are classes where all objects are known statically.  The
objects pre-exist with the definition of the class and do not have to be created.
The manifest classes are Integer, Real, Boolean, String and Enumeration
classes.  The first four of those are predefined and all values are known to the
Blue compiler.  Enumeration classes are user defined.  The definition of such
a class consists of an enumeration of all existing objects of that class,
simultaneously creating a named reference to each object.

The literal '2', for instance, is a reference to the unique integer object with the
value 2.  The code segment

a := 2
b := 2

assigns references to the same object to a and b.  Only one integer object with
the value 2 exists.  This does not create two distinct objects.

All literals are constant references to objects of manifest classes.

Dynamic classes are classes where, rather than listing all objects, a creation
method for objects is specified. Dynamic classes are arrays and user defined
general classes.

With the definition of a dynamic class, no object is created automatically.  The
user has to execute an explicit create operation to create objects of these types.

Care must be taken not to confuse this with pointer and non-pointer types in
other languages.  In Blue, all variables hold references to objects.  An
integer variable holds, when assigned a value, the reference to that integer
object.  Thus the object model is simple: only references to objects exist.  The
difference between manifest and dynamic objects affects only the time and
method of creation of the objects of the class, not the mechanism by which
they are referenced.

3 . 2 General Operations

This section describes operation that are common to all classes.

The general operations are:

:= assignment
= comparison (equality)
<> comparison (inequality)

3.2.1 Assignment (:=)

The assignment (:=) assigns an object reference to a variable (variables always
store object references).  The object itself is not copied.

Example:

Consider variables a and b which are declared to be of some user defined
class:
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var
a: Myclass
b: Myclass

Then the code segment

a := create Myclass
b := a

causes a and b to reference the same object.  Changes to a will be visible
using b.

3.2.2 Comparison (=, <>)

The comparison compares two values (variables or expression results).
Values are always object references.

Example:

var
a: myclass
b: myclass
result: Boolean

. . .
result := b = a

result will be true if a and b reference the same object.  It will not be true, if a
and b reference different objects in identical states.

a <> b is true, if a and b do not reference the same object.

3 . 3 Predefined Types

The predefined types and their operations are as follows. Many of the
operations mentioned here are aliases.  The full list of operations and their
aliases are given in the individual sections for each type below.

Integer                     Real                   Boolean                    String                      Array   
n + m x + y not b s.length a [n]
n - m x - y a and b str (s1, s2) a.size
-n -x a or b s.substring (n,m) a.setSize (n)
n * m x * y s[n] a.init (v)
n div m x / y s1.find (s2,n)
n mod m
n ^ m x ^ y

sqrt(x)
n > m x > y s1 < s2
n < m x < y s1 > s2
n >= m x >= y s1 <= s2
n <= m x <= y s1 >= s2
str (n) str (x) str (b)

Integer, Real, Boolean, and String are manifest classes.  Array is a dynamic
class.
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The predefined types are now discussed in more detail.  For a full class
interface of the predefined types see Appendix D.

3.3.1 Integer

The class Integer stores whole numbers. Integer is a manifest class.

The operations defined on integers are:

alias                            operation                     return type                    meaning
n + m n.add (m) Integer addition
n - m n.sub (m) Integer subtraction
-n n.neg Integer negation
n * m n.mult (m) Integer multiplication
n div m n.div (m) Integer Integer division
n mod m n.mod (m) Integer remainder
n ^ m n.pow (m) Integer power
n > m n.greater (m) Boolean greater than
n < m n.less (m) Boolean less than
n >= m n.greaterEq (m) Boolean greater or equal
n <= m n.lessEq (m) Boolean less or equal
str (n) n.toString String conversion to String

In addition to these operations, integer expressions can always be used where
real expressions are expected.  An implicit conversion to Real takes place in
that case.

Integer literals are written as usual:

42
-99

Constants are predefined for the smallest and largest available integer value in
every specific implementation:

MAXINT largest representable integer
MININT smallest representable integer

The actual value of MAXINT and MININT are implementation dependent.

3.3.2 Real

The class Real stores floating point numbers.  Real is a manifest class.

The operations defined on reals are:
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alias                            operation                     return type                    meaning
x + y x.add (y) Real addition
x - y x.sub (y) Real subtraction
-x x.neg Real negation
x * y x.mult (y) Real multiplication
x / y x.div (y) Real division
x ^ y x.pow (y) Real power

x.sqrt Real square root
x.trunc Integer truncation to integer
x.round Integer round to closest Integer

x > y x.greater (y) Boolean greater than
x < y x.less (y) Boolean less than
x >= y x.greaterEq (y) Boolean greater or equal
x <= y x.lessEq (y) Boolean less or equal
str (x) x.toString String conversion to String

Real literals are written as:

2.0
0.111
-0.001

Note that an implicit conversion takes place when an integer is provided
where a real value is expected.  Thus it is legal to write 2 instead of 2.0,
where the value of 2 will be implicitly converted to the real value 2.0.

3.3.3 Boolean

Variables of class Boolean store boolean values (i.e. true or false).  Boolean
is a manifest class.

The operations defined on booleans are:

alias                            operation                     return type                    meaning
not b b.invert Boolean negation
a and b a.and (b) Boolean logical and
a or b a.or (b) Boolean logical or
str (b) b.toString String conversion to String

The boolean literals are:

true
false

Note that, since "true" and "false" are keywords, and the case of keywords is
insignificant, variation of case such as True or TRUE are also recognised.

Partial        Evaluation   

Boolean expressions are incrementally evaluated.  Evaluation starts from the
left (subject to operator precedence rules) and stops as soon as the result can
be determined.

Examples:

Consider the expression

a and b

If a evaluates to false, the evaluation of the expression will terminate and
return the result false.  b is only evaluated if a evaluates to true.

Likewise, in the expression
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a or b

b is only evaluated if a is false.  If a is true, the result of the expression will be
determined without evaluating b.

This allows the following code segments to be written:

if obj<>nil and obj.size>N then ...

or

if n<=a.size and a[n]>0 then ...

3.3.4 String

Strings hold sequences of characters.  Strings are manifest.  Thus a String
variable can reference any possible String.  There is no notion of a specific
(maximum) number of characters or a specific memory section associated
with a String variable.  String literals are written using double quotes (").

Example:

s1, s2: String

. . .

s1 := "Da steh' ich nun, ich armer Tor"
s2 := s1

The effect of class String being a manifest type is that it behaves like having
value semantics.  In this example, subsequent changes to s1 will not affect s2.
(A change of s1 only makes s1 reference another string.)

Characters and substrings can be extracted by using indices.  String indices
always start at 1.

There is no character type in Blue.  Characters are strings with length one.

The most common operations on strings are:

alias                             operation                          return type         meaning

s.length Integer number of characters in s
str (s1, s2) s1.concat(s2) String returns concatenation of

s1 and s2
s.substring (n,m) String substring of s starting at

n with length m
s[n] s.substring (n,1) String character in s at position n

s2.find (s1, n) Integer position of s1 in s2 after n
s1.insert (s2, n) String inserts s2 into s1 at pos. n
s.delete (n, m) String delete m characters,

starting at n
s1 < s2 s1.less (s2) Boolean s1 less than s2 ?
s1 > s2 s1.greater (s2) Boolean s1 greater than s2 ?
s1 <= s2 s1.lessEq (s2) Boolean s1 less or equal s2 ?
s1 >= s2 s1.greaterEq (s2)Boolean s1 greater or equal s2 ?
str (s) s.toString String identity

s.toUpper String convert to upper case
s.toLower String convert to lower case
s.caseEqual (s2) Boolean equality (ignore case)
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Special       characters

A number of escape sequences are provided to specify non-printable
characters:

"\t" tab character
"\n" end-of-line character
"\\" "\"
"\nnn" ISO character nnn (decimal)

Long       string      s

If a string is too long to be written in one line in the editor, it can be broken
into sevaral parts:

s := "This is one string"
" (and this is still the same string)"

String literals that are separated by whitespace only are processed as one
string.  The neighbouring quotes and the whitespace in between are ignored.
The strings

"one "  "two "  "three"

and

"one "
"two "
"three"

and

"one two three"

are identical.  Every string literal (every part of the string) must end on the
same line it starts on.

For a full interface of class String, see Appendix D.

The decision to make the class String a manifest class may surprise
initially.  Programmers tend to think about strings as memory buffers
holding characters.  Objects of manifest classes can not change - this
contradicts the model programmers used to some other languages have of
strings: they can change.  After careful examination, however, it turns out
that we usually think of strings not as different objects.  Making strings a
dynamic class would lead to the effect that in the code fragment

a := “marvin”

if a = “marvin” then ...

the expression a = “marvin” results in false (because a literal string is then
an object creator and a and “marvin” are two distinct objects).  Intuitively,
we do not think about strings as independent objects, where two distinct
objects with the same value can exist.  If they have the same value, then
they are the same.  And this is exactly the behaviour of manifest objects.

All string functions that change a string (such as toUpper) do not change
the current string, but rather return a reference to another string that
contains the required text.



Blue Specification, Version 1.0, 24.7.98

10

3.3.5 Array

Arrays are the only predefined dynamic class.  Therefore array objects need to
be explicitly created.  

Arrays are sequences of homogenous elements.  The class specification is
generic.  (For details about generic classes, see section 17.)  The element type
is specified when declaring a variable; the index type is always Integer.  The
size of an array is dynamic.  The boundaries are not statically fixed and are
not part of the type.

Example      :

var a: Array <Boolean>
. . .
a := create Array<Boolean> (20)

This example creates an array of 20 booleans.  Array indices always start at 1,
so this array contains elements from a[1] to a[20].

Arrays can then be assigned like all dynamic classes.

Operation on arrays:

alias                             operation                          return type         meaning

create Array<t> (n) Array<t> create a new array with
n elements of type t

a [n] a.getElem (n) t element at index n
a [n] a.putElem (n, t) – set element at index n

a.init (v) – set all elements in a to v
a.size Integer number of elements in a
a.setSize (n) – change array size to n.

If n > old n, the new
elements are undefined.

Apart from these operations, literal Array constructors can be specified.

Example:

var a: Array <Integer>
. . .
a := [23, 2, 42]

This code fragment creates an integer array of size three with a[1]=23,
a[2]=2, a[3]=42 and assigns a reference to that array to a.

Elements of an array can be of any type.  In particular, arrays of arrays are
possible:

var
matrix: Array <Array<Integer>>
i1, i2: Integer

. . .
i1 := matrix [2][2]

The array bracket alias is special in that it can appear on the right or the left
side of an assignment.  Dependent on its position, it translates to either
getElem or putElem.

num := a [i]translates tonum := a.getElem (i)
a [i] := numtranslates toa.putElem (i, num)

The bracket alias therefore is the only alias that is not a simple macro.
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3 . 4 User Defined Types

User defined classes can be either general classes (user defined dynamic
classes) or enumeration classes (user defined manifest classes).

3.4.1 General classes

The definition of a general class is the closest thing to a “program” in
procedural languages.  A class typically consists of some internal data
(encapsulated), internal routines, a creation routine and interface routines.
The interface cannot contain variables.

BNF:

class-decl ::= class identifier [ "<" generics-list  ">"] is
class-definition

generics-list ::= gen-param { , gen-param }
gen-param ::= identifier  [ is identifier  ]

class-definition ::= [ identifier ] general-class-decl
| ...

general-class-decl ::= class-comment
uses [ ident-list  ]
[ internal

[ const const-decls ]
[ var var-decls ]
[ routines routine-decls ]  ]

interface
[ creation [ "(" parameter-list  ")" ]
routine-body ]
[ routines routine-decls ]

[ invariant  condition ]
end class

Example:   

class Rectangle is
== Author: M. Kölling
== Date: April 1995
== Version: 1.0
== Short: Graphical representation of a rectangle.
==
== Class Rectangle represents a rectangle with specified
== coordinates and colour that can be ...

uses Point, Colour

internal
var

top_left: Point
bottom_right: Point
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fill_col: Colour
border_col: Colour

interface
creation (tl: Point, br: Point)  is

== Create rectangle at coordinates defined by tl (top-left)
== and br (bottom-right).  Default colours are: fill white,
== border black.

do
top_left := tl
bottom_right := br
fill_col := white
border_col := black

end creation

routines
move (dx: Integer, dy: Integer) is

== Move rectangle by distance defined by dx, dy.

do
top_left.move (dx, dy)
bottom_right.move (dx, dy)

post
size = old size

end move

size -> (width: Integer, height: Integer) is
== Return size of rectangle in width and height.

do
width := bottom_right.x - top_left.x
height := bottom_right.y - top_left.y

end size

invariant
(top_left.x < bottom_right.x) and
(top_left.y < bottom_right.y)

end class

There is no separate interface definition for a class.  The interface of a class is
a restricted view of the class attributes (the internals are hidden) and it is
presented to the user as a special view that is produced by a tool in the Blue
Programming Environment from the full class definition.

For details on generic classes, see section 17.

• The name is always first in all declarations. The reason for this is that
a class definition is mostly used to look up interface features (members)
and their characteristics (parameters, types).  The feature should be easy
to find. This is achieved by placing the name first, making it easy to read
down a column of identifiers.  In C-type syntax (type and some keywords
first) the identifier is shifted somewhere towards the middle of the line,
which makes it harder to find. The name is followed by the access
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definition (type, parameters) showing the syntax for usage, and the
implementation definition (routine body), which is class internal
information.

• Creation is separate to make clear it is not a normal routine. Create
looks similar to a routine but has a special syntax and semantics. It is
separated from normal interface procedures and put into a special position
in the class declaration to make it easy to find by enforcing a certain
position for it and to symbolise its special meaning.

• Comments are compulsory. Writing comments is not seen as a luxury
but as part of programming. Therefore the compiler also deals (as well as
it can) with proper commenting.  This includes a class comment,
containing certain keywords, used by the library browser, and comments
for routines.

• Eliminating separate interface files avoids the danger of inconsistency
and repetition of code.

3.4.2 Enumeration classes

Enumeration classes are the only user defined manifest classes.  In a manifest
class all objects exist automatically and no other objects of this class can be
created.  Every object is referenced by a named constant.

class-decl ::= class identifier [ "<" generics-list  ">" ] is
class-definition

class-definition ::= Enumeration enum-class-decl
| ...

enum-class-decl ::= class-comment
manifest ident-list

end class

ident-list ::= identifier {"," identifier }

Example:   

class Colour is Enumeration
== Simple enumeration type for basic colours

manifest  red, white, blue

end class
This example defines and creates three objects which are referenced through
the constant identifiers red, white and blue.  In another class a variable can be
defined of class Colour, and one of the constant references can be assigned to
that variable.

Example:

var col1, col2: Colour

. . .
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col := red
col2 := blue

Note that, because no new objects are created at any time, after assigning red
to both col1 and col2, (col1 = col2) is true.

Enumeration classes inherit from the predefined class Enumeration.
Enumeration defines two routines pred and succ and the standard routine
toString, which can then be applied to all enumeration types.  It also provides
a routine ord for conversion to Integer.  For a full interface definition of
Enumeration, see appendix D.

No further attributes or routines can be defined for enumeration objects. The
only characteristics of enumerations are: they exist, they are distinct, and they
are ordered.

Qualified        Enumeration        Constants   
In some situation it may be necessary to qualify enumeration values with their
type.  This situation arises when a class uses two enumeration types that
define one or more common enumeration constants.  Consider the following
two enumeration classes:

class Colour is Enumeration
== Simple enumeration type for basic colours

manifest  red, white, blue

end class
class Program is Enumeration

== Simple enumeration type for basic colours

manifest  emacs, vi, blue

end class
If a third class now uses both Colour and Program, the constant blue is
ambiguous.  Trying to use it will result in a compile time error.  This conflict
can be resolved by preceding the enumeration value with its class name and an
exclamation mark (!):

Example:

var col : Colour
prog : Program

. . .

col := Colour!blue
prog := Program!blue

3 . 5 Operator Precedence

(to be written)
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4. Identifiers

Identifiers are used as names for classes, variables, constants and routines.
Identifiers are strings that consist only of letters, digits and the underscore
(_), where the first character is a letter or an underscore.

Example of legal identifiers are:

abc
Num23
addAtEnd
add_at_beginning
_count

Examples of illegal identifiers are

hit cnt – – error: space in identifier
23add – – error: digit at start of identifier
#elem – – error: illegal symbol (#) in identifier

Case       of        Characters   
Blue identifiers are case sensitive.  That means that abc and ABC are two
different identifiers.

By convention, class names are often written with a leading capital, whereas
routine names start with a lowercase character.

5. The Uses Clause

If a class A declares variables or parameters of another class B (we then say
"A uses B"), and B is not one of the predefined classes, then A must declare
the use of B.

BNF:

class-decl ::= class identifier [ "<" generics-list  ">"] is
class-definition

class-definition ::= [ identifier ] general-class-decl
| ...

general-class-decl ::= class-comment
uses [ ident-list  ]
. . .
end class

The following example shows a class Rectangle that uses two classes Point
and Colour.  
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Example:   

class Rectangle is
== ...

uses Point, Colour
. . .

end class

The effect of the uses clause is that the classes Point and Colour are known
inside the class definition of Rectangle and can then be used as types for
variables, parameters and return values.  The classes Point and Colour must
exist in the current project.

Uses clauses are inherited.  If a superclass lists a class in its uses clause, the
subclass does not need to (and indeed must not) repeat the same class in its
uses clause.  A superclass itself is automatically known to the subclass – it
does not need to be listed as a used class.  For more details about inheritance
see section 16.

The uses keyword itself is not optional.  If a class does not use other classes
the uses list is empty, but the keyword must appear in the source.

The predefined classes (Integer, Real, Boolean, String, Array) do not need to
be listed in the uses clause.  They are automatically known in every class
without being explicitly mentioned as being used.  This is, in fact, the
meaning of the term predefined – those classes are always considered used by
every class.

6. Variables

Variables can be declared of any class.  This is done in separate variable
declaration sections.  Such a section exists for the whole class (instance
variables) and once for each routine (local variables) and is preceded by the
keyword var.  The scope for instance variables is the class definition, the
scope for local variables is the routine they are declared in.

The section declaring the instance variables must be in the internal section and
must precede the internal routine declarations.  No variables are allowed in the
class interface.

The section declaring local variables follows the preconditions and constant
declarations in a routine declaration and precedes the routine statement block.

BNF:

var-decls ::= var-decl { var-decl }
var-decl ::= ident-list  ":" type-def [ initialisation ]

type-def ::= class-ident [ "<" ident-list  ">" ]
class-ident ::= identifier
initialisation ::= ":=" expression
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Examples:

var
num1, num2: Integer
count : Integer := 0
int_arr: Array <Integer>
f: Figure
s: Stack <Figure>

printList (l: List)  is
== print all list elements

var
cnt: Integer
nm: String := ""

do
. . .

end printList

Lifetime   
The lifetime of local variables is the time of a routine execution.  In other
words: scope and lifetime are connected (as in Pascal).  There is no
mechanism to extend the lifetime of local variables beyond the procedure
execution (such as the "static" construct for local variables in C).

The lifetime of instance variables is the time of existence of the object they are
part of.

States       and        Values   
Variables are a combination of type, state and value.  The type of a variable is
specified statically and never changes.  At any time, each variable is in one of
two states: undefined or defined.  If a variable is defined, it also has a value.
The value of a variable is always a reference to an object of its type (or nil, see
below).

A variable can be initialised on declaration by any legal expression, using the
assignment instruction (see example above).  If a variable is not initialised at
its declaration, its initial state is undefined.  It is an error to use an undefined
variable.  An attempt to do so results in a runtime error.

No function exists to check for the state undefined.  It is the responsibility of
the programmer at the time of writing the program to ensure that variables are
not used in the undefined state.  (A good programmer will always know when
a variable is potentially undefined.  Parameters can never be undefined – that
would have resulted in a runtime error at the time of the call.)

Assignment of a value to a variable changes the state to defined.  After a
variable leaves the state undefined, it never returns to that state.

Ni l   
A special value called nil exists.  The value nil indicates that the variable does
not reference any object.  A variable of any type can hold the value nil. nil can
be assigned, passed as a parameter and used in comparisons.  Trying to use
the object held by a nil variable (e.g. in an object call) is an error, since the
variable does not refer to an object.

Encapsulation   
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Variables are encapsulated and cannot appear in the interface of a class.  This
means that a class cannot directly access a variable of another class.  (It can
indirectly access it if that class offers a function that returns or changes the
value of a variable, but this is the choice of the class owning the variable.)

The only variables directly accessible are local variables of the current routine
and instance variables of the current class.

Note, however, that encapsulation is class based, not object based.  As a
result, a class can access variables in another object, if that object is of the
same class.

Example:

class Point is
. . .
var

x, y: Integer
. . .

add (other : Point) is
== Add another point to this one

do
x := other.x
y := other.y

end add

This technique is useful in situations where access to the internals is needed,
and no interface access functions are defined.  (An object clone function is
such a case where an object might want to create a new object of its own class
and set all its instance variables to the same values as itself.  We would not
want to make all internal variables publicly accessible only to be able to
provide a clone function.)

The possibility of accessing instance variables of another object, even
though they are of the same class, seems to some people to go against the
information hiding (or encapsulation) principle.  And in some respects it
does.  To understand the reason for this access to be allowed, we must
understand why information hiding is a good idea in the first place.

Information hiding is a software engineering technique, that decouples the
implementation of different modules (here: classes) from each other.
Accessing variables directly in arbitrary places is a maintenance d∂isaster,
because changes to the implementation of one module might require
changes in unexpected other places in the program.  This is why we do
not allow direct access of instance variables.

If the access comes from the same class, though, (even if it is from
another object) the argument does not hold anymore.  If I change the
implementation of that class, I will change all accesses to a variable within
that class.  So allowing access to instance variables of other objects from
within the same class is no problem.
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7. Constants

Constants in Blue can be literals or named constants.  Literals are available for
the predefined manifest classes.  Named constants can be created from every
legal expression.

7 . 1 Literals

Literals can be written for all predefined types.  They have been introduced in
the sections describing the individual types.  Here, we just provide a brief
summary of possible literal values for the predefined types.  For details, refer
to the section introducing each type (sections 3.3.1 to 3.3.5).

Literals:

Class      :                    Integer                    Real                        Boolean                  String    

Examples: 17 2.0 true "hello"
0 0.0 false ""
-5 -0.122 TRUE "ab\n"

7 . 2 Named Constants

Named constants are defined in a separate constant definition section, which
is preceded by the reserved word const.  The constant definition section can
precede every variable section.  Scope rules are the same as those for
variables, and the syntax of the declaration is the same as for variables, except
that the initialisation is not optional.

BNF:

const-decls ::= const-decl { const-decl }
const-decl ::= ident-list  ":" type-def  initialisation
initialisation ::= ":=" expression

Examples:

const
size: Integer := 99
default_title : String := "untitled"

printList (l: List)  is
== print all list elements

const
empty : Boolean := l.isEmpty (false)

var
. . .

do
. . .

end printList
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Note that literals as well as arbitrary function calls may be used for the
initialisation of constants.  Instance variables cannot be used for the
initialisation of instance constants — they are still uninitialised.  Care must be
taken with function calls: If the function used for initialisation uses instance
variables, a runtime error will be generated for using an uninitialised variable.
The initialisation of instance constants and variables takes place on object
creation before the creation routine is executed.

The exact order of object initialisation is:

• Initialisation of instance constants
• Initialisation of instance variables
• Execution of the creation routine, including (in this order)

• Initialisation of local constants
• Initialisation of local variables
• Execution of routine body

All constants and variables are initialised sequentially in the order in which
they are defined.  Later definitions may use preceding ones.

7 . 3 Set Constants

Blue allows sets of literals to be specified.  These sets can only appear as
literals.  No variables of these set types can be created.  The only available
operator on these sets is in, testing a value for membership in a given set.
The in-operation returns a boolean value.  (See section 10.4 for more details
on the in operation.)  Constant sets are also used for case statements (section
11.2).

BNF:

set_expr ::= "{" [ set_elem { " ," set_elem } ] " }"
set_elem ::= expression | subrange
subrange ::= expression ".." expression

Examples:

if choice in {1, 2, 3 } then ...

if result in {0..9} then ...

whitespace := ch in {" ", "\n", "\t"}

if ch in {"a".."z", "A".."Z", "_"} then ...

As the examples show, sets can be created by enumeration of values by
comma separated lists, subranges, or a combination of both.

Subranges can only be taken from ordinal types.  The ordinal types are
Integer, String and Enumeration.

This construct does not replace a general purpose set type.  It is merely a
convenience notation that abbreviates relational comparisons.  A general
purpose set class can be found in the Blue Standard Collection Library.
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8. Routines and Parameters

There are two types of routines: procedures and functions.  Both have an
optional parameter list.  Functions return one or more values.  

All parameters are passed by value. (Note that variables always hold
references, so a reference is passed by value, resulting in semantics of pass
by reference for the objects themselves.)

Parameters cannot be used to return values directly. (There are no “var”
parameters.)  The only way to return a value is via a function result.  Thus
procedures do not return any values (but they can change the state of an object
they reference).  A function can return more than one result.

BNF:

routine-decl ::= identifier [ "(" parameter-list  ")" ]
[ "->" "(" parameter-list   ")"] is

routine-impl

parameter-list ::= param-decl {" ," param-decl }
param-decl ::= identifier ":" type-def

routine-impl ::= deferred routine-spec
| builtin routine-spec
| [ redefined ] routine-body

routine-body ::= routine-comment
[ pre condition ]
[ const const-decls ]
[ var var-decls ]
do

statement-list
[ post condition ]
end identifier

routine-spec ::= routine-comment
[ pre condition ]
[ post condition ]
end identifier

Examples:   

A short function is

count –> (val: Integer) is
== Return number of elements

do
val := i_count

end count

A simple procedure without parameters, pre or post conditions:
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show is
== displays this element on standard output

do
print ("Name: ", name, "\n")
print ("Count: ", count, "\n")

end show

A function with two parameters and two return values:

lookup (n: Integer, show: Boolean)
–> (nm: String, cnt: String) is

== returns name and count for entry number n
==   n: number of entry to lookup, must be valid
==   show: if true, value is also printed to standard out
==   nm: returns the name of the entry
==   cnt: returns the number of the entry

pre
n >= 1
and n <= nr_of_entries

do
nm := entries[n].name
cnt := entries[n].count
if show then

entries[n].show
end if

post
nr_of_entries = old nr_of_entries

end lookup

The comment after the function header is part of the language.  Comments for
routines are not optional and are part of the routine interface.

Pre- and post conditions are optional.

Values are returned by assigning to the result variable (nm and cnt in this
example). Result variables are initially undefined and must be assigned a
value during function execution.  It is an error to return from a function with
undefined result variables.  A function without an assignment statement to a
result variable will produce a compile time error; a function that contains but
does not execute such a statement results in a runtime error.

Visibility   
Routines are visible in the whole class scope.  This means that a routine call
may precede the routine definition, allowing mutually recursive routines.

Many people hold the view that functions should not have side effects.
Suggestions have been made to us that the language should not allow side
effects in functions (by inhibiting assignments to instance variables and
routine calls to objects held in instance variables).  While this is
technically possible, it is impractical.  We agree that it is a valuable design
rule that functions should not have side effects, but side effects in this
context can only mean changes to the external state of the object.
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Sometimes side effects that change the internal state of the object are
desirable.  An example is the implementation of a query object with
caching.  A query (a function) should not change the external state of the
object, but it may well result in some information being cached inside the
object (thus changing the state of the object – a side effect).  If this change
does not affect the externally visible behaviour (other than in efficiency),
we say that the external state has not been changed.  Our design rule is
thus satisfied.  The compiler cannot distinguish whether changes of state
are internal or external.  Thus this valuable design rule remains
unenforced by the compiler.

For details on pre- and postconditions, see section 12.

For details on redefined routines, see section 16.2.

For details on deferred routines, see section 16.4.

8 . 1 Builtin Routines  

Builtin routines are written with the keyword builtin after the routine header:

BNF:

routine-decl ::= identifier  [ "(" parameter-list  ")" ]
[ "->" "(" parameter-list   ")"] is

routine-impl

routine-impl ::= builtin routine-spec
| ...

routine-spec ::= routine-comment
[ pre condition ]
[ post condition ]
end identifier

Example:

cursorTo (x: Integer, x: Integer) is builtin
== Set the terminals cursor to screen position (x,y).

pre
x >= 0 and x <= width  and
y >= 0 and y <= height

end cursorTo

The builtin keyword is used only by system programmers writing classes that
are part of the Blue environment.  It cannot be used by application
programmers.  Builtin classes are usually implemented in a system-specific
way (often in another language than Blue).
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9. Statements

Statements are:

• assignment
• assignment attempt
• procedure call
• return
• assertion
• control structures

Control structures are described in section 11.  This section only describes
simple (non-compound) statements.

BNF:

statement ::= assignment
| assignment-attempt
| procedure-call
| return
| assertion
| ...

9 . 1 Assignment

Values can be assigned to variables if the type of the value conforms to the
type of the variable (see below for definition of conformance).

BNF:

assignment ::= ident-list ":=" expression-list
ident-list ::= identifier {" ," identifier }
expression-list ::= expression {" ," expression }

Examples:

a := 42
a, b, c := x, y, z – – multi-assignment (see below)
a, b, c := f()

Multi-Assignment   
The multi-assignment is defined as follows:  Each of the expressions on the
right hand side is evaluated to one or more values. (An identifier always
evaluates to one value, a function evaluates to the list of its return values.)
The order of evaluation is undefined.  The values are then assigned to the
identifiers on the left hand side. The number of identifiers must be equal to the
number of values produced by the expressions on the right hand side.  The
first value is assigned to the first identifier, the second value to the second
identifier, and so on.  The evaluation of all expressions on the right hand side
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is always completed before any assignment is executed.  This allows a
statement like

a, b := b, a

to swap two values.

Conformance   
A type B conforms to a type A if

• B is the same type as A
• B is a (direct or indirect) subclass of A

Thus, the code segment

var
x: A
y: B – – B is subclass of A

. . .
y := create B
x := y

is legal, because B is a subclass of A, and so B conforms to A.

The variable x is said to have the static type A and the dynamic type B.

An assignment

a := b

is legal, if the static type of b conforms to the static type of a.

9 . 2 Assignment Attempt

The assignment attempt allows an assignment from a variable a of some class
to a variable b of a subclass.  Such an assignment can be safely executed
without risking type errors only if the dynamic type of a  conforms to the
static type of b.This can not be statically determined and causes a dynamic
check to be executed.

BNF:

assignment-attempt ::= ident-list "?=" expression-list
ident-list ::= ident {"," ident }
expression-list ::= expression {"," expression }

Example:

var
x: A
y: B – – B is subclass of A

. . .
y ?= x

Statically, this assignment cannot be guaranteed to be successful (since the
type of x does not conform to the type of y).  x could reference an object of
the dynamic type A. In that case the assignment cannot be executed, because y
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cannot hold references of type A.  But x could also reference an object of the
dynamic type B.  In that case the assignment can be executed.

The assignment attempt results in a dynamic (runtime) check of the dynamic
type of x.  If the dynamic type of x conforms to the static type of y, the
assignment will be executed, otherwise y will be assigned the value nil.

An assignment attempt

a ?= b

is statically legal if the static type of b conforms to the static type of a, or the
static type of a conforms to the static type of b (in other words: if there is any
chance that the assignment could be successful).

9 . 3 Procedure Call

A procedure call is a call to a routine that does not return parameters.

BNF:

procedure-call ::= call-chain
call-chain ::= [ super "!" ] unqualified-call { " ." unqualified-call  }
unqualified-call ::= identifier [ "(" expression-list  ")" ]

Examples:

proc
proc (a,b)
obj.proc (a, 23+17)
alist.get (22).put ("hello")

A procedure call can be a call of either an internal or external procedure.  An
internal procedure is a procedure that is defined in the same class containing
the procedure call.  An external procedure is a procedure defined in another
class.  External procedure calls are preceded by an object identifier, separated
from the procedure name by a dot (.).  If a procedure has parameters, the call
has a list of the actual parameters in parenthesis.  If no parameter list exists,
no parenthesis are written.

9 . 4 Return

The return instruction causes a return from a routine.

BNF:

return ::= return

Example:

show is
== displays this element on standard output
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do
if name = "" then

return
. . .

end show

return does not take any parameters.  If the routine is a function, all return
values must be assigned before the return is executed.

Routine exits from anywhere in a routine (even in the middle of a loop!)
are seen by some as “unstructured programming”.  For a good summary
of the reasons that show the advantages (in terms of programming and
teaching) of this construct, see Roberts, E., Loop Exits & Structured
Programming: Reopening the Debate, SIGCSE Bulletin, 27, 1, March
1995, pp. 268-272

9 . 5 Assertion

Assertions are used as a tool for correctness assurance and debugging.

BNF:

assertion ::= assert  "(" condition ")"
condition ::= boolean-expression

Example:

assert (name <> nil)

If the boolean expression in the assertion is not true, program execution is
interrupted and the user is notified about failing of the assertion.  If the
expression is true, the statement has no effect.

10. Expressions

Expressions are:

• function call
• equality
• type equality
• in-expression (sets)
• create
• this

BNF:

expression ::= function-call
| operator-expression
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| reference-equality
| type-equality
| in
| create
| old
| this

10 .1 Function Call

A function call is a call to a routine which returns one or more values.

BNF:

function-call ::= call-chain
call-chain ::= unqualified-call { " ." unqualified-call  }
unqualified-call ::= identifier [ "(" expression-list  ")" ]

Examples:

x := func
a,b := func (1)
if obj.func (a,b+c) then ...

found, element := list.search (22);
if found then

print (element)
end if

A function call is syntactically similar to a procedure call.  Since a function
returns values, it is used in an expression rather than as a statement.  A
function can return one or more values, which can then be assigned to
variables in a (multi-)assignment.

If a function returns exactly one value, it can also be used in expressions such
as the condition of an if  statement or in an actual parameter list.  Functions
returning multiple values can only be used in a multi-assignment statement.

If a function has no parameters, a call to that function consists of its name
only (no parentheses are written to indicate an empty parameter list).

10 .2 Equality

BNF:

reference-equality ::= expression comparison expression
comparison ::= "=" | "<>"
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Examples:

a = b
found = true
a <> 42

See section 3.2.2 (Comparison).

10 .3 Type Equality

BNF:

type-equal ::= expression is type

Examples:

var
f: Figure
r: Rect – – inherits from figure

. . .

if f is Rect then
r := f

end if

The keyword is checks whether a variable is of a given type.  The result is a
boolean value.  The expression

ident is Mytype

is true, if the dynamic type of ident is Mytype or a subclass of Mytype.  In
other words: The expression is true, if the dynamic type of ident conforms to
Mytype.

10 .4 In

BNF:

in ::= expression in set_expr
set_expr ::= "{" [ set_elem { " ," set_elem } ] " }"
set_elem ::= expression | subrange
subrange ::= expression ".." expression

Example:   

if num in {1, 3, 5, 7} then ...

if  n in {1..10} then ...

valid := x in {" ", "\t", "0".."9" }
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In  expressions are aliases and are defined by combinations of comparisons:

n in {a, b} is defined as n = a or n = b

n in {a..b} is defined as n>=a and n<=b

n in {a, b..c} is defined as n = a or (n>=b and n<=c)

10 .5 Create

BNF:

create ::= general-create | array-create
general-create ::= create class-ident [ "(" expression-list  ")" ]
array-create ::= "[" expression { " ," expression } " ]"

Example:

var
r : Rectangle
b : Buffer

. . .

r := create Rectangle (p1, p2, c)
b := create Buffer

The create keyword creates an object of the specified class and executes its
creation routine.  Parameters to the creation routine are passed in a parameter
list after the class name.  If the creation routine has no parameters, the create
call has no parameter list. (If the class does not specify a creation routine, a
default routine without parameters is generated).

10 .6 This

BNF:

expression ::= this

Example:

list.add (this)

The expression this is a reference to the currently active object.  It can be used
to pass the current object reference to other objects.
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11. Control Structures

The remaining group of statements, not described so far, are control
structures. Control structures are:

• conditional
• multi branch
• loop

BNF:

statement ::= . . .
| conditional
| selection
| loop

11 .1 Conditional: The If Statement

BNF:

conditional ::= if  condition then
statement-list

{ elseif expression then
statement-list }

[ else
statement-list ]

end if

condition ::= boolean-expression
statement-list ::= { statement }

Examples:

if val>0 then
handle_positiv

elseif val=0 then
handle_zero

else
print (“The value was negative!”)
handle_error

end if

if n < 0 then
n := –n

end if

The if statement is similar to conditionals in many other languages. Note that
the if and else parts contain statement lists. This makes an explicit grouping
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symbol at the beginning of the statement list unnecessary.  The “end if” is
always required.

11 .2 Selection: The Case Statement

The case statement allows a multi-way branch depending on an expression.  It
is similar to the case statement in Pascal or the switch statement in C.  The
case labels are set constants and selection of a case is done by applying an in
operation to the expression and the case labels.  The expression is evaluated
and the resulting value is checked for membership in the label sets. The
statements at the first matching label are executed.  Only the statements
between the label and the next label (if any) are executed.  Then execution
resumes after the end case instruction.  The else part is executed if the value
was not a member of any of the label sets.  If no set contains the value and the
case statement does not contain an else part, no nested instructions are
executed and execution continues after the case statement.

BNF:

selection ::= case expression of
{ set_expr ":" statement-list }
[ else statement-list ]

end case

Examples:

case colour of
{red}:

label := "danger"

{yellow}:
label := "warning"

{green}:
label := "okay"

else
handle_error

end case

case value of
{0..33}:

print ("low")

{34..66}:
print ("medium")

{67..99}:
print ("high")

{100}:
print ("top")

end case
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case ch of
{" ", "\n", "\t"}:

handle_whitespace

{"a".."z", "A".."Z", "_"}:
handle_letter

{"0".."9"}:
handle_number

else
handle_error

end case

If the sets used as case labels overlap and the test value is a member of more
than one of the sets, only the instructions at the first match are executed.

11 .3 Iteration: The Loop Statement

There is only one kind of loop structure in Blue.  The loop is defined with the
keywords loop ... end loop.
Exit from the loop is explicit by using the exit on keyword, which is part of
the loop.  Every loop must have at least one exit.  Multiple exits are possible.
By placing the exit at the beginning or end of the loop, behaviour of a pre-test
or posttest loop (while and repeat in Pascal) can be implemented.

iteration ::= loop
statement-list

exit on condition
statement-list

{ exit on condition
statement-list  }

end loop

Note that a statement list can be empty.

Examples:

The first example shows a loop with the exit instruction at the beginning.
This construct has semantics similar to a while loop (where the condition in
the while loop would be the negation of the exit condition in this example).

list.first
loop

exit on list.atEnd
print (list.current)
list.advance

end loop

Similarly, a post-test loop (repeat in Pascal) can be constructed by placing the
exit instruction at the end of the loop.

In Blue, however, exit instructions can appear at any stage in the loop,
increasing flexibility:
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loop
readInt (i)
exit on i>0
print (“The number has to be greater than 0. Enter again.”)

end loop

The last example shows the use of multiple exit instructions.

loop
s := getSelection
exit on s=0
error := process (s)
exit on error

end loop

A loop without an exit statement causes a compile time error.  Exit statements
are illegal outside a loop.  In nested loops, exit always exits only the
innermost loop.  It is not possible to exit an outer loop from within a nested
loop.

12. Pre/Post Conditions

Preconditions and postconditions are part of routine definitions.  They are
optional.  If present, they are automatically checked at runtime and an error is
reported if a condition is not met.

Preconditions are written at the beginning of a routine body (before the
variable declarations) and are checked on entry of that routine.  It is the
responsibility of the caller to ensure that the precondition is met (i.e. that it
evaluates to true on routine entry).  The code inside the routine body can then
safely assume that the condition is true.

Postconditions are written at the end of a routine body and are checked on exit
of the routine.  It is the responsibility of the routine to ensure that the
postcondition is true, and the caller can assume that the condition is met on
return from the routine.

BNF:

routine-body ::= routine-comment
[ pre [ condition ]

[ comment ]]
. . .
do

. . .
[ post [ condition ]

[ comment ]]
end identifier

Pre- and postconditions consist of one condition and/or a comment each.  If
multiple conditions are to be defined, they can be combined with a logical and
to form one condition.  The comment is intended to express conditions that
cannot be expressed in Blue expressions.  The comment has no runtime effect
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(no error is generated if a comment is false), but it is good programming
practice to include documentation about pre- and postconditions even if they
cannot be written in code.

Examples:

func (n: Integer, m: Integer) -> (res: Integer) is
pre

n >= 0 and
m >= 1

var
x : Integer

do
. . .

post
res <> nil

end func

printName is

do
. . .

post
== the name has been printed on screen

end printName

Both pre- and postconditions are part of the interface of a routine.
Redefinitions of routines may alter these conditions only in restricted ways:
preconditions may be weakened, postconditions may be strengthened.  If a
redefined routine does not define pre- or postconditions, the conditions of the
original (parent) routine apply.  If a precondition is redefined, the actual
condition tested at runtime is

precondition or parent-precondition

If a postcondition is redefined, the condition tested at runtime is

postcondition and parent-postcondition

This ensures that the redefined routine guarantees at least as much as its
parent.

Two special expression are available in conditions:  => (implies) and the
reserved word old.

Example:

post
found => index > 0

The implies symbol can be read as

if (found) then assert (index > 0)
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The old expression is available only in postconditions.  It is used on exit of a
routine to refer to the value that an expression had on entry to that routine.

The following example ensures that the global variable num has not been
altered in the routine:

Example:

doSomething (n: Integer) is
pre

n <> nil

post
num = old num

end doSomething

It is an error to use “=>“ outside of a pre- or postcondition or class invariant
or to use “old” outside a postcondition.

13. Class Invariants

Class invariants are conditions that have to be met by any stable state of an
object.  Stable states exists before and after every execution of an interface
routine from the outside of an object.  (Note that when an interface routine is
called locally from within an object, it does not have to be in a stable state.)

BNF:

class-decl ::= class identifier [ "<" generics-list ">"] is
class-definition

class-definition ::= . . .
| [ identifier  ] general-class-decl

general-class-decl ::= . . .
[ invariant  condition ]
end class

Invariants are checked at runtime before and after every external interface
routine call and after execution of the creation routine.  A runtime error is
generated if an invariant evaluates to false.

14. Comments

Blue recognises two types of comments, marked by a double equals sign (==)
and a double hyphen (– –).  Comments always extends to the end of the line.
To have several lines as a comment, every line has to be preceded by the
comment symbol.
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14 .1 Interface Comments

Comments starting with == are part of the class interface and part of the
language definition.  They are used to describe the class itself and routine
semantics, and are allowed to appear only in strictly defined locations.  These
locations are:

• after the class header
• after a routine header

Example

class Rectangle is
== Author: M. Kölling
== Date: April 1995
== Version: 1.1
== Short: Graphical representation of a rectangle.
==
==Class Rectangle represents a rectangle with
==specified coordinates and colour that can be ...
==...

. . .

interface
creation (tl: Point, br: Point)  is

== Create rectangle at coordinates defined by tl (top-left)
== and br (bottom-right).  Default colours are: fill white,
== border black.

do
. . .

end creation

routines
move (dx: Integer, dy: Integer) is

== Move rectangle by distance defined by dx, dy.

do
. . .

end move

size -> (width: Integer, height: Integer) is
== Return size of rectangle in width and height.

do
. . .

end size

invariant
. . .

end class
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The example shows interface comments for the class and for each routine.
Interface comments may not appear anywhere else.  They are part of the class
interface and therefore displayed in interface view (see [1] for a description of
the environment, including the interface view of classes).  They are also used
by the class browser.  (By convention, some lines of the class comments
begin with certain keywords which are recognised by the class browser.
These lines define the author, version number, date of creation and a short
description of the class.  See the documentation of the browser for details.)

14 .2 Implementation Comments

All other comments, starting with the symbol – – (double hyphen), are
implementation comments.  They may appear anywhere and are not included
in the interface view.  Implementation comments are ignored by the compiler.

Note that implementation comments may appear as part of the routine
comment.  If they do, they should describe the routine implementation and
will not be displayed as part of the interface.

Example:

class WidgetManager is
. . .

add (new_widget: Widget) is
== Add ‘new_widget’ to the set of managed widgets.
– – This is done by adding ‘new_widget’ to ‘wl’, the
– – internal widget list. Note that ‘wl’ may be undefined
– – if this is the first widget to be added. We have to test for
– – that and possibly create the list before adding to it.

do
if wl = nil then – – test whether list exists

wl := create List <Widget>
end if
wl.add (new_widget) – – add widget to widget list

end add

. . .
end class

The interface of this routine is

add (new_widget: Widget)
== Add ‘new_widget’ to the set of managed widgets.

There is no block comment in Blue (every comment is for one line only).
Instead, the Blue environment provides tools to add or remove comments on
every line in a block of text.
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15. I /O

I/O is implemented in Blue by providing a number of standard classes and
objects that can be called to perform input/output operations.  There are two
groups of I/O classes: one group for text based (or "standard") I/O and one
group for more sophisticated graphical user interface building.  The graphical
user interface classes are found in the Blue GUI library and are not described
here.  The following sections describe what is known as standard I/O, a
simple, text based I/O facility.

15 .1 Standard I/O

Blue provides four environment variables for standard I/O: input, output,
terminal  and format.  These variables are predefined and accessible in all Blue
classes.

It also provides two predefined objects: one object of class TextTerminal and
one object of class OutputFormat.  The predefined variables input, output and
terminal typically all refer to the predefined TextTerminal object, the format
variable refers to the OutputFormat object.  It is possible, though, to bind
input  or output  to other objects, for instance output to an object representing
a printer or input to a file. This can be done externally before a routine is
executed, or dynamically by the program.

The predefined variables are of the following classes:

var
input : IO_Channel
output : IO_Channel
terminal : TextTerminal
format : OutputFormat

IO_Channel is a superclass of TextTerminal, so the variables input and output
provide a view onto the predefined TextTerminal object as an IO_Channel
object.

The variables input and output  exist to provide a means do redirect input or
output to and from other channels (such as a text file, which is also a subclass
if IO_Channel).

The variable terminal exists so that a program can take advantage of
TextTerminal specific operations that are not part of IO_Channel (such as
positioning the cursor on screen, etc.)

For a full description and interface, see the "Blue Standard Library Manual"
[2].

15.1.1 Standard Output

Output to the terminal is usually done using the alias print.

Examples:

i : Integer
m : Myclass
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print (i)
print (m)
print ("The value of ", i, " is ", m, "\n")

The alias print is defined as

print (a, b, ...)   <=>  output.write (str (a, b, ...) )

str itself is an alias, which is defined as

str (a, b, ...)  <=>  a.toString.concat (b.toString.concat (...))

The function concat is defined in class String and returns a string that is the
concatenation of two other strings.  The function toString is defined for all
predefined classes (except Arrays) and may be defined for user defined
classes.  It returns a printable representation of an object in a string.  If a user
defined class wants to define a toString  routine, it has to conform to the
following signature:

toString -> (s: String)
== Return a string representation of this object.

Every object that defines a function toString conforming to this specification,
can be printed using the alias print.

Furthermore, apart from being used for output, the str alias can be used for
conversion to string from another type and for concatenation of string
representations of any type, including strings.

Examples:

s, s1, s2 : String
i : Integer
m : Myclass

s := str (i) – – conversion Integer to String
s := str ("The value is ", i) – – conversion and concatenation
s := str (s1, s2) – – concatenation of Strings

15.1.2 Output Formatting

The toString routines of the predefined classes Integer, Real, Boolean and
Enumeration use the predefined format object to determine their output
format.  (format is a predefined constant referring to a standard object of class
OutputFormat.)  Calls to format may be made to influence the formatting of
number, Boolean and enumeration output.  The (incomplete) interface of
OutputFormat is as follows:

class interface OutputFormat is
setWidth (n : Integer)

== Set field width for output.  Default is 0.  If the string
== representation of a value consists of more characters than
== the field width, the width is ignored.
==
== Used by Integer, Real, Boolean and Enumeration.
==
== Note that the class String does not use the format object for
== output. String output is unaffected by the field width.  To
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== align strings, use the 'fill' function in class String.
pre

n >= 0

alignRight (right : Boolean)
== Specify alignment of output in the field defined by 'setWidth'.
== The default is 'left' (spaces will be added to the right of the
== output as appropriate).  If 'right' is set to true, output will
== be right-aligned within the specified field width.
==
== Used by Integer, Real, Boolean and Enumeration.
pre

right <> nil

scientific (useScientific : Boolean)
== If useScientific is true, scientific notation is used for output
== of real numbers (e.g. 1.23456e+02).  Otherwise fixed point
== notation is used (e.g. 123.456).  The default is
== useScientific=false.
==
== Used by Real.
pre

useScientific <> nil

roundTo (n : Integer)
== Round output of fixed point real numbers to n digits after the
== decimal point.  Default is 6.  Used by Real.
pre

n >= 0

end class

The format object may also be used by user defined classes to determine the
behaviour of the toString routine (so that user defined output can, for
instance, honour field width or justification).  For a full interface of
OutputFormat, see Appendix D8.

15.1.3 Standard Input

Input from standard input is defined for integers, reals, booleans and strings.
It is done using a group of aliases which map to routine calls to the standard
object input.  The aliases are:

readInt <=> input.readInt
readReal <=> input.readReal
readStr <=> input.readStr
readChar <=> input.readChar

All of these routines are functions returning objects of the according type.

Examples:

num := readInt
name := readStr
line [i] := readChar



Blue Specification, Version 1.0, 24.7.98

42

readInt and readReal skip whitespace and end-of-line characters.  If the next
characters can not be interpreted in the required format, they return nil.
readStr reads until an end-of-line character is found, or the end of file is
reached.  The relevant part of the interface of the class IO_Channel is shown
below:

class interface IO_Channel is
. . .

readStr -> (s : String) is deferred
== Read a String.  Reads characters until
== a line break ("\n") is read or an error condition (such as
== "end-of-file" is encountered).  The resulting String does
== not include the line break character.

readChar -> (s : String) is deferred
== Read the next character.  Every character (including line
== break characters) are returned as entered. The line break
== character is returned as "\n".

readInt -> (i : Integer) is deferred
== Read an Integer.  Skips white space (spaces, tabs and
== newlines) before the Integer.  Returns "nil" if the
== next non-white characters do not represent a number.
== Numbers are written with an optional - or + sign and digits.

readReal -> (r : Real) is deferred
== Read an Real (floating point number).  Skips white space
== (spaces, tabs and newlines) before the number.  Returns "nil"
== if the next non-white characters cannot be interpreted as a
== number. Real numbers are written with an optional - or +
== sign, digits and a decimal point (.).

endLine is deferred
== Read and discard all characters up to (and including) the next
== NewLine character.

atEnd  -> (isAtEnd : Boolean) is deferred
== Return true if the current position is the end of the channel.
== Some channels might not have an end (and atEnd always
== returns false) some might reach an end at a specific point (like
== a file, where the end of the channel might be defined by the
== end of the file). In some channels the end might be
== dynamically defined (i.e. when a terminal allows the user to
== generate and at-end condition via a control key). See the
== concrete subclasses for their individual handling of the at-end
== condition.

end class
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15.1.4 The TextTerminal Class

As mentioned above, the variables input, output  and terminal by default refer
to an object of class TextTerminal, which is created by the Blue environment
on system startup (a project does not need to create this object explicitly).  The
TextTerminal class defines additional routines apart from those defined in
IO_Channel.  Those routines can be called only through the variable terminal,
since it is the only one to be declared of class TextTerminal.  There are no
aliases for these routines.  They are called using the standard routine call
syntax. Fir example, to position the cursor on the screen, a class might
include the statement

terminal.cursorTo (4, ln)

See Appendix D7 for the complete interface of class TextTerminal.

15 .2 File I/O

Working with files is supported by standard classes, available in the standard
library (group Standard_IO).  These are the classes FileSystemHandle and
TextFileHandle.  Objects of both of these classes are handles – they give
access to an underlying object.  This indicates that, for instance, creating a file
system handle does not create a file system, but rather creates an object that
gives the user access to the underlying filesystem which exists independently
from the handle object.  Equally, creating a TextFileHandle does not create a
text file – it just allows access to a text file that was created earlier.

Class FileSysHandle
The class FileSysHandle is used to access the file system.  Access to the file
sytem allows operations such as creating or removing files, reading
directories, checking for the existence of files, etc.

The (incomplete) definition of the class FileSysHandle is

class interface FileSysHandle is
. . .

creation (fileSys : String)
== Create a handle to a file system.  The parameter "fileSys"
== identifies the file system to be accessed.  On systems that
== have only one file system (e.g. Unix), the parameter is
== ignored.

  routines

createFile (name : String) -> (done : Boolean)
== Create a file with file name "name".  If the file exists, its
== length is truncated to 0.
== ...

deleteFile (name : String) -> (done : Boolean)
== Delete the file with file name "name".
== ...
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copyFile (name : String, newName : String)
-> (done : Boolean)

== Copy the file with name "name" to a second file with name
== "newName".
== ...

createDirectory (name : String) -> (done : Boolean)
== Create a directory with name "name".
== ...

deleteDirectory (name : String) -> (done : Boolean)
== Delete the directory with name "name".  The directory must
== exist and must be empty.
== ...

readDirectory (name : String) -> (dir : Array <String>)
== Read the directory with name "name".  Returns an array with
== the directory entries.  Each entry is the name of a file or
== directory.   ...

exists (name : String) -> (result : Boolean)
== Return result=true if an entry with name "name" exists in
== the file system.

. . .

end class

This interface is incomplete.  Look at the interface online in the Blue class
browser, or have a look at "The Blue Libraries" [2] to see the full interface.

Class TextFileHandle
A file handle is used to access the contents of a file.  A file handle is not the
file itself.  This is an important distinction.  Creating a file handle does not
create a file.  Creation of a file handle rather corresponds to opening a file.

Example:

This example creates a copy of an text file.

copy (source: String, target: String) is
== Copy the file "source" to file "target" character by character.

var
filesys : FileSysHandle
file1 : TextFileHandle
file2 : TextFileHandle

do
filesys := create FileSysHandle (nil)

– – create the target file

if (not filesys.createFile (target)) then
print ("Could not create target file!\n")
return
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end if

– – open both files

file1 := create TextFileHandle (source)
file2 := create TextFileHandle (target)

if (not file1.isReadable) or (not file2.isWritable) then
print ("Could not open files with necessary access.\n")
return

end if

– – do the copying

loop
exit on file1.endOfFile
file2.write (file1.readChar)

end loop

– – close the files

file1.close
file2.close
print ("Done.\n")

end copy

After creating a TextFileHandle, the state of the file handle should be checked.
A file is always opened for reading and writing, if the underlying file system
allows this access.  If access rights in the file system deny read or write
access, the file is opened in read-only or write-only mode.  The access can be
checked with the isReadable and isWritable functions.  If no access is
possible at all (either no access was granted by the file system, or the file does
not exist) then isReadable and isWritable are both false, and isBad is true.  All
attempts to read from a file that is not readable, or to write to a file that is not
writable result in runtime errors.

The function endOfFile can be used to check whether the current file position
is at the end of the file.  It must be checked before a read operation is
attempted.  Trying to read from a file while endOfFile is true is an error.

The (incomplete) definition of class TextFileHandle is

class interface TextFileHandle is IO_Channel

creation (fileName : String)
== Create a handle to a text file.  The file "fileName" must exists
== in the file system.
==
== If a file with the specified name does not exist or if access to
== the file is denied, no file will be opened and the status of the
== TextFileHandle will be set to "isBad" (see routine "isBad"
== below).
== This routine does not create a file.  To create a new file, use
== the createFile routine in class FileSystemHandle.
pre
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fileName <> nil

  routines

  inherited from IO_Channel

write (s : String) is redefined
== Write 's' to the file.
pre

isWritable

readStr -> (s : String) is redefined
== Read a String from the file.  Reads characters until
== a line break ("\n") is read or the end of the file is reached.
== The resulting string does not include the line break character.
== ...
pre

isReadable and not atEnd

readChar -> (s : String) is redefined
== Read the next character from the file.  Every character
== (including line break characters) are returned as entered
== The line break character is returned as "\n".
pre

isReadable and not atEnd

readInt -> (i : Integer) is redefined
== Read an Integer from the file.  Skips white space (spaces,
== tabs and newlines) before the Integer.  Returns "nil" if the
== next non-white characters do not represent a number.
== Numbers are recognised with an optional - or + sign and
== digits.
pre

isReadable and not atEnd

atEnd -> (isAtEnd: Boolean)
== Return true if the end of input has been reached. While input
== from a terminal does not have a natural end, end end-of-input
== condition can be generated by pressing CTRL-D.
== If the next character entered is a CTRL-D, 'atEnd' removes
== the character from the input and returns true. If it is any other
== character, 'atEnd' leaves it pending in the input queue and
== returns false.
pre

not isBad

. . .

  new routines

position -> (pos : Integer)
== Return the read/write position in the file.
== The position is the offset from the beginning of the file.
== The first position (start of file) is 0.
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pre
not isBad

setPosition (pos : Integer)
== Set the read/write position in the file to "pos".
== 0 is the beginning of the file, -1 is the end of the file.
== Positive numbers count from the beginning of the file,
== negative numbers count backwards from the end of the file.
pre

not isBad and pos <> nil

close
== Close the file associated with this handle.  In general all files
== should be closed by the user as soon as they are not needed
== anymore.  Closing files is important, because the number of
== files a user can have open at the same time is limited.  If files
== are not closed, opening of further files might fail.  The exact
== number of files that can be open at any one time is system
== dependent.
== Also, output to files is buffered.  Text written to the file is
== not immediately written to disk.  Only after closing the file or
== calling an explicit "flush" can the user rely on the file content
== being visible to other processes.
==
== Files not being closed are automatically closed when the file
== handle object is garbage collected.  Since the user has no
== influence on the timing of garbage collection, it is bad practice
== to rely on this.
==
== After closing, the file handle is not usable any more, all read
== and write operations cause runtime errors, and "isBad" returns
== true.

isReadable -> (readable : Boolean)
== Returns true if the file can be read.  If access rights in the
== file system specify write-only access, isReadable returns
== false.

isWritable -> (writable : Boolean)
== Returns true if the file can be written.  If access rights in the
== file system specify read-only access, isWritable returns false.

isBad -> (bad : Boolean)
== "isBad" returns true if this file handle cannot be used to access
== a file.  This can happen if the file specified in the creation
== routine does not exist, or if neither read nor write access was
== permitted.  If "isBad" is true, "isReadable" and "isWritable"
== are both false.

end class
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This interface is incomplete.  Look at the interface online in the Blue class
browser, or have a look at "The Blue Libraries" [2] to see the full interface.

16. Inheritance

Inheritance can be used to define specialisations of previously defined classes.
These specialisations are called subclasses (or “children”) of their
superclasses (or “parents”).

16 .1 Defining Subclasses

Classes can be subclasses of at most one other class.  The superclass (if any)
is listed in the head of the class definition.

BNF:

class-decl ::= class identifier [ "<" generics-list ">"] is
class-definition

class-definition ::= [ identifier ] general-class-decl
| ...

Example

class Car is Vehicle
== Defines a car for a traffic simulation.

. . .

end class

A subclass inherits all routines and variables from its parent.  All interface
routines of the parent are also interface routines of the subclass, and all
internals (routines and variables) are available inside the subclass.  The
creation routine is the only routine that is not inherited by the subclass.

Inherited interface routines cannot be "hidden" (removed from the interface).
Inheritance is intended to be used to express real “is-a” relationships.  If such
a relationship is true, there is no need to hide interface routines of the parent.
In all situations where a programmer wants to hide parts of an interface in a
child, inheritance should not be used, but a client-server model (“uses”
relationship) should be used instead.
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16 .2 Redefinition

Children may redefine the implementation of an inherited routine.  This is
done by providing a routine implementation in the child with the keyword
redefined in the routine header.

BNF:

routine-decl ::= identifier  [ "(" parameter-list  ")" ]
[ "->" "(" parameter-list   ")"] is

routine-impl

routine-impl ::= [ redefined ] routine-body
| ...

Example:

move (dest: Location) is redefined
== Move the position of this ...

do
. . .

end move

The explicit keyword redefined protects a programmer from accidental reuse
of a routine name of the parent. The parameter list in the redefined function
must be the same as the one of the original function.  Changing of parameter
lists (covariance or contravariance) is illegal.

Only the implementation of routines may be redefined.  It is not allowed to
redefine the parameter or result list of an existing routine.

16 .3 Calling Superclass Functions

Sometimes is is desirable to call the original of a function that has been
redefined (usually as part of the redefinition of the function).  Consider the
following example:

Example:

class Person is
. . .

print  is
== Write this person’s details to the screen

do
print (name, “\n”)
print (“date of birth: “, date, "\n")

end print

end class

class Student is Person



Blue Specification, Version 1.0, 24.7.98

50

. . .

print  is redefined
== Write this student’s details to the screen

do
super!print – – write Person details
print (“student number: “, stud_num, "\n")

end print

end class

The class Person has an interface routine print that prints out that person’s
details.  The class Student, which inherits from Person, redefines print to
print out the details for the student, which include the details for a person.
Student’s print routine can print the person details by calling the original print
routine in its superclass.  This is done by preceding the routine call with the
keyword super and an exclamation mark (!).
BNF:

procedure-call ::= call-chain
call-chain ::= [ super "!" ] unqualified-call { " ." unqualified-call  }
unqualified-call ::= identifier [ "(" expression-list  ")" ]

This construct is often used to call the superclass’s creation routine from a
childs creation routine.

Example:

class Student is Person
. . .

interface

creation (name: String, dob: Date, sid: Integer) is
== Create student instance

do
super!creation (name, dob)
student_num := sid

end creation

. . .

end class

I have often been asked why we use an exclamation mark rather than the
usual dot notation in this situation.  In other words: why do we write

super!creation

instead of

super.creation

The answer is that, although similar on first glance, these are two very
different instructions.  The dot notation specifies an object before the dot.
The routine call is performed on that other object.  The exclamation mark
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(or "bang notation") specifies the execution of a routine that was defined
in another class on this object.  The super keyword is a scope specifier,
not an object specifier.  We regard this distinction as so important that we
want the programmer to be aware of the difference.  The different syntax
is an attempt to emphasise this difference.

16 .4 Deferred Routines

Routine implementations can be deferred.  Deferred routines are marked with
the keyword deferred.  

BNF:

routine-decl ::= identifier  [ "(" parameter-list  ")" ]
[ "->" "(" parameter-list   ")"] is

routine-impl

routine-impl ::= deferred routine-spec
| ...

routine-spec ::= routine-comment
[ pre condition ]
[ post condition ]
end identifier

Example:

move (dest: Location) is deferred
== Move the position of this ...

pre
dest <> nil

end move

If a routine is deferred, the class does not provide an implementation of the
routine.  Classes that contain one or more deferred routines are called abstract
classes.  No instances can be created of abstract classes.  Children of abstract
classes can provide implementations for deferred routines.  If they do not
provide implementations for all deferred routines, they remain abstract
themselves.

Implementations for deferred routines are provided by redefining the routine
in the child.  See section 16.2 for a description of redefinition.

17. Genericity

Classes may be generic.  Genericity (often called parametric polymorphism)
allows classes to include unspecified types in their class description, which
are instantiated when an object of this class is created.  This allows a more
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general form of code reuse.  A list, for instance, can be defined to hold
elements of some type, where the type is not specified at the time the class is
implemented.  The actual type of the list elements is then specified when an
object of class list is created.  Several instances of the list can exist, one
holding elements of type Integer, another one elements of type String, and so
on.

17 .1 Unconstrained Genericity

Most of the BNF rules involved in genericity have been mentioned above.
Here we repeat the relevant parts:

BNF:

class-decl ::= class identifier [ "<" generics_list  ">"] is
class-definition

generics-list ::= generics-decl { " ," generics-decl }
generics-decl ::= formal-generic-param [ is class-type ]
formal-generic-param ::= identifier

var-decl ::= ident-list  ":" type [ initilisation ]

type ::= class-type
| formal-generic-param
| ...

class-type ::= identifier [ "<" actual-generics-list  ">" ]
actual-generics-list ::= type { " ," type }

The following example shows part of a class definition for a generic stack and
code fragments declaring and using the stack class, instantiating it once as an
Integer Stack and once as a Stack of Figures.

Example:   

class Stack <ELEM_TYPE> is
internal

var
st: Array <ELEM_TYPE>

interface
. . .

routines

push (elem: ELEM_TYPE) is
== push elem on stack

pop -> (elem: ELEM_TYPE) is
== pop top of stack and return it in elem

. . .
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end class

class client
uses Stack, Figure

internal
var

s1: Stack <Integer>
s2: Stack <Figure>
f: Figure

. . .

s1.push (42)
s2.push (f)

end class

Within the generic class (here: Stack) the formal generic parameter
(ELEM_TYPE) is a valid type.  It can be used for the declaration of variables,
parameters and return values.

Classes may have more than one generic parameter.  The list of types in the
instantiation (in the variable declaration), the actual generic parameters, must
have the same number of elements as the list of identifiers in the class header
(the formal generic parameters).

Example:

class List <T1, T2> is
. . .

end class

class Client
uses List

internal

var l: List <String, Integer>

. . .

end class

17.1.1 Classes and Types

It is time to revisit the relationship between classes and types.  Up to now, we
did not distinguish very carefully between classes and types.  This was no
problem because, as long as no generic classes are involved, each class
corresponds to exactly one type, and the type is referred to by using the
class's name.  Consider

var
p : Person

We sometimes said "p is of class Person" or "p is of type Person".  A more
accurate (but rather clumsy) way to describe this situation is "p is declared of
the type that is defined by class Person".
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This now changes with generic classes.

Consider the class Stack shown above.  Stack is a class, but because it is
generic, it does not correspond to one type, but potentially to many types.
Since variable declarations need types (not classes), the following declaration
is wrong:

var
s : Stack – – ERROR   ERROR   ERROR !

Instantiating the generic parameters of a generic class generates a type.  In
other words: Stack is not a type, but Stack<Integer> is.  The following
declaration is legal:

var
s : Stack <Integer>

Almost everywhere in Blue code where we have seen class names so far, it is
actually a type that is expected.  (The BNF has always shown this correctly.)
For example, the actual generic parameters themselves are types, not classes.
Thus the following declaration is an error:

var
n: Array <Stack> – – ERROR!

The declaration should read

var
n: Array <Stack <Integer>>

The same is true for a supertype of a class, e.g.

class PersonList is List <Person> ...
and for type specifications in the is expression (see section 10.3).

The only place where class names, rather than a type, are specified is in the
uses clause of a class.

17.1.2 Operations on Formal Generic Types

Since the dynamic type (the real type at runtime) of an object held in a variable
declared of a formal generic type is not known, no special operation can be
allowed on that object.

Consider:

class List <ELEM_TYPE> is
. . .
var

head : ELEM_TYPE
. . .

end class
At compile time of class List the dynamic type of head cannot be known.
Only operations that are allowed on all objects of any class are allowed on
variables of this type.  These operations are listed in section 3.2.  They are
assignment and equality check (:=, =, <>).
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17 .2 Constrained Genericity

The generic type in generic classes can be constrained.

Example:

class List <T is Comparable> is
. . .

end class

In this example, all actual generic parameters for List in instantiations of this
class have to be of a subclass of Comparable (or of class Comparable itself).

As a result of this, operations defined for Comparable can be used within the
class List on variables declared of type T.

18. Concepts not included in Blue

This section discusses some concepts included in some other modern object-
oriented languages that are not included in Blue.

These concepts are not explained in detail.  The discussion rather focuses on
their relationship to Blue and explains the motivation for their exclusion from
the Blue specification.

18 .1 Multiple Inheritance

While being a valuable concept for serious production languages, multiple
inheritance is considered not important on the beginners' level.  It is not a
concept we want to teach in the first year, and its introduction into the
language would have raised a series of related problems that would have
considerably complicated the language and its implementation (such as
repeated inheritance, solving of name clashes, etc.)

18 .2 Routine Parameters

Passing routines as parameters is, while sometimes nice for elegant
algorithms, not compatible with object-oriented programming.  It assumes
that pieces of code have an existence of their own, independent from classes.  

In a pure object-oriented language code does only exist as part of a class.
Passing a routine can be achieved (with a bit of overhead) by defining a class
with that routine and passing an object of that class.  Also, often constrained
genericity offers an alternative solution to problems that can be solved by
passing routines.
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18 .3 User Defined Infix Operators

User defined infix operators serve only for convenience in writing – they add
no functional value.  More importantly, they can be misused and can easily
lead to code that is more confusing and less readable than code written
without them. Reading and correctness is more important than writing. While
there are a few (frequently mentioned) examples where they can sensibly be
used, there seem to be many more where their use is tempting but confusing.

18 .4 Function Overloading

In Blue, function overloading is included only for the predefined arithmetic
operators (+, -, *, /), which are applicable to both Real and Integer numbers.

User defined overloading is not allowed.  

The argument is similar as for user defined infix operators: while there are
some nice applications, the gain through the use of function overloading
seems to be too small and infrequent to make up for the added complexity and
potential source of confusion and misunderstanding.

18 .5 Union Type

A union type is not needed since similar constructs can be expressed with
inheritance and supertypes.

18 .6 Explicit Blocks

Explicit (user defined) blocks are not needed since in an object-oriented
language functions are expected to be relatively short.  Explicit blocks serve
mainly as scope restrictions for variables and should be superfluous in that
case.
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Appendix A: EBNF

class-decl ::= class identifier [ "<" generics_list  ">"] is
class-definition

class-definition ::= Enumeration enum-class-decl
| [ class_type ] general-class-decl

enum-class-decl ::= class-comment
manifest ident-list

end class

general-class-decl ::= class-comment
uses [ ident-list  ]
[ internal

[ const const-decls ]
[ var var-decls ]
[ routines routine-decls ]

interface
[ creation [ "(" parameter-list  ")" ] is

routine-impl ]
[ routines routine-decls ]

[ invariant  condition ]
end class

generics-list ::= generics-decl { " ," generics-decl }
generics-decl ::= formal-generic-param [ is class-type ]
formal-generic-param ::= identifier

const-decls ::= const-decl { const-decl }
const-decl ::= ident-list  ":" type  initialisation

var-decls ::= var-decl { var-decl }
var-decl ::= ident-list  ":" type [ initilisation ]

ident-list ::= identifier {" ," identifier }
initilisation ::= ":=" expression



Blue Specification, Version 1.0, 24.7.98

58

type ::= class-type
| formal-generic-param

class-type ::= identifier [ "<" actual-generics-list  ">" ]
actual-generics-list ::= type { " ," type }

routine-decls ::= routine-decl { routine-decl }
routine-decl ::= identifier [ "(" parameter-list  ")" ]

[ "->" "(" parameter-list   ")"] is
routine-impl

parameter-list ::= param-decl {" ," param-decl }
param-decl ::= identifier ":" type

routine-impl ::= deferred routine-spec
| builtin routine-spec
| [ redefined ] routine-body

routine-body ::= routine-comment
[ pre condition ]
[ const const-decls ]
[ var var-decls ]
do

statement-list
[ post condition ]
end identifier

routine-spec ::= routine-comment
[ pre condition ]
[ post condition ]
end identifier

statement ::= assignment
| assignment-attempt
| procedure-call
| return
| assertion
| conditional
| selection
| loop

assignment ::= indexed-ident-list ":=" expression-list

assignment-attempt ::= indexed-ident-list "?=" expression-list
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indexed-ident-list ::= indexed-ident {" ," indexed-ident }
expression-list ::= expression {" ," expression }

procedure-call ::= call-chain

return ::= return

assertion ::= assert  "(" condition ")"

conditional ::= if  condition then
statement-list

{ elseif expression then
statement-list }

[ else
statement-list ]

end if

condition ::= boolean-expression
statement-list ::= { statement }

selection ::= case expression of
{ set_expr ":" statement-list }
[ else statement-list ]

end case

loop ::= loop
statement-list

exit on condition
statement-list

{ exit on condition
statement-list  }

end loop
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boolean-expression ::= expression

expression ::= function-call
| operator-expression
| reference-equality
| type-equality
| in
| create
| old
| this

function-call ::= call-chain

call-chain ::= [ super "!" ] unqualified-call { " ." unqualified-call  }
unqualified-call ::= identifier [ "(" expression-list  ")" ]

operator-expression ::= . . .
| expression "=>" expression
| entity

reference-equality ::= expression comparison expression
comparison ::= "=" | "<>"

type-equality ::= expression is type

in ::= expression in set_expr
set_expr ::= "{" [ set_elem { " ," set_elem } ] " }"
set_elem ::= expression | subrange
subrange ::= expression ".." expression
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create ::= general-create | array-create
general-create ::= create class-ident [ "(" expression-list  ")" ]
array-create ::= "[" expression { " ," expression } " ]"

old ::= old expression

entity ::= indexed-ident
| manifest-constant

indexed-ident ::= identifier { " [" expression "]" }

manifest-constant ::= integer-constant
| real-constant
| boolean-constant
| string-constant
| enum-constant

enum-constant ::= identifier
| qualified-ident

qualified-ident ::= class-ident "!" identifier
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Appendix B: Complete List of Aliases

alias                               original                                                                 applicable to
n + m n.add (m) Integer, Real
n – m n.sub (m) Integer, Real
– n n.neg Integer, Real
n * m n.mult (m) Integer, Real
i1 div i2 i1.div (i2) Integer
n mod m n.mod (m) Integer
r1 / r2 r1.div (r2) Real
n ^ m n.power (m) Integer, Real

a < b a.greater (b) Integer, Real, String
a > b a.less (b) Integer, Real, String
a <= b a.greaterEq (b) Integer, Real, String
a >= b a.lessEq (b) Integer, Real, String

not a a.invert Boolean
a or b a.or (b) Boolean
a and b a.and (b) Boolean

s[i] s.substring (i,1) String

a[i] a.getElem (i) Array*
a[i] := ... a.putElem (i, ...) Array*

str (a, b, ...) a.toString.concat (b.toString.concat (...))any type
print (a, b, ...) output.write ( str (a, b, ...) ) any type

* context sensitive
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Appendix C: Implementation-Dependent Definitions

This Appendix lists all characteristics of Blue that are explicitly allowed to be
different in different implementations.  Blue programs should not rely on
specific definitions for these features.

The implementation dependent features are

• The values of MAXINT and MININT.
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Appendix D: Interfaces of Predefined Classes

D . 1 Integer

class interface Integer is

====================================================
== Author:  Michael Kölling
== Version: 1.0
== Date:    9 October 1996
== Short:   Blue standard Integer class
==
==  "Integer" is a standard class of the Blue language.  It is used to store
==  integer numbers.  "Integer" is predefined in Blue and thus does not
==  have to be imported (i.e. explicitly listed in the "uses" clause).  It
==  is automatically known in all classes.
==
==  User defined classes cannot inherit from "Integer".
==
====================================================

routines

neg -> (result: Integer) is
== Return the negative value of this number.
== Alias:  – (prefix) (e.g. –4)

add (other: Integer) -> (sum: Integer) is
== Return the sum of this number and the number other.
== Alias:   + other (e.g. 3 + 4)

sub (other: Integer) -> (diff: Integer) is
== Return the difference of this number and the number other.
== Alias:   – other (e.g. 3 – 4)

mult  (other: Integer) -> (prod: Integer) is
== Return the product of this number and the number other.
== Alias:  * other (e.g. 3 * 4)

div (other: Integer) -> (quot: Integer) is
== Return the integer part of the quotient of this number and other.
== Alias:  div other (e.g. 3 div 4)

mod (other: Integer) -> (rem: Integer) is
== Return the remainder of the integer division of this number and
== other.
== Alias:  mod other (e.g. 3 mod 4)

pow (exp: Integer) -> (result: Integer) is
== Return this number raised to the power specified by exp.
== Alias:  ^ other (e.g. 3 ^ 4)
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greater (other: Integer) -> (result: Boolean) is
== Return true if this number is greater than other, otherwise false.
== Alias:  > other (e.g. 3 > 4)

greaterEq (other: Integer) -> (result: Boolean) is
== Return true if this number is greater or equal than other, otherwise
==false.
== Alias:  >= other (e.g. 3 >= 4)

less (other: Integer) -> (result: Boolean) is
== Return true if this number is less than other, otherwise false.
== Alias:  < other (e.g. 3 < 4)

lessEq (other: Integer) -> (result: Boolean) is
== Return true if this number is less or equal than other, otherwise
== false.
== Alias:  <= other (e.g. 3 <= 4)

toString -> (s: String) is
== Return a string representation of this number.  The standard format
== object (of class OutputFormat) is used to determine details of the
== appearance.
== Alias:  str ()

end class

D . 2 Real

class interface Real is

====================================================
== Author:  Michael Kölling
== Version: 1.0
== Date:    9 October 1996
== Short:   Blue standard Real class
==
==  "Real" is a standard class of the Blue language.  It is used to store
==  floating point numbers.  "Real" is predefined in Blue and thus does not
==  have to be imported (i.e. explicitly listed in the "uses" clause).  It
==  is automatically known in all classes.
==
==  User defined classes cannot inherit from "Real".
==
====================================================

    creation
== Never used explicitly.  "Real" is a manifest class, and all
== real values exist automatically during every execution.
== No further reals can be created at runtime.

  routines

    neg -> (res: Real)
== Negation.  Return the real that represents the value
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== "-this".
== Alias: -
      post
res <> nil

    add (other: Real) -> (res: Real)
== Addition.  Return the real that represents the value
== "this + other".
== Alias: +
      pre
other <> nil
      post
res <> nil

    sub (other: Real) -> (res: Real)
== Subtraction.  Return the real that represents the value
== "this - other".
== Alias: -
      pre
other <> nil
      post
res <> nil

    mult  (other: Real) -> (res: Real)
== Multiplication.  Return the real that represents the value
== "this * other".
== Alias: *
      pre
other <> nil
      post
res <> nil

    divide (other: Real) -> (res: Real)
== Division.  Return the real that represents the value
== "this / other".
== Alias: /
      pre
other <> nil  and
other <> 0.0
      post
res <> nil

    power (n: Real) -> (res: Real)
== Power.  Return the real that is represents the value
== "this ^ n" ("this to the power of n").
== Alias: ^
      pre
n <> nil
      post
res <> nil

    sqrt -> (res: Real)
== Square root.  Return the real that is represents the value
== "sqrt (this)" ("square root of this").
      post
res <> nil
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    trunc  -> (res: Integer)
== Truncate to integer.  Return the integer that is represents the
== whole number part of this number (i.e. "this" is rounded towards
== zero).
      post
res <> nil

    round -> (res: Integer)
== Round to integer.  Return the integer that is nearest to the
== value of "this".  (Fractions of value 0.5 or greater will be
== rounded  away from zero, fractions less than 0.5 will be rounded
== towards zero.)
      post
res <> nil

    greater (other: Real) -> (res: Boolean)
== Greater than.  Return true if the value of this real is greater
== than the value of "other".  Return false otherwise.
== Alias: >
      pre
other <> nil
      post
res <> nil

    greaterEq (other: Real) -> (res: Boolean)
== Greater or equal.  Return true if the value of this real is
== greater than or equal to the value of "other".  Return false
== otherwise.
== Alias: >=
      pre
other <> nil
      post
res <> nil

    less (other: Real) -> (res: Boolean)
== Less than.  Return true if the value of this real is less
== than the value of "other".  Return false otherwise.
== Alias: <
      pre
other <> nil
      post
res <> nil

    lessEq (other: Real) -> (res: Boolean)
== Less or equal.  Return true if the value of this real is
== less than or equal to the value of "other".  Return false
== otherwise.
== Alias: <=
      pre
other <> nil
      post
res <> nil

    toString -> (s: String)
== Conversion to String.  Returns a string with a printable
== representation of this real number.
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== Alias: str ()
      post
s <> nil

end class

D . 3 Boolean

class interface Boolean is

====================================================
== Author:  Michael Kölling
== Version: 1.0
== Date:    8 October 1996
== Short:   Blue standard Boolean class
==
==  "Boolean" is a standard class of the Blue language.  It is used to store
==  truth values ("true" and "false").  "Boolean" is predefined in Blue and
==  thus does not have to be imported (i.e. explicitly listed in the "uses"
==  clause).  It is  automatically known in all classes.
==
==  User defined classes cannot inherit from "Boolean".
==
====================================================

    creation
== Never used explicitly.  "Boolean" is a manifest class, and the
== boolean values exist automatically during every execution.
== No further boolean values can be created at runtime.

  routines

    invert  -> (res: Boolean)
== Negation.  Return "not this", i.e. "false" if this is "true",
== or "true" if this is "false".
== Alias: not
      post
res <> nil

    and (other: Boolean) -> (res: Boolean)
== Logical and.  Return the boolean value "this and other".
== Alias: and
      pre
other <> nil
      post
res <> nil

    or (other: Boolean) -> (res: Boolean)
== Logical or (inclusive).  Return the boolean value
== "this or other".
== Alias: or
      pre
other <> nil
      post
res <> nil
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    toString -> (s: String)
== Conversion to String.  Returns a string with a printable
== representation of this boolean value.  The string returned is
== "true" for true and "false" for false.
== Alias: str ()
      post
s <> nil

end class

D . 4 String

class interface String is

===================================================
== Author:  Michael Kölling
== Version: 1.0
== Date:    24.9.96
== Short:   Blue standard String class
==
==  This class implements the standard String type for Blue.
==  Strings are a sequence of characters.  The first character in a string
==  has the index 1, the last index is equal to length(string).
==
==  Blue does not have a separate character type.  Characters are represented
==  by a string of length 1.
==
===================================================

creation is

== Never used - strings are created by writing string literals
== in double quotes.
== Example: "This is a string"

routines

    length -> (l: Integer) is
== Return the length of the string (number of characters).

    concat (s: String) -> (newstring: String) is
== Return the string which is the concatenation of this string
== and 's'.  This string and 's' remain unchanged.
== Alias: str ()

    substring (start: Integer, len: Integer) -> (s: String) is
== Return the substring from this string which starts at 'start'
== with length 'len'.
== If "len" is nil, the substring from "start" to the end of the
== string is returned.
      pre
        (start >= 1) and (start <= length)
  and
(len <> nil => (start+len <= length+1))
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    find  (s: String, n: Integer) -> (pos: Integer) is
== Return the position of 's' in this string, starting the search at
== 'n'.  'pos' is the index where 's' was found or nil if not found.
      pre
        (s <> nil) and (n >= 1) and (n <= length)

    insert (s: String, pos: Integer) -> (newstring: String) is
== Return a string that is like this string with 's' inserted into this 
== string at position 'pos'.
      pre
        (s <> nil) and (pos >= 1) and (pos <= length)

    delete (start: Integer, cnt: Integer) -> (newstring: String) is
== Return a string that is like this string with 'cnt' characters deleted,
== starting at position 'start'.
== If "cnt" is nil, all characters from "start" to the end of the
== string are deleted.
      pre
(start >= 1) and (cnt >= 0) and (cnt <= length)

    less (s: String) -> (is_less: Boolean) is
== Returns true, if this string is less than 's', else false.
== See class comment (above) for ordering of strings.
 == Alias:  <
     pre
s <> nil

    greater (s: String) -> (is_greater: Boolean) is
== Returns true, if this string is greater than 's', else false.
== See class comment (above) for ordering of strings.
== Alias:  >
      pre
s <> nil

    lessEq (s: String) -> (is_less_eq: Boolean) is
== Returns true, if this string is less or equal to 's', else
== false.
== See class comment (above) for ordering of strings.
== Alias:  <=
      pre
s <> nil

    greaterEq (s: String) -> (is_greater_eq: Boolean) is
== Returns true, if this string is greater or equal to 's', else
== false.
== See class comment (above) for ordering of strings.
== Alias:  >=
      pre
s <> nil

    toString -> (s: String)
== Conversion to String.  This function returns the string itself.
== It is an identity function.  There is usually no need to call
== this function explicitly.  It is provided to make the "str()"
== alias work with all standard classes, including string.
== Alias: str ()
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      post
s <> nil

    toUpper -> (s: String)
== Return a string that is a copy of this string with all lower case
== letters replaced by their upper case equivalent.  Other character are
== unchanged.

    toLower -> (s: String)
== Return a string that is a copy of this string with all upper case
== letters replaced by their lower case equivalent.  Other character are
== unchanged.

    strip  -> (s: String)
== Return a string that is a copy of this string with leadfing and
== trailing whitespace removed.  Whitespace are spaces, TAB
== characters ("\t") and newlines ("\n").

    fill  (fill_char : String, front : Boolean, length : Integer) -> (s: String)
== Return a copy of this string that has characters added to the
== front or back.  'fill_char' is a character that is added to the
== front (if 'front'=true) or back (if 'front'=false) of this string
== until the string has length 'length'.  If the length of the
== initial string is already equal to or greater than length, the
== string remains unchanged.
==
== This function can be used to align string output.  E.g.
==
== print (s.fill (" ", true, 20))
==
== prints the string s right aligned in a field 20 characters wide
      pre
(fill_char.length = 1) and (length >= 0)

    caseEqual (other: String) -> (is_equal: Boolean)
== "caseEqual" is a case-insensitive string equality test.
== It returns true, if this string and "other" are equal except
== for possible differences in the case of letters.

    ord -> (val: Integer)
== Return the ordinal value of the first character of this string.
== The ordinal value of a character is its internal byte
== representation, usually its ASCII (or, more correctly ISO) code.
== If the length of the string is 0, the result is 0.

    hash (limit: Integer) -> (hash_val: Integer)
== Return a hash value for a string.  The value is between 0
== and limit.
      pre
        limit > 0
      post
hash_val >= 0  and hash_val < limit

end class
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D . 5 Array

class interface Array  <ELEM_TYPE> is

====================================================
== Author:  Michael Kölling
== Version: 1.0
== Date:    14 November 1996
== Short:   Blue standard Array class
==
==  "Array" is a Blue standard class that is predefined in the Blue language.
==  Array objects can be used to store a number of objects of the same type.
==  Arrays are mainly a means for implementation of higher level collection
==  classes (such as sets, sequences, lists, etc.) but they can also be used
==  directly in user classes.
==
==  Arrays are best used in situations where the number of elements is known
==  in advance and does not change very often.  Resizing an array can be
==  relatively expensive in terms of both time and space required.  If the
==  number of elements changes regularly dynamically, consider using
== another collection (List, Set, etc.) from the standard collection library.
==
====================================================

    creation (size: Integer)
== Creation an array with 'size' elements.

  routines

    getElem (pos: Integer) -> (elem: ELEM_TYPE)
== Return the element at position 'pos'.
      pre
pos >= 1  and
pos <= size

    putElem (pos: Integer, elem: ELEM_TYPE)
== Assign 'elem' to position 'pos'.
      pre
pos >= 1  and
pos <= size

    init  (val: ELEM_TYPE)
== Set all array elements to 'val'.

    size -> (sz: Integer)
== Return the current size of the array.
      post
sz >= 0

    setSize (sz: Integer)
== Set the size of the array to 'sz'.  If the current size is larger
== the elements at positions greater than 'sz' will be lost.  If the
== current size is smaller, the elements at the new positions will
== be undefined.
      pre
sz >= 0
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      post
size = sz

end class

D . 6 Enumeration

class interface Enumeration is

===================================================
== Author:  Michael Kölling
== Version: 1.0
== Date:    30.11.96
== Short:   Abstract superclass for enumerations.
==
==  This class serves as a superclass for all enumeration classes.  It is
==  abstract — no objects can be created of this class directly.
==
===================================================

routines

pred -> (previous: SelfType) is
== Return the predecessor in this enumeration type.  If there is no
== predecessor, return nil.

succ -> (next: SelfType) is
== Return the successor in this enumeration type.  If there is no
== successor, return nil.

ord -> (position: Integer) is
== Return the ordinal position of this element in the enumeration list.
== The first element has the ordinal 1, the next is 2, and so on.

toString -> (s: String) is
== Conversion to String.  Returns the name of this enumeration value
== as a string
== Alias: str ()

end class

Note that "SelfType" is no legal type in Blue.  A Blue class like this cannot normally be
written.  The meaning of the word "SelfType" in the routine interfaces above indicates that
for every concrete subclass of Enumeration that routine returns the type of the subclass.
For an Enumeration "Colour", for example, the routine pred returns a result of type Colour.

D . 7 TextTerminal

class interface TextTerminal  is

====================================================
== Author:   Michael Kölling
== Version:  1.1
== Date: December 1997
== Short:    Standard text terminal for the Blue environment
==
==  The TextTerminal provides a simple standard terminal for text I/O.
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==  Input and output is buffered by default.  The output buffer is flushed
==  at the end of each line (when a "\n" is written) and on a call of an
==  input routine.  If single characters have to be written, buffering
==  can be switched off (see below).
====================================================

creation
== Create the TextTerminal

routines

inherited from IO_Channel:

write  (s: String) is redefined
== Write 's' to the terminal

readstr -> (s: String) is redefined
== Read a string from the terminal. Reads characters until
== a line break ("\n") is read. The resulting string does
== not include the line break character.

readChar -> (s: String) is redefined
== Read the next character from the terminal. Every character
== (including line break characters) are returned as entered
== The line break character is returned as "\n".
== The input is buffered by default. (This means that editing the
== input line during input is possible for the user, and the program
== will return from this function only after a whole line was
== entered.) For unbuffered input, see getChar and askChar
== below.
==
== When expecting single character input, note that "readChar" does
== not discard the NewLine character.  If the input is, for instance,
== "A<Enter>", then "readChar" will return the "A", while the <Enter>
== remains in the input queue (as a NewLine character).  Thus the next
== input operation will immediately read a NewLine.  To deal with this
== situation, use readStr instead or call "endLine" after "readChar".

readInt  -> (i: Integer) is redefined
== Read an integer from the terminal. Skips white space (spaces,
== tabs and newlines) before the integer. Returns "nil" if the next
== non-white characters do not represent a number.
== Numbers are written with an optional - or + sign and digits.

readReal -> (r: Real) is redefined
== Read a real number from the terminal. Skips white space (spaces,
== tabs and newlines) before the number.  Returns "nil" if the next
== non-white characters do not represent a real number.
== Numbers are written with an optional - or + sign, digits and a
== decimal point.

endLine is redefined
== Read and discard all characters up to (and including) the next
== NewLine character.

atEnd -> (isAtEnd: Boolean)
== Return true if the end of input has been reached. While input
== from a terminal does not have a natural end, end end-of-input
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== condition can be generated by pressing CTRL-D.
== If the next character entered is a CTRL-D, 'atEnd' removes the
== character from the input and returns true. If it is any other
== character, 'atEnd' leaves it pending in the input queue and
== returns false.

new routines:

getChar -> (s: String) is redefined
== Get the next character from the terminal (unbuffered).
== This function is similar to "readChar" (see above), but the
== input is not buffered. The function returns as soon as a
== character is entered - no line editing is provided.

askChar -> (s: String)
== Check whether there is a character to be read from the terminal.
== If so, read it.
== This function is similar to "getChar" (see above), but the
== function always returns immediately. If a character has been
== entered, that character is returned, otherwise "nil" is returned.

show
== Show the terminal window.
== This routine opens the window if it was not open, de-iconifies
== the window if it was iconified and brings it to the top of the
== window stack.

hide
== Hide the terminal window. The window is closed.

clear
== Clear the terminal window and set the cursor to 0,0 (the upper
== left corner)

width  -> (columns: Integer)
== Return the current width of the terminal window in characters.
== (Note that the terminal currently does not support resizing.)

height -> (lines: Integer)
== Return the current height of the terminal window in text lines.
== (Note that the terminal currently does not support resizing.)

cursorTo (x: Integer, y: Integer)
== Set the cursor to position (x,y). The legal ranges for
== x and y are:
== x: 0 .. width-1
== y: 0 .. heigth-1
== If x or y is outside its range, it is set to the nearest
== legal value.
== This routine works only after the terminal window has been
== exposed at least once (otherwise the terminal size is not known).
pre

x <> nil  and  y <> nil

cursorOn
== Switch the screen cursor on. (This is the default.)
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cursorOff
== Switch the screen cursor off.

buffered (buf_on: Boolean)
== Set the output buffering mode. If buffering is on (the default)
== then the output line is buffered. The buffer is flushed when
== a newline is written or when an input routine is called.
== If output should be visible immediately without a newline, switch
== buffering off. Output without buffering is slower for most
== purposes.
pre

buf_on <> nil

inputEcho (echo : Boolean)
== Switch input echo on/off.  The default is "on" (echo=true).
== When echo is on, characters appear on the screen as they are
== typed.  When echo is off, characters typed on the keyboard do
== not appear on screen.
pre

echo <> nil

end class

D . 8 OutputFormat

class interface OutputFormat  is

====================================================
== Author: Michael Kölling
== Version: 1.0
== Date:    1.10.1997
== Short:   Class defining output formatting options for terminal output.
==
==  The OutputFormat class defines some output formatting options for
==  numbers and other data.  The Blue system automatically creates an object
==  of this class at startup.  This object is accessible from all Blue classes
==  through the predefined constant "format".
==
==  The following classes use the format object to format their output:
==  Integer, Real, Boolean, Enumeration
==  User defined classes may use this object for the same purpose if they
==  wish.  The class String does not use the format object (see routine
==  "fill" in class String for formatting string output).
==
==  All the classes above use the field width and alignment setting from this
==  class.  The class Real uses, in addition to this, the 'scientific' and
==  rounding settings.
==
====================================================

creation
== Create format object.  No parameters needed.

routines
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setWidth (n : Integer)
== Set field width for output.  Default is 0.  If the string
== representation of a value consists of more characters than
== the field width, the width is ignored.
==
== Used by Integer, Real, Boolean and Enumeration.
==
== Note that the class String does not use the format object for
== output. String output is unaffected by the field width.  To
== align strings, use the 'fill' function in class String.
pre

n >= 0

alignRight (right : Boolean)
== Specify alignment of output in the field defined by 'setWidth'.
== The default is 'left' (spaces will be added to the right of the
== output as appropriate).  If 'right' is set to true, output will
== be right-aligned within the specified field width.
==
== Used by Integer, Real, Boolean and Enumeration.
pre

right <> nil

scientific (useScientific : Boolean)
== If useScientific is true, scientific notation is used for output
== of real numbers (e.g. 1.23456e+02).  Otherwise fixed point
== notation is used (e.g. 123.456).  The default is useScientific=false.
==
== Used by Real.
pre

useScientific <> nil

roundTo (n : Integer)
== Round output of fixed point real numbers to n digits after the
== decimal point.  Default is 6.  Used by Real.
pre

n >= 0

getWidth -> (n : Integer)
== Return the current field width.

isRightAligned -> (right : Boolean)
== True if right alignment is currently on.

isScientific -> (scientific : Boolean)
== True if scientific notation is currently on.

getRound -> (n : Integer)
== Return the current round value.

reset
== Reset all values to their defaults

end class
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