Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

Blue

Language Specification

Blue Version 1.0
Manual Revision 1.1

Michael Kolling
John Rosenberg

24.7.98

Copyright © 1997 M. Kdlling, J. Rosenberg

Monash University, Department of Computer Science and Software
Engineering, Technical Report TR97-13

https://core.ac.uk/display/63346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ww w

w
wwPwwwwwPwwdr

w

B
oo

a1

»
WN P)

P ©OO0oO © ® 0 NNN N
SL .

INTRODU CTION o e e e e e e s 1

BT AT N S =] 1
THE BLUE ENVIRONMENT L.ttt tttet ettt et e et e e e ettt ee s sa et e s s s et ee s sanaaeeeesrnraees 1
ABOUT THIS D OCUMENT . .t ettt ettt ettt ettt et e ettt e ettt e e s s s e e e s saaaeeeessanreeeees 1
BLUE PROGRAMMINGt tttitttiiitt ettt et et ettt et ettt e e e et et e e s e e e e s s e aaeeessrnaaeens 2
AL A S E S 2
CLASSES AND THEIR OPERATIONS ... e 3
MANIFEST VS DYNAMIC CLAS S S, i ttttttt ettt ettt et e et ettt e et aaaee e e rniraeees 4
CENE R AL OPE R AT ON S . .t sttt ettt ettt sttt ettt ettt e et et e e st e e e e s eaateeeesrnreeeens 4
2.1 TS o] 0= LA G 4
2.2 COMIPAIISON (S,) ettt et 5
BRE D EFINE D TY PES. ..ttt ettt ettt e et e e e et ettt e ettt ettt 5
3.1 11T o = TP TPPRTPN 6
3.2 R . . e 6
3.3 BOOIBANt 7
3.4 5] 1 T T 8
3.5 AT Y e 10
USE R D EFINED TY PES. . ..ttt ittt ettt ettt ettt e ettt ettt ettt raiaes 11
4.1 GENETAI ClASSES. ... et ettt et et aaaas 11
4.2 ENUMIBIAtION ClaSSES. .. vttt e e e aaeanes 13
OPERATORPRECEDENCEttt ettt ettt et ettt ettt e et et e e st re e s saaraeeeeeranes 14
LD ENT IR I E R S oot e e e e e e e e 15
THE USES CLAUSE ... e e e e e 15
VAR AB LE S .. 16
CON S T AN T S i e e 19
I A I 19
INAMED CON S T AN T S . .ttt ittt ittt ettt ettt et ettt e e s e et e et s et e e s e s et e e e s e aeaeeesernnraeees 19
S o OO NS 7N L 1 20
ROUTINES AND PARAMETERS ... e 21
BUILTIN ROUTINES . ..ttt ittt ittt ettt ettt e e e ettt e et ettt e et et e e e e e ra e e eaneeaanees 23
ST AT EMEN T S . e e e e e 24
ASSIGNMENT. . . ettt et et 24
AS S G NMEN T A T T EM P T . tttttt ettt ettt ettt ettt et e e e e e s e ettt e st s s e eesseanreeeesrnnns 25
RO CEDURECALL ..t vtttttt ettt ettt ettt ettt et e e e e et et e et e e e e e et e e st e e s e e s ae e e enreesareeeanes 26
FETURN . .ottt 26
A SN =t 1] 27
EX P RE S S ION S o 27
L 8N L 1 1N 28
B AL TY oot 28
L = 1 A N I 29
N e, 29
REATEE . .ttt e 30
1T 30
CONTROL STRUCTURES ... i e 31
CONDITIONAL : THE IF ST AT EMENT .ttt ittt ettt e e et e s e et ee e s ranaeeees 31
FELECTION: THE CASE STATEMENT Lttt ittt ettt ettt ettt e et e a ettt e st e e aaeeraneeannes 32
[TERATION: THE LOOP ST AT EMENT .ttt ettt ee et e e et e et ettt e st e e e e rae e eaneeennees 33

12. PRE/POST CONDITIONS ... e e 34

13. CLASS INVARIAN T S e e 36
14. COMMEN T S L e e e e e 36
14.1 INTERFACECOMMENTS. ...t itt ettt ettt et e e et e e e e e e e e e et et et n e et e e e e e e e e n e e aeneneaaenn 37
14.2 IMPLEMENTATION COMMENT S, ..t ttit ettt ettt et et et v e e et e et e et e e e e et e te e e e eneaeenes 38
15. I 39
15.1 TANDARD O ..ttt 39
15.1.1 Standard OULPULeeeieie e 39
15.1.2 (@ 101 018 0 . =111 o P 40
15.1.3 StaNdard INPUL ... e 41
15.1.4 The TextTerminal Class..o v aenes 43
15.2 T 43
16. INHERIT AN CE . ot 48
16.1 DEFINING SUB CLAS SES . ..ttt ittt ettt e et et e e et et ettt et e e r e e ae e aenes 48
16.2 L 1N 49
16.3 (ALLING SUPERCLASTFUNCTIONS. ...t tttett ettt et et e e e te e e s et e e ee e ae e e s aenenenaenanenens 49
16.4 DEFERREDROUTINES.ttt ittt ettt et e et et e et et e e et et et e et e e eae e te e e rae e nneeaennean 51
17. GENE RIC T Y it e e e e 51
17.1 LNCONSTRAINEDGENERICITY Lttt ettt et et et ettt e st e e e et et e e e ae et et e e e e e e aeenes 52
17.1.1 ClaSSES ANU T PO ettt ettt 53
17.1.2 Operations 0N FOrmal GENEIIC TYPES . .viuit ittt aas 54
17.2 CONSTRAINED GENERICITY ..ttt etet ettt e e et e e e et e e r e et e e e e e e e e e e e eneaaenanens 55
18. CONCEPTS NOT INCLUDED IN BLUE ... i 55
18.1 T I o A L 55
18.2 ROUTINE PARAMETERS. . ..ttt ittt ettt e e et et e et et et r e et e et e et e e e e e neenes 55
18.3 USERDEFINED INFIX OPERATORS ..ttt it sttt et et et s et e e e et st e et et e raeaae e eanes 56
18.4 FUNCTION OVERLOADING. . .1ttt ettt sttt et ettt et et et e e et e e st et et e e et e et et et e eaees 56
18.5 U] 1] N N0 o PP 56
18.6 o S I L I = 1 T 56
AP PENDIX A EBNE L 57
APPENDIX B: COMPLETE LIST OF ALIASES ...t 63
APPENDIX C: IMPLEMENTATION-DEPENDENT DEFINITIONS 64
APPENDIX D: INTERFACES OF PREDEFINED CLASSESccciiiiiiiiiiinn... 65
D.1 INTEGER .. ettt ettt et e et ettt et et 65
D.2 Y PN 66
D.3 20 87 PP 69
D.4 S I 70
D.5 AARRAY ..ttt aa 73
D.6 EINUMERATION . Lttt ettt ettt et et e et et et et et et et et et et e e et et et r et r e e e e e 74
D.7 TEXTTERMINAL .ottt ettt et ettt et et et et e e et e e e e et et et et et et et et rt e e et e e eaenes 74
D.8 (O I U 1 0 7
IN D E X o e e e e 79

Blue Specification, Version 1.0, 24.7.98

1. Introduction

1.1 What is Blue?
Blue is an object-oriented programming language especially designed for
teaching. Its emphasis is on conceptual clarity and consistanitahility for
first year teaching and support for “good” software design.

1.2 The Blue Environment
Blue is intended to based in arintegrated programmingnvironment. The
environment itself will not be described in this document, bunhortant for
the overall character of Blugrogramming. In order tobtain a complete
picture of programming iBlue, the reader is encouragedso to readThe
Blue Programming Environment”.

1.3 About this Document

This document describes the Blue language. The Blue programming language
is part of the Blue programming system. The language and sothe wifost
important standard libraries (such as those for stari@jdwvill be described

in this document. However, most standard libraries will not be inclbdegl

but will be described in a separate document “The Blue Libraries”.

It is assumed that the readerfasiliar with a Pascal- or C-like language and
with object-orientecconcepts. Thislocumentdoes nofgive an introduction
to object-oriented programming in general. It is assutihaidthemost basic
ideas of object-orientation are known.

At some points this document also includbsughts and reasoning beyond
pure description ofhe language. Theseomments typically includeeasons

for specific decisions made during language design. They may be skipped by
readers interested only the language, or read by somean&rested in the
design process itself.

Commentsabout reasongor specific design decisioree set in greyeq
boxeslike thisand may be skipped without losimgformation about the
Blue language.

Descriptions of language constructs alwayglude a formal syntax
description in EBNF. Acompletesyntax description iteEBNF can befound
in Appendix A.

Blue Specification, Version 1.0, 24.7.98

1.4

Blue Programming

Blue does not include a conceptgbgrams. All programming is performed
using classes. All code is part otlass. The classical idea of program is
represented in Blue as a collection désses(called aproject in Blue).
Running a program is done layeating an instance of @ass,and calling
interface routines of that class.

A simulation of a classical “program” (a single entry point executable) can
easily be achieved by having one designated top-level olyjébt one
interface routinevhich in turn creates anzhlls all other objects involved in

the execution of therogram. (This ighe standard execution model in most
existing object-oriented languages.) It is, however, only a small subset of the
possible ways to execute code in Blue.

In the Blue environmengll classes in the project may be usedhteractively
create objects of that class albthose objects can immediately be usedaib
their interfaceroutines (that is: withouthe necessity of writing test program
shells). Thischanges programming in at ledsto ways: it allows very
flexible (incremental) testing aridcrementalkoftware developmentAll low
level classesmay immediately beised andestedfor correctbehaviour. It
also allowsthe construction oloftware withmore than one entrpoint,
avoiding commorawkward dispatcimechanisms envoked by comméime
options.

Classesaretypes. So allprogramming comesiown tothe definition of
types. This is why type declarations are the first major part otittdement:
They specify the overall structure of Blue programs.

Aliases

All types in Blueare classes anaill data areobjects. Thisgeneral rule
simplifies the languagdesign. Thereare, however, aumber ofdatatypes
for which it is convenient touse syntaxother than the Blue objedall to
perform one of their operations. The reason for this can be:

» Another syntax is commonlysed and igherefore more intuitivge.g.
3 + 5 for integer addition, rather thaadd (5)).

» Anothersyntax simplifiesuse ofelementaryconstructs which should be
used by beginners befotke underlying language concepts need to be
understood, e.g.

print (“result=", 42)
instead of
output.write (“result=".concat (42.toString))

» Another syntax is more convenient (usually because ishsrter, see

above).

L1t is not strictly true that classemdtypesarethe same, but most of the tineach class
represents exactly one type. This is not true when it comes to generic classes (which do not
represent dype, butrather atype patter). The differencewill be explained in detail in
section 17. For most of this document, howetldgg simplification is not a problem and
makes expressing things a bit easier.

Blue Specification, Version 1.0, 24.7.98

For these reasons, several operationtherpredefinedlassesare supported

by specialsyntax. Thisspecialsyntax is allowed in addition tihe standard
object-callsyntax generallyavailablefor all classes,and is referred to as
aliases

The primereason forthe introduction of aliases is to make the reading and
writing of simple programs performingelementarytasks easy. Aliases
provide aneasy, intuitive syntax for the most common operations and
considerably increase the ease with which Blue can be used by beginners.

Aliases will be learnt as statements expressions irtheir own right by
beginners, making it unnecessary to understdinghderlying concepts right
from the start. The expert programmer or compiler implementuswever,
will appreciate the unifying concept for all data types.

Note that aliases are @ure syntactic addition whichdoes not add any
functionality to thelanguage. They do not affect the semantics or the
theoretical language description of Blgalthough they are part of the
language), andire purely intended to increase readability and intuitivity of
statements.

Some common aliases and their resolutions are:

alias resolution

3+6 3.add (6)

bl or b2 bl.or (b2)

a[i] a.getElem (i)

str (num) num.toString

str (a, b, ...) a.toString.concat (b.toString.concat (...))
print (a, b) output.write (str (a.b))

The list of existing aliases ishort andfixed — programmers cannot define
additional aliases.

Where aliases exigor a construcexplained in thisdocument,they will be
mentioned when that construct is introduced. A full list of aliases is given in
Appendix B.

Classes and their Operations

All types derive from classes. Classes for the most commonlydagatypes
are predefined in thianguage. The languageffers customised syntax for
these classes.

The predefined classes are:

Integer

Real

Boolean

String

Array <T> (generic)

Two differentkinds of classe®xist: manifest classes awmignamicclasses.
The following sections will introduce manifest and dynaoiassesdescribe
operations that are available on all classes, and then list the predidisses
and their operations. Finally, user defined classes are described.

Blue Specification, Version 1.0, 24.7.98

3.1

3.2

3.2.1

Manifest vs. Dynamic Classes

Manifest classesre classes wherall objects areknown statically. The
objects pre-exist with the definition of the class and do not have to be created.
The manifestclassesare Integer, Real, Boolean, String arithumeration
classes. The first four of those are predefined and all vahedsmiown to the

Blue compiler. Enumeration classes are user defifdgk definition ofsuch

a class consists of aanumeration ofall existing objects ofthat class,
simultaneously creating a named reference to each object.

The literal '2', for instance, is a reference to the unigi@ger objectvith the
value2. The code segment

a=2

b:=2
assigns referencés the same objetd a and b.Only one integer object with
the value? exists. This does not create two distinct objects.

All literals are constant references to objects of manifest classes.

Dynamic classeareclasses wheraather than listingall objects, acreation
methodfor objects is specifiedynamicclassesarearrays and usetefined
general classes.

With the definition of a dynamic class, no object is created automatically. The
user has to execute an explmieateoperation to create objects of these types.

Care must be taken not tonfuse this with pointer and non-pointer types in
other languages. In Blua]l variables hold references to objects An
integer variableholds, when assigned a valube referenceto that integer
object. Thus the object model is simple: only references to olegjeists The
difference between manifest and dynamic objects affectstbelyime and
method of creation of the objects of ttlass,not the mechanism bwhich
they are referenced.

General Operations

This section describes operation that are common to all classes.
The general operations are:

= assignment
= comparison (equality)
<> comparison (inequality)

Assignment (:=)

Theassignmen(:=) assigns an object reference to a variable (variablesys
store object references). The object itself is not copied.
Example:

Consider variables a and b whiae declared to be asfome usedefined
class:

Blue Specification, Version 1.0, 24.7.98

var
a: Myclass
b: Myclass

Then the code segment
a := create Myclass

b:=a
causesa and b to reference thsameobject. Changes ta will be visible
usingb.
3.2.2 Comparison (=, <>)

The comparison compares two valuegvariables or expressiomesults).
Values are always object references.
Example:

var
a: myclass
b: myclass
result: Boolean

.ré'sult =b=a

resultwill be true ifa andb reference the same object. It wibt be true, ifa
andb reference different objects in identical states.

a <> b is true, ik andb do not reference the same object.

3.3 Predefined Types

The predefinedypes andtheir operations are afllows. Many of the
operations mentioned here akases. The full list of operations antheir
aliases are given in the individual sections for each type below.

Integer Real Boolean String Array
n+m X+y notb s.length aff]
n-m X-y aandb str (s1, s2) a.size
-n -X aorb s.substring rf,m) a.setSizer)
n*m X*y s[n] a.init (v)
ndivm xly sl.find (s2n)
n modm
n*m XNy

sqrti)
n>m X>y sl <s2
n<m X<y sl >s2
n>=m X>=y sl <=5s2
n<=m X<=y sl >=5s2
str (n) str) str (b)

Integer, Real Boolean andString are manifestlasses. Array is a dynamic
class.

Blue Specification, Version 1.0, 24.7.98

3.3.1

3.3.2

The predefinedypesare now discussed irmore detail. For afull class
interface of the predefined types see Appendix D.
Integer

The class Integer stores whole numbers. Integer is a manifest class.
The operations defined on integers are:

alias operation return type meaning

n+m nadd () Integer addition

n-m nsub () Integer subtraction

-n n.neg Integer negation

n*m nmult (m) Integer multiplication

n divm ndiv (m) Integer Integer division
n modm nmod M) Integer remainder
n"m npow (m) Integer power

n>m ngreater i) Boolean greater than
n<m nless (n) Boolean less than
n>=m ngreaterEqr) Boolean greater or equal
n<=m nlesskq in) Boolean less or equal
str () n.toString String conversion to String

In addition to these operations, integer expressions can always be used where
real expressions are expected. An implicit conversion to Real takes place in
that case.

Integer literals are written as usual:

42
-99

Constants are predefined for the smallest and laayadtble integer value in
every specific implementation:

MAXINT largest representable integer
MININT smallest representable integer

The actual value of MAXINT and MININT are implementation dependent.

Real

The class Real stores floating point numbers. Real is a manifest class.
The operations defined on reals are:

Blue Specification, Version 1.0, 24.7.98

alias operation return type meaning
X+y x.add §) Real addition
X-y x.sub §) Real subtraction
-X x.neg Real negation
X*y x.mult (y) Real multiplication
xly x.div (y) Real division
XNy X.pow () Real power
x.sqrt Real square root
x.trunc Integer truncation to integer
x.round Integer round to closest Integer
X>y x.greatery) Boolean greater than
X<y x.less {) Boolean less than
X>=y x.greaterEqy) Boolean greater or equal
X <=y x.lessgqy) Boolean less or equal
str) x.toString String conversion to String
Real literals are written as:
2.0
0.111
-0.001

Note that an implicitconversion takeplace when aninteger is provided
where areal value isexpected. Thus it ifegal towrite 2 instead oR.0,
where the value of 2 will be implicitly converted to the real value 2.0.

3.3.3 Boolean

Variables of class Boolean store boolean va(uestrue or fals€). Boolean
is a manifest class.

The operations defined on booleans are:

alias operation return type meaning

notb binvert Boolean negation

aandb a.and p) Boolean logical and

aorb a.or (b) Boolean logical or

str (0) b.toString String conversion to String
The boolean literals are:

true

false

Note that, since "true" and "false" are keywords, tiedcase okeywords is
insignificant, variation of case such as True or TRUE are also recognised.

Partial Evaluation

Booleanexpressionare incrementallyvaluated. Evaluatiostarts from the
left (subject to operator precederrcdes) andstops as soon dke result can
be determined.

Examples:
Consider the expression
aandb

If a evaluates tdalse the evaluation of th@xpressionwill terminate and
return the resuflalse b is only evaluated i evaluates ttrue.

Likewise, in the expression

Blue Specification, Version 1.0, 24.7.98

3.3.4

aorb

b is only evaluated i& isfalse If ais true, the result of the expression will be
determined without evaluatirig

This allows the following code segments to be written:
if obj<>nil and obj.size>N then ...

or
if n<=a.size and a[n]>0 then ...

String

Strings hold sequences of characters. Strargsnanifest. Thus a String
variable can reference appssible String. There is no notion of a specific
(maximum) number of characters or a specific memory section associated
with a String variable. String literals are written using double quotes ().
Example:

sl1, s2: String

sl :="Da steh'ich nun, ich armer Tor"
s2:=sl1

The effect ofclass String being a manifest typethst it behavedike having
value semantics. In this example, subsequent changésvitb not affects2.
(A change of1only makes1reference another string.)

Characters andubstringscan be extracted hysing indices. Stringndices
always start at 1.

There is no character type in Blue. Characters are strings with length one.
The most common operations on strings are:

alias operation return typemeaning
s.length Integer number of characters in s
str (s1, s2) sl.concat(s2) String returns concatenation of
sl and s2

s.substringif,m String substring of s starting at
n with lengthm

s[n] s.substring1§,1) String character in s at positian
s2.find (s1,n) Integer position of sl in s2 aftar
sl.insert (s2n) String inserts s2 into sl at pas.
s.deletert, m String deletem characters,

starting an

sl <s2 sl.less (s2) Boolean sless than s2 ?

sl >s2 sl.greater (s2) Boolean s1 greater than s2 ?

sl <=s2 sl.lessEq (s2) Boolean sless or equal s2 ?

sl >=s2 sl.greaterEq (s2)Boolean sl greater or equal s2 ?

str (s) s.toString String identity
s.toUpper String convert to upper case
s.toLower String convert to lower case

s.caseEqual (s2) Boolean equality (ignore case)

Blue Specification, Version 1.0, 24.7.98

Specialcharacters

A number of escape sequencase provided to specify non-printable
characters:

"\t" tab character

“\n" end-of-line character

"\ "\

“\nnn' ISO charactennn (decimal)
Long strings

If a string is too long to be written in otige in theeditor, itcan bebroken
into sevaral parts:

s := "This is one string"
" (and this is still the same string)"

String literals that are separated by whitespacdy are processed as one
string. The neighbouring quotes athé whitespace in between agmored.
The strings

"One n "tWO n llthreell

and
”One mn
”tWO mn
"three"
and

"one two three"

are identical. Evergtring literal (every part of thestring) must end on the
same line it starts on.

For a full interface of class String, see Appendix D.

The decision to makthe classString a manifestclass may surprise
initially. Programmers tend tdhink about strings as memonrpuffers
holding characters. Objects ofmanifest classesan not change -this
contradicts the model programmers usedaomneother languages have of
strings: they can change. After careful examinatiomyever, itturns out
that we usually think of strings not as different objects. Making strings a
dynamic class would lead to the effect that in the code fragment

a:="“marvin”
if a = “marvin” then ...

the expressioa = “marvin’results infalse(because diteral string is then
an object creator and and“marvin” are two distinciobjects). Intuitively
we do not thinkaboutstrings as independenbjects, where twalistinct
objectswith the same valueanexist. If theyhave the samealue,then
theyarethe same. And this is exactly the behaviour of manifest objects.

All string functionsthat change a strindsuch agoUppe) do notchange
the currentstring, butrather return a reference to anothestring that
contains the required text.

Blue Specification, Version 1.0, 24.7.98

3.3.5

Array
Arrays are the only predefined dynamic class. Therefore array objects need to
be explicitly created.

Arrays aresequences of homogenous element$e class specification is
generic. (For details about generic classes, see sectiolig .¢lement type
is specified when declaringwvariable; the index type ialways Integer. The
size of an array islynamic. The boundariesare not statically fixed and are
not part of the type.

Example
var a: Array <Boolean>

a := create Array<Boolean> (20)

This example creates an array of 20 booleans. Array indices always start at 1,
so this array contains elements from a[1] to a[20].

Arrays can then be assigned like all dynamic classes.
Operation on arrays:
alias operation return typaneaning

create Arrayt> (n) Array<t> create a new array with
n elements of type

a [n] a.getElem) t element at inder

a[n] a.putElem g, 1) - set element at index
a.init (v) - set all elements in a to
a.size Integer number of elements in a
a.setSizen) - change array size to

If n > old n, the new
elements arandefined

Apart from these operations, literal Array constructors can be specified.

Example:
var a: Array <Integer>

a = [23, 2, 42]

This code fragment creates an integer array of size three ajiffx23,
a[2]=2, a[3]=42 and assigns a reference to that array to

Elements of an array can be of dgpe. In particular, arrays of arrays are
possible:

var
matrix: Array <Array<integer>>
i1, i2: Integer

i1 := matrix [2][2]

The array bracket alias is special in that it can appear on the right ftthe
side of an assignmentDependent on itgosition, it translates toeither
getElemor putElem

num := a [ifranslates toum := a.getElem (i)
a [i] := nuntranslates t@.putElem (i, num)

The bracket alias therefore is the only alias that is not a simple macro.

10

Blue Specification, Version 1.0, 24.7.98

3.4 User Defined Types

User defined classegan be eithelgeneral classes(user defined dynamic
classes) oenumeration classdsiser defined manifest classes).

34.1 General classes

The definition of a generatlass isthe closest thing to a “program” in
procedurallanguages. A classgypically consists of somenternal data

(encapsulated)nternal routines, acreation routine and interfaa@utines.

The interface cannot contain variables.

BNF:
class-decl := classidentifier ["<" generics-list ">"] is
class-definition
generics-list := gen-paran{ , gen-parant
gen-param = identifier [isidentifier]

class-definition [identifier | general-class-decl

general-class-decl ::= class-comment
uses| ident-list]
[internal
[constconst-decld
[var var-decls]
[routines routine-declq]
interface
[creation [" (" parameter-list")"]
routine-bodyj
[routines routine-declg
[invariant condition |
end class

Example:

class Rectangle is
== Author: M. Kdalling
== Date: April 1995
== Version: 1.0
== Short: Graphical representation of a rectangle.

== Class Rectangle represents a rectangle with specified
== coordinates and colour that can be ...

uses Point, Colour
internal

var
top_left: Point
bottom_right: Point

11

Blue Specification, Version 1.0, 24.7.98

fill_col: Colour
border_col: Colour

interface

creation (tl: Point, br: Point) is
== Create rectangle at coordinates defined by tl (top-left)
== and br (bottom-right). Default colours are: fill white,
== border black.

do
top_left .=l
bottom_right := br
fill_col := white
border_col := black
end creation

routines

move (dx: Integer, dy: Integer)is
== Move rectangle by distance defined by dx, dy.
do

top_left. move (dx, dy)
bottom_right.move (dx, dy)

post
size = old size
end move

size -> (width: Integer, height: Integer)is
== Return size of rectangle in width and height.

do
width := bottom_right.x - top_left.x
height := bottom_right.y - top_left.y
end size
invariant

(top_left.x < bottom_right.x) and
(top_left.y < bottom_right.y)

end class

There is no separate interface definition for a class. The interfaceladsais
a restricted view othe class attributes (the internagse hidden) and it is
presented to thaser as a&pecial viewthat isproduced by a tool ithe Blue
Programming Environment from the full class definition.

For details on generic classes, see section 17.

* The name is always first in all declarations. The reason for thisats
a class definition ignostly used to look umterface featuregmembers
and their characteristicgparametersfypes). Thdeatureshould be easy
to find. This is achieved kylacing the namérst, making iteasy toread
down a column of identifiers. In C-type syntax (type and daweords
first) the identifier isshifted somewhere towardise middle of thdine,
which makes itharder to find. The name isfollowed by the access

12

Blue Specification, Version 1.0, 24.7.98

definition (type, parameters)showing the syntax for usageand the
implementation definition (routinebody), which is class internal
information.

e Creation is separate tmakeclear it is not anormal routine. Create
looks similar to a routinebut has aspecial syntaxand semantics. It is
separated from normal interface procedures and put indpeialposition
in the classdeclaration tomake it easy to find bgnforcing acertain
position for it and to symbolise its special meaning.

Comments are compulsory. Writing comments is not seen as a |uxury
but as part of programming. Therefore the compiliso deals (asvell as
it can) with proper commenting. Thisincludes a classcomment
containing certain keywords, used the library browser,and comments
for routines.

« Eliminating separate interface files avoids the dangeinobnsistency
and repetition of code.

3.4.2 Enumeration classes

Enumeration classes are the only user defined macitestes. In ananifest
classall objects exist automaticalignd no other objects of this clasan be
created. Every object is referenced by a named constant.

class-decl .= classidentifier ["<" generics-list ">"] is
class-definition

class-definition ::= Enumeration enum-class-decl

class-comment
manifestident-list

enum-class-decl

endclass
ident-list = identifier {"," identifier}
Example:

class Colour is Enumeration
== Simple enumeration type for basic colours
manifest red, white, blue

endclass

This exampledefines and creates three objegtsch are referencedhrough
the constant identifiengd, whiteandblue In another class ariable can be
defined of clas€olour, and one of the constant referencas beassigned to
that variable.

Example:

var coll, col2: Colour

13

Blue Specification, Version 1.0, 24.7.98

3.5

col :=red
col2 := blue

Note that, because no new objeats created at artyime, after assigningred
to bothcoll andcol2, (coll = col2)is true.

Enumeration classes inherit from the predefined class Enumeration

Enumerationdefines two routinepred and succ and thestandard routine
toString which can then be applied to all enumeratigres. Italso provides
a routineord for conversion to Integer. For fall interface definition of

Enumerationsee appendix D.

No furtherattributes or routinesan be definedor enumeratiorobjects. The
only characteristics of enumerations are: they exist, theglistiact, andthey

are ordered.
Qualified Enumeration Constants

In some situation it may be necessary to qualify enumeration valuetheiith
type. Thissituation arisesvhen a class uses twenumeration typeshat
define one or more common enumeraamstants. Considéhe following

two enumeration classes:

class Colour is Enumeration
== Simple enumeration type for basic colours
manifest red, white, blue

endclass

class Program is Enumeration
== Simple enumeration type for basic colours
manifest emacs, vi, blue

endclass

If a third classnow uses bothColour and Program the constanblue is
ambiguous. Trying to use it will result incampile timeerror. This conflict

can be resolved by preceding the enumeration value with its class name and an

exclamation mark (1):

Example:

var col: Colour
prog : Program

col := Colour!blue
prog := Program!blue

Operator Precedence

(to be written)

14

Blue Specification, Version 1.0, 24.7.98

4. Identifiers
Identifiers areused asxamesfor classes, variables, constaatsd routines.
Identifiers arestringsthat consist only of letters, digits artie underscore
(), where the first character is a letter or an underscore.
Example of legal identifiers are:
abc
Num23
addAtEnd
add_at_beginning
_count
Examples of illegal identifiers are
hit cnt — — error: space in identifier
23add —— error: digit at start of identifier
#elem ——error: illegal symbol (#) in identifier
Case of Characters
Blue identifiers are casgensitive. That means thaabc and ABC are two
different identifiers.
By convention, class namese often writterwith a leading capitalvhereas
routine names start with a lowercase character.
5. The Uses Clause

If a class A declares variables or parameters of another cl@ags tBen say
"A uses B), and B isnot one of the predefinetlassesthen A mustdeclare

the use of B.
BNF:

class-decl

class-definition

general-class-decl

i:= classidentifier ["<" generics-list ">"] is
class-definition

.= [identifier] general-class-decl
::= class-comment
uses| ident-list]

end class

The following exampleshows aclassRectanglethat uses two classeBoint

andColour.

15

Blue Specification, Version 1.0, 24.7.98

Example:
class Rectangle is

uses Point, Colour

end class

The effect of thaisesclause is that thelassesPoint and Colour are known
inside theclass definition ofRectangleand can then besed as types for
variables parameters and retukralues. The classesPoint and Colour must
exist in the current project.

Uses clauses are inherited. If a superclass lists a clasuusegsclause, the
subclass does noeed to (and indeed must notpeat the samelass in its
uses clause. A superclatself is automaticalljknown tothe subclass — it
does not need to be listed as a uslads. Fomore details about inheritance
see section 16.

Theuseskeyword itself is not optional. If a class does not atber classes
the uses list is empty, but the keyword must appear in the source.

The predefined classes (Integer, Real, Boolean, Sthimgy) do not need to

be listed in theuses clause.They are automaticallknown inevery class
without beingexplicity mentioned as beingsed. This is, in fact, the
meaning of the termredefined- those classes are always considered used by
every class.

Variables

Variables can be declared of aofss. This is done in separateariable
declarationsections. Such aection existsfor the whole class (instance
variables) and onckr each routine (local variableahd is preceded by the
keyword var. Thescope forinstance variables is thdass definition, the
scope for local variables is the routine they are declared in.

The section declaring the instance variables must be intdmeal section and
must precede the internal routine declarations. No variables are allowed in the
class interface.

The section declaring local variablesdlows the preconditions and constant
declarations in a routine declaration and precedes the routine statement block.

BNE:

var-decls := var-decl{ var-decl}

var-decl = ident-list ":" type-def initialisation]
type-def = class-iden{ "<" ident-list ">"
class-ident = identifier

initialisation = ":=" expression

16

Blue Specification, Version 1.0, 24.7.98

Examples:

var
numl, num2: Integer
count : Integer :=0
int_arr: Array <Integer>
f: Figure
s: Stack <Figure>
printList (I: List) is
== print all list elements

var
cnt: Integer
nm: String :=""

do

end brintList

Lifetime

The lifetime of localvariables is thdime of aroutine execution. In other
words: scopeand lifetime are connectedas in Pascal). There is no
mechanism to extend the lifetime of locadriables beyondhe procedure
execution (such as the "static" construct for local variables in C).

The lifetime of instance variables is the time of existence of the object they are
part of.

States and Values

Variables are a combination of type, state and value. The type of a variable is
specified statically and never changes. At any tiaeh variable is ione of

two statesundefinedor defined If a variable isdefined it also has a value.

The value of a variable is always a reference to an object of its typié, (8ee
below).

A variable can be initialised on declaration by #gal expression, using the
assignment instruction (segampleabove). If avariable is not initialised at
its declaration, its initial state isndefined It is an error to use an undefined
variable. An attempt to do so results in a runtime error.

No function exists to check for the statedefined It is the responsibility of

the programmer at the time of writing the program to enatevariables are

not used in the undefined state. (A good programmer will always know when
a variable is potentiallundefined. Parameters can never be undefinetiat
would have resulted in a runtime error at the time of the call.)

Assignment of a value to a variable changes the staieftned After a
variable leaves the statedefinedlit never returns to that state.

Nil

A special value calledil exists. The valueil indicates that the variabtibes
not reference any object. A variable of any type can hold the mdlugl can
be assigned, passed apasameter andsed in comparisons. Trying to use

the object held by a nil variable.g. in anobject call) is arerror, since the
variable does not refer to an object.

Encapsulation

17

Blue Specification, Version 1.0, 24.7.98

Variables are encapsulated and cannot appear in the interfactastaThis
means that alass cannotlirectly access a variable of anotloéass. (It can
indirectly access it ithatclass offers a functiothat returns or changes the
value of a variable, but this is the choice of the class owning the variable.)

The only variables directly accessible are local variables of the current routine
and instance variables of the current class.

Note, howeverthat encapsulation islassbased not objectbased As a
result, a classanaccess variables in another objectthdit object is of the
same class.

Example:
class Point is
var
X, y: Integer

add (other : Point) is
== Add another point to this one

do
X := other.x
y := other.y
end add

This technique is useful in situations where accedhdanternals isieeded,
and no interface accefimctionsare defined. (An object clone function is
such a case where an object might want to create a new objecbwhitslass
and setll its instance variables to the same valuegsa$f. We would not
want to make allinternal variables publicly accessible only to diae to

provide a clone function.)

The possibility ofaccessing instance variables ahother object, even
though they are of the same class, seems to peope to gagainst the
information hiding (orencapsulation) principle.And in somerespects it
does. Taunderstand the reasdor this access to ballowed, we must
understand why information hiding is a good idea in the first place.

Information hiding is a software engineering technighat decouples the
implementation of differentnodules (here: classes)from each other.
Accessing variables directly in arbitrary places is a maintenaksaster,
because changes to the implementationoné module mightequire
changes in unexpectadher places in therogram. This is why we do
not allow direct access of instance variables.

If the accesxomes fromthe sameclass, though, (even if it is from
another object) the argumentioes not hold anymore. If dhange the
implementation of that class, | will change all accessesvariable within
that class. So allowingccess to instance variables of otlodjectsfrom
within the same class is no problem.

137

18

Blue Specification, Version 1.0, 24.7.98

7. Constants
Constants in Blue can be literals or named constants. Literadsaitable for
the predefined manifestasses. Named constantsan be createftom every
legal expression.
7.1 Literals
Literals can be written for all predefined types. They have been introduced in
the sections describinghe individualtypes. Here, wegust provide a brief
summary of possible literal values for the predefitygmbs. For detailsefer
to the section introducing each type (sections 3.3.1 to 3.3.5).
Literals:
Class Integer Real Boolean String
Examples 17 2.0 true "hello”
0 0.0 false
-5 -0.122 TRUE "ab\n"
7.2 Named Constants

Named constantare defined in a separate constant definiteation, which
is preceded by theeserved woradtconst The constant definition section can
precede every variablsection. Scope ruleare the same athose for
variables, and the syntax of the declaration is the same as for vareiokest,
that the initialisation is not optional.

BNF:
const-decls := const-decf const-dec}
const-decl = ident-list ":" type-definitialisation
initialisation = ":=" expression
Examples:
const

size: Integer := 99
default_title : String := "untitled"

printList (I: List) is
== print all list elements

const
empty : Boolean := LisEmpty (false)

var
do
end brintList

19

Blue Specification, Version 1.0, 24.7.98

7.3

Note that literals as well as arbitrafynction calls may beused for the
initialisation of constants. Instance variables cannot hesed for the
initialisation of instance constants — they are still uninitialised. Care must be
taken with functiorcalls: If the functiorused forinitialisation usesinstance
variables, a runtime error will be generated for usingranitialised variable.

The initialisation of instanceonstants and variables takpkce on object
creationbeforethe creation routine is executed.

The exact order of object initialisation is:

« Initialisation of instance constants

« Initialisation of instance variables

» Execution of the creation routine, including (in this order)
* [Initialisation of local constants
* [nitialisation of local variables
» Execution of routine body

All constants and variablese initialised sequentially in therder in which
they are defined. Later definitions may use preceding ones.

Set Constants

Blue allowssets ofliterals to bespecified. Theseetscan only appear as
literals. No variables of these set tymes becreated. The only available
operator on thesgets isin, testing a valudor membership in a giveset.
Thein-operation returns a booleamlue. (Seesection10.4 formore details
on thein operation.) Constant sadsealso used focasestatements (section
11.2).

BNF:
set_expr = "{"[set_eler{"," set_elen}]"}"
set_elem = expressionsubrange
subrange = expressior'.." expression
Examples:

if choice in {1, 2, 3 } then ...

if result in {0..9} then ...

whitespace :=chin {"", "\n", "\t"}

if ch in {"a".."z", "A".."Z", "_"} then ...

As the exampleshow, setscan be created by enumeration of values by
comma separated lists, subranges, or a combination of both.

Subrangescan only be taken from ordinalypes. The ordinaltypes are
Integer, String and Enumeration.

This construct does naeplace a genergdurpose setype. It ismerely a
convenience notation that abbreviates relatiac@inparisons. Ageneral
purpose set class can be found in the Blue Standard Collection Library.

20

Blue Specification, Version 1.0, 24.7.98

Routines and Parameters

There aretwo types of routines: procedures and functions. Bwthe an
optional parameter list. Functions return one or more values.

All parameters argassed by value. (Notéhat variablesalways hold
references, so r@eferencels passed by value, resulting $emantics opass
by reference for the objects themselves.)

Parameters cannot hesed to return values directlfThere are no “var’
parameters.)The only way to return aalue is via a functiomesult. Thus
procedures do not return any values (but they can change the statabggcan
they reference). A function can return more than one result.

BNF:

routine-decl = identifier ["(" parameter-list")"]
["->""(" parameter-list ")"] is
routine-impl

parameter-list = param-decl"," param-dec}
param-decl = identifier ":" type-def
routine-impl = deferred routine-spec

| builtin routine-spec

| [redefined] routine-body
routine-body ;= routine-comment

[pre condition]

[constconst-declg

[var var-decls]

do

statement-list

[post condition]

end identifier
routine-spec = routine-comment

[pre condition]

[post condition]

end identifier

Examples:

A short function is

count —> (val: Integer)is
== Return number of elements
do
val :=1i_count
end count

A simple procedure without parameters, pre or post conditions:

21

Blue Specification, Version 1.0, 24.7.98

show is
== displays this element on standard output

do
print ("Name: ", name, "\n")
print ("Count: ", count, "\n")
end show

A function with two parameters and two return values:

lookup (n: Integer, show: Boolean)
—> (nm: String, cnt: String) is
== returns name and count for entry number n
== n: number of entry to lookup, must be valid
== show: if true, value is also printed to standard out
== nm: returns the name of the entry
== cnt: returns the number of the entry

pre

n>=1

and n <= nr_of_entries
do

nm := entries[n].name
cnt := entries[n].count

if show then
entries[n].show
end if
post
nr_of _entries = old nr_of_entries
end lookup

The comment after the function header is part of the language. Comments for
routines are not optional and are part of the routine interface.

Pre- and post conditions are optional.

Values are returned bassigning tathe result variablenfn and cnt in this
example). Result variablesre initially undefined and must be assigned a
value during function execution. It is an error to return from a function with
undefined result variables. A function without an assignreatément to a
result variable will produce eompile timeerror; a functiorthat contains but
does not execute such a statement results in a runtime error.

Visibility
Routines are visible in thehole class scopeThis meanghat a routinecall
may precede the routine definition, allowing mutually recursive routines.

Many people holdhe view that functions should nobave sideeffects.
Suggestions have been made to us that the languregeéd notallow side
effects in functions (binhibiting assignments tmstance variables an
routine calls to objects held in instance variables).While this is
technically possible, it is impractical. We agree that it is a valudegn
rule that functions should nohave sideeffects,but sideeffects inthis
context can only mean changes to thexternal stateof the object.

[®X

22

Blue Specification, Version 1.0, 24.7.98

8.1

Sometimes side effectisat change theinternal stateof the object are
desirable. An example is the implementation ajuary object with
caching. A query (a function) should rabtange theexternal stat®f the
object, but it may wellesult insomeinformation beingcachedinside the
object (thus changing the state of the object — a side effect). Ehdmge
does not affecthe externallyvisible behaviour (othethan inefficiency),
we saythat the external statdnas not beercthanged. Our designrule is
thus satisfied. Theompiler cannotistinguish whethechanges oftate
are internal or external. Thus this valuable design rule remains

unenforced by the compiler.

For details on pre- and postconditions, see section 12.
For details on redefined routines, see section 16.2.
For details on deferred routines, see section 16.4.

Builtin Routines

Builtin routines are written with the keywobdiltin after the routine header:
BNF:

routine-decl = identifier ["(" parameter-list")"]
["->""(" parameter-list ")"] is
routine-impl

routine-impl = builtin routine-spec
| ...

routine-spec = routine-comment
[pre condition]
[post condition]
end identifier

Example:

cursorTo (x: Integer, x: Integer) is builtin
== Set the terminals cursor to screen position (x,y).
pre
x >= 0 and x <= width and
y >= 0 and y <= height

end cursorTo

The builtin keyword is used only by system programmers writing clalsaes
are part of the Blueenvironment. It cannot beised by application
programmers.Builtin classesare usuallyimplemented in a system-specific
way (often in another language than Blue).

23

Blue Specification, Version 1.0, 24.7.98

9. Statements
Statements are:
* assignment
* assignment attempt
* procedure call
* return
* assertion
* control structures
Control structuresire described in sectiohl. This section only describes
simple (non-compound) statements.
BNF:
statement = assignment
| assignment-attempt
| procedure-call
| return
| assertion
| ...
9.1 Assighment

Values can bassigned to variables tifie type of the valueonforms tothe
type of the variable (see below for definitioncohformancg

BNF:
assignment = ident-list":=" expression-list
ident-list = identifier {"," identifier }

expression-list expressior{"," expressior}

Examples:
a:=42
a,b,c=x1vy,z — — multi-assignment (see below)
a, b, c:=1)

Multi-Assignment

The multi-assignment is defined fdlows: Each of theexpressions on the
right hand side ievaluated to one or monealues. (An identifier always
evaluates to onealue, a functiorevaluates to the list of its retukralues.)

The order of evaluation isundefined. The values are theassigned to the
identifiers on the left hand side. The number of identifiers must be equal to the
number of values produced liye expressions othe righthandside. The

first value isassigned tdhe first identifier, the secondvalue to thesecond
identifier, and so on. The evaluation of all expressiontherrighthand side

24

Blue Specification, Version 1.0, 24.7.98

9.2

is alwayscompleted before any assignmentesgecuted. This allows a
statement like

a,b:=b,a
to swap two values.
Conformance
A type B conforms to a typ4 if

* Bis the same type &s
* B is a (direct or indirect) subclass/Af

Thus, the code segment

var
XA
y:B ——Bis subclass of A

&/. = create B
X:=y
is legal, because B is a subclass of A, and sorBBorms toA.
The variablex is said to have th&tatic typeA and thedynamic typds.
An assignment
a:=b
Is legal, if the static type df conforms to the static type af

Assignment Attempt

The assignment attempt allows an assignment from a vadatfleome class
to a variableb of a subclass. Such assignment can be safedxecuted
without risking typeerrors only ifthe dynamic typeof a conforms to the
static type of.This can not be statically determined acalises aynamic
check to be executed.

BNF:

assignment-attempt
ident-list
expression-list

ident-list"?=" expression-list
ident{"," ident}

expressio"," expressior}

Example:
var
XA
y:B —— B is subclass of A
y 2= X
Statically, this assignment cannot be guaranteed tsubeessful (since the

type ofx does not conform tthe type ofy). x could reference an object of
the dynamic typd\. In that case the assignment cannot be executed, bgcause

25

Blue Specification, Version 1.0, 24.7.98

9.3

9.4

cannot hold references of type Butx could also reference abject of the
dynamic typeB. In that case the assignment can be executed.

The assignmendttemptresults in adynamic (runtime) check of the dynamic
type of x. If the dynamic type ok conforms tothe static type of, the
assignment will be executed, otherwyseill be assigned the valusl.

An assignment attempt
a?=b

is statically legal if the static type bfconforms tathe static type o#, or the
static type ot conforms to the static type bf(in otherwords: if there is any
chance that the assignment could be successful).

Procedure Call

A procedure call is a call to a routine that does not return parameters.
BNF:

call-chain
[super™!"] unqualified-cal "." unqualified-call }
identifier ["(" expression-list")"]

procedure-call ::
call-chain
unqualified-call::

Examples:

proc
proc (a,b)

obj.proc (a, 23+17)
alist.get (22).put ("hello™)

A procedure call can beall of either an internal or externalocedure. An
internal procedure is a proceduhat is defined in the sanzass containing
the procedureall. Anexternal procedure is a procedure defined in another
class. External procedure calls are preceded by an algedifier, separated
from the procedure name by a dot (.). If a procedure has parantetea|
has dlist of the actual parameters frarenthesis. If nparameter lisexists,
no parenthesis are written.

Return

The return instruction causes a return from a routine.
BNF:

return 1= return

Example:

show is
== displays this element on standard output

26

Blue Specification, Version 1.0, 24.7.98

do_
if name =
return

then

end' éhow

return does notakeany parameters. Ithe routine is dunction, all return
values must be assigned beforeréitern is executed.

Routine exits from anywhere inr@utine (even inthe middle of doop!)
are seen bysome asunstructured programming”. For agood summary
of the reasonghat show the advantage¢in terms of programming an
teaching) ofthis construct, sedkoberts, E.,Loop Exits & Structured
Programming: Reopening the Deha®#GCSEBulletin, 27, 1, March
1995, pp. 268-272

o

9.5 Assertion
Assertions are used as a tool for correctness assurance and debugging.
BNF:
assertion = assert "(" condition")"
condition = boolean-expression
Example:
assert (name <> nil)
If the boolearexpression irthe assertion is notrue, programexecution is
interrupted and theuser isnotified about failing of theassertion. If the
expression is true, the statement has no effect.
10. Expressions

Expressions are:

« function call

* equality

* type equality

* in-expression (sets)
* create

* this

BNFE:

expression ::= function-call _
| operator-expression

27

Blue Specification, Version 1.0, 24.7.98

| reference-equality
| type-equality
[in

| create
| old
| this

10.1 Function Call

A function call is a call to a routine which returns one or more values.

BNF:
function-call := call-chain
call-chain := unqualified-call{ "." unqualified-call }

unqualified-call identifier ["(" expression-list")"]

Examples:
x :=func
a,b :=func (1)

if obj.func (a,b+c) then ...

found, element := list.search (22);
if found then

print (element)
end if

A function call is syntacticallysimilar to a procedureall. Since a function
returns values, it is used in an expressiather than as a statement. A
function can return one or moralues, whichcan then beassigned to
variables in a (multi-)assignment.

If a function returns exactly one value, it can also be used in expressions such
as the condition of aif statement or in an actual paraméiglr Functions
returning multiple values can only be used in a multi-assignment statement.

If a function has no parameterscall to thatfunction consists of ithame
only (no parentheses are written to indicate an empty parameter list).

10.2 Equality

BNF:

reference-equality

_ expressiorcomparisorexpression
comparison

II:II ll<>ll

28

Blue Specification, Version 1.0, 24.7.98

Examples:
a=b
found = true
a<>42

See section 3.2.2 (Comparison).

10.3 Type Equality

BNF:

type-equal := expressions type

Examples:
var
f: Figure
r: Rect —-nherits from figure

if f is Rect then
r.=f
end if

The keywords checks whether aariable is of a givetype. The result is a
boolean value. The expression

ident is Mytype

is true, ifthe dynamic type oidentis Mytypeor a subclass oMytype In
other words: The expression is truethié dynamic type oident conforms to

Mytype
10.4 In
BNF:
in = expressionn set_expr
set_expr = "{"[set_eler{"," set_elen}]"}"
set_elem = expressionsubrange
subrange = expressior'.." expression
Example:

if num in {1, 3, 5, 7} then ...
if nin {1..10} then ...
valid := xin {" ", "\t", "0".."9" }

29

Blue Specification, Version 1.0, 24.7.98

10.5

10.6

In expressions are aliases and are defined by combinations of comparisons:
nin {a, b} isdefihedas n=aorn=>Db

n in {a..b} is defined as n>=aand n<=b

nin{a, b..c} isdefinedas n=aor(n>=bandn<=c)

Create

BNF:

create
general-create
array-create

general-creat¢ array-create
createclass-iden{ "(" expression-list")"]

"[" expressiod "," expressior} "]"

Example:

var
r : Rectangle
b : Buffer

r := create Rectangle (p1, p2, c¢)
b := create Buffer

The createkeyword creates an object of the specifieldss and executes its
creation routine. Parameters to the creation routin@assed in @arameter
list after the classame. Ifthe creation routinbas no parameterthe create
call has noparametetist. (If the class does not specifycaeationroutine, a
default routine without parameters is generated).

This

BNF:

expression .= this

Example:
list.add (this)

The expressiothisis a reference to the currently active object. It cands=l
to pass the current object reference to other objects.

30

Blue Specification, Version 1.0, 24.7.98

11. Control Structures

The remaininggroup of statements, not described f&w, are control
structures. Control structures are:

* conditional

* multi branch

* loop

BNF:

statement n= oL
| conditional
| selection
[loop

11.1 Conditional: The If Statement

BNF:

conditional .= if conditionthen
statement-list
{ elseif expressiorthen
statement-lis}
[else
statement-lis}
end if

condition
statement-list

boolean-expression
{ statemen}

Examples:

if val>0 then
handle_positiv
elseif val=0 then
handle_zero
else
print (“The value was negative!”)
handle_error

end if

if n < 0 then
n:=-n

end if

The if statement is similar to conditionals in many otaeguages. Notthat
the if and elsgpartscontain statemerists. This makes amxplicit grouping

31

Blue Specification, Version 1.0, 24.7.98

11.2

symbol atthe beginning of the statement lishnecessary.The “end if’ is
alwaysrequired.

Selection: The Case Statement

The case statement allows a multi-way branch depending on an expression. It
is similar to the case statement in Pascal orsthich statement in C. The

case labels are set constants and selection of a case is done by apglying an
operation to thexpression anthe casdabels. The expression ievaluated

and the resulting value is checkéar membership in thdabel sets. The
statements at th@rst matching label areexecuted. Only the statements
between the labaind the nextabel (if any) are executed. Themxecution
resumes after thend casdanstruction. Theelsepart is executed ithe value

was not a member of any of the label sets. If no set contains the value and the
case statemerdoes notcontain an elseyart, no nested instructions are
executed and execution continues after the case statement.

BNE:

selection .:= caseexpressiorof
{ set_expr':" statement-lis}
[elsestatement-lis}
end case

Examples:

case colour of
{red}.
label := "danger"”

{yellow}:
label := "warning"

{green}:
label := "okay"

else
handle_error

end case

case value of
{0..33}:
print ("low")
{34..66}:
print ("medium”)
{67..99}:
print ("high")
{100}:
print ("top")
end case

32

Blue Specification, Version 1.0, 24.7.98

11.3

case ch of
{*", "\n", "\t"}:
handle_whitespace
{"a".."z", "A"."Z", " "}
handle_letter
{"0".."9"}
handle_number

else
handle_error

end case

If the sets used as case labels overlaptl@dest value is a member of more
than one of the sets, only the instructions at the first match are executed.

Iteration: The Loop Statement

There is only one kind of loop structure in Blue. The loop is defined with the
keywordsloop ...end loop.

Exit from the loop is explicit by using thexit on keyword, which igart of

the loop. Every loop must have at least one aMitiltiple exits arepossible.

By placing the exit at the beginning or end of the loop, behaviour of a pre-test
or posttest loopwhile andrepeatin Pascal) can be implemented.

iteration = loop
statement-list
exit on condition
statement-list
{ exit on condition
statement-list}
end loop

Note that a statement list can be empty.

Examples:

The first exampleshows aloop with the exitinstruction at thebeginning.
This construct hasemantics similar to a while lod@herethe condition in
the while loop would be the negation of the exit condition in this example).

list.first

loop
exit on list.atEnd
print (list.current)
list.advance

end loop

Similarly, a post-test loopdpeatin Pascal) can be constructed by placing the
exit instruction at the end of the loop.

In Blue, however,exit instructionscan appear at any stage in theop,
increasing flexibility:

33

Blue Specification, Version 1.0, 24.7.98

loop

readint (i)

exit on i>0

print (“The number has to be greater than 0. Enter again.”)
end loop

The last example shows the use of multiple exit instructions.

loop
s := getSelection
exit on s=0
error := process (S)
exit on error

end loop

A loop without an exit statement causes a contjpile error. EXxit statements
are illegal outside aloop. In nestedloops, exit always exits only the
innermost loop. It is not possible éxit an outetoop from within a nested
loop.

12.

Pre/Post Conditions

Preconditions and postconditioase part of routinalefinitions. They are
optional. If present, they are automatically checked at runtime aadanis
reported if a condition is not met.

Preconditionsare written at the beginning of a routitedy (before the
variable declarations) and are checked on entryhaf routine. It is the
responsibility of thecaller toensurethat the precondition imet (i.e. that it
evaluates térue on routine entry). The code inside the routiogly can then
safely assume that the condition is true.

Postconditions are written at the end of a routine body and are checlkead on
of the routine. It isthe responsibility of the routine tensurethat the
postcondition is trueand thecaller canassumehat the condition ignet on
return from the routine.

BNF:
routine-body ::= routine-comment
[pre [condition]
[commen(]
do

[post [condition]
[commen(]
end identifier

Pre- and postconditions consist of aondition and/or @&ommenteach. If
multiple conditions are to be defined, they can be combined witbical and
to form one condition.The comment is intended &xpress conditionthat
cannot be expressed in Blue expressions. The comment has no riffdiche

34

Blue Specification, Version 1.0, 24.7.98

(no error isgenerated if a comment false), but it is goodprogramming
practice to include documentation abpug- and postconditions eventifey
cannot be written in code.

Examples:
func (n: Integer, m: Integer) -> (res: Integer) is
pre
n>=0 and
m>=1
var
X : Integer
do
post
res <> nil
end func

printName is
do
post
== the name has been printed on screen
endprintName

Both pre- and postconditionare part of the interface of aoutine.

Redefinitions of routinemay alterthese conditions only in restrictedays:

preconditions may beieakened, postconditioneay bestrengthened. If a
redefined routine does not define pre- or postconditithresconditions of the
original (parent) routineapply. If aprecondition is redefinedhe actual
condition tested at runtime is

preconditionor parent-precondition
If a postcondition is redefined, the condition tested at runtime is
postconditiorand parent-postcondition

This ensureghat the redefined routine guarantees at least as much as its
parent.

Two specialexpressionare available irconditions: => (implies) and the
reserved worald.

Example:

post
found => index >0

The implies symbol can be read as
if (found) then assert (index > 0)

35

Blue Specification, Version 1.0, 24.7.98

Theold expression is available only in postconditions. It is usedxinof a
routine to refer to the value that an expression had on entry to that routine.

The following exampleensureshat the global variableum has notbeen
altered in the routine:

Example:
doSomething (n: Integer)is

pre _
n <> nil

post
num = old num

end doSomething

It is an error to use=>" outside of a pre- or postcondition or clasgariant
or to use bld” outside a postcondition.

13.

Class Invariants

Classinvariants are conditionthat have to benet by any stable state of an
object. Stable states exists before aftdr every execution of an interface
routine from the outside of an object. (Ndit@atwhen aninterface routine is

called locally from within an object, it does not have to be in a stable state.)

BNF:

class-decl .= classidentifier ["<" generics-list">"] is
class-definition

class-definition n= L.
| [identifier] general-class-decl

general-class-decl = N
[invariant condition]
end class

Invariants are checked at runtime before and after every exiatedhce
routine call and after execution of the creatiooutine. Aruntime error is
generated if an invariant evaluatesdise

14.

Comments

Blue recognises two types of comments, marked by a double equalss)gn
and a double hyphen (- -). Comments always extentie tend of theine.
To have several lines as a comment, eviesy has to bepreceded by the
comment symbol.

36

Blue Specification, Version 1.0, 24.7.98

14.1 Interface Comments

Comments starting with =are part of theclassinterface and part of the
language definition. Thewre used to describéhe class itself and routine
semantics, and are allowed to appear only in strictly defoeations. These
locations are:

« after the class header
« after a routine header

Example
class Rectangle is

== Author: M. Kdlling

== Date: April 1995

== Version. 1.1

== Short: Graphical representation of a rectangle.

==Class Rectangle represents a rectangle with
==specified coordinates and colour that can be ...

interface
creation (tl: Point, br: Point) is

== Create rectangle at coordinates defined by tl (top-left)
== and br (bottom-right). Default colours are: fill white,
== border black.

do

end creation

routines
move (dx: Integer, dy: Integer)is
== Move rectangle by distance defined by dx, dy.
do

end move

size -> (width: Integer, height: Integer)is
== Return size of rectangle in width and height.
do

end size
invariant

end class

37

Blue Specification, Version 1.0, 24.7.98

The exampleshows interface commentfor the class and foreachroutine.
Interface comments may not appear anywhere else. They are parclafsthe
interface and therefore displayed in interface view (see [1] for a description of
the environment, including theterface viewof classes).They arealso used

by theclassbrowser. (By conventionrsome lines othe class comments
begin with certain keywords whichare recognised by thelassbrowser.
These lines define thauthor, version numbedate of creatiorand a short
description of the class. See the documentation of the browser for details.)

14.2 Implementation Comments

All other comments, starting witthe symbol — — (doublehyphen), are
implementation comments. They may appmaywhere andre not included
in the interface view. Implementation comments are ignored by the compiler.

Note that implementation comments may appear as part of the routine
comment. If theydo, they should describehe routine implementation and
will not be displayed as part of the interface.

Example:
class WidgetManager is

add (new_widget: Widget)is

== Add ‘new_widget’ to the set of managed widgets.

— — This is done by adding ‘new_widget’ to ‘wl’, the

— —internal widget list. Note that ‘wlI’ may be undefined

— —if this is the first widget to be added. We have to test for
— —that and possibly create the list before adding to it.

do
if wl = nil then — — test whether list exists
wl := create List <Widget>
end if
wl.add (new_widget) — — add widget to widget list
end add
end class

The interface of this routine is
add (new_widget: Widget)
== Add ‘new_widget’ to the set of managed widgets.

There is no block comment in Blevery comment isfor oneline only).
Instead, the Blue environment provides tools to adeemove comments on
every line in a block of text.

38

Blue Specification, Version 1.0, 24.7.98

15.

1/O

15.1

15.1.1

I/O is implemented irBlue by providing a number of standard classes and
objects that can bealled toperform input/outpubperations. There are two
groups ofl/O classes: one group ftext based (or "standard'JO and one
group for more sophisticated graphical uisgéerfacebuilding. The graphical
user interface classes are found in the Bl library and are not described
here. The following sections describe what lsnown as standard 1/O, a
simple, text based I/O facility.

Standard 1/O

Blue provides fourenvironment variablegor standardl/O: input, output,
terminal andformat These variables are predefined and accessible in all Blue
classes.

It also provides two predefined objects: @igect ofclassTextTerminaland
one object of clas®utputFormat The predefined variablésput, outputand
terminal typically all refer to the predefinedextTerminalobject, the format
variablerefers tothe OutputFormabbject. It is possible, though, tond
input or output to other objects, for instan@aitputto an object representing
a printer orinput to a file. Thiscan bedone externally before a routine is
executed, or dynamically by the program.

The predefined variables are of the following classes:

var
input : 10_Channel
output : 10_Channel
terminal : TextTerminal
format : OutputFormat

IO_Channels a superclass dextTerminglso the variablesmput andoutput
provide a view ontdhe predefined TextTerminal object as an 10_Channel
object.

The variablesnput andoutput exist to provide a means do redirect input or
output to and from other channels (such as a text file, which is also a subclass
if 10_Channel).

The variableterminal exists sothat a program cantake advantage of
TextTerminal specifiperationsthat arenot part of 10_Channe{such as
positioning the cursor on screen, etc.)

For afull description and interface, see the "Blsandard LibraryManual”

[2].

Standard Output

Output to the terminal is usually done using the giras.

Examples:
I : Integer
m : Myclass

39

Blue Specification, Version 1.0, 24.7.98

15.1.2

print (i)
print (m)
print ("The value of ", i, "is ", m, "\n")

The aliagorint is defined as

print (a, b, ...) <=> output.write (str (a, b, ...))

stritself is an alias, which is defined as

str (a, b, ...) <=> a.toString.concat (b.toString.concat (...))

The functionconcatis defined in class String and returns a stthmag is the
concatenation ofwo otherstrings. The functiontoString is definedfor all
predefined classe@xcept Arrays) and may be definddr user defined
classes. It returns a printable representation of an objecttnmg. If a user
defined classvants todefine atoString routine, it has to conform to the
following signature:

toString -> (s: String)
== Return a string representation of this object.

Every object that defines a functitmString conforming to this specification,
can be printed using the alisnt.

Furthermoreapart from beingised for outputthe str alias can baused for
conversion to string from another type afm concatenation ofstring
representations of any type, including strings.

Examples:
S, s1, s2 : String
I : Integer
m : Myclass
S = str (i) — — conversion Integer to String
s :=str ("The value is ", i) — — conversion and concatenation
S = str (sl, s2) — eoncatenation of Strings

Output Formatting

The toString routines ofthe predefinectlassesinteger, Real Boolean and
Enumeration use the predefinedformat object to determine their output
format. formatis a predefined constant referring to a standaject ofclass
OutputFormat.) Calls tiormat may be made to influence the formatting of
number, Boolean and enumeratiooutput. The (incomplete) interface of
OutputFormat is as follows:

class interface OutputFormat is

setWidth (n : Integer)
== Set field width for output. Default is 0. If the string
== representation of a value consists of more characters than
== the field width, the width is ignored.

== Used by Integer, Real, Boolean and Enumeration.

== Note that the class String does not use the format object for
== output. String output is unaffected by the field width. To

40

Blue Specification, Version 1.0, 24.7.98

== align strings, use the 'fill' function in class String.
pre
n>=0

alignRight (right : Boolean)
== Specify alignment of output in the field defined by 'setWidth'.
== The default is 'left' (spaces will be added to the right of the
== output as appropriate). If 'right' is set to true, output will
== be right-aligned within the specified field width.

== Used by Integer, Real, Boolean and Enumeration.
pre
right <> nil

scientific (useScientific : Boolean)
== If useScientific is true, scientific notation is used for output
== of real numbers (e.g. 1.23456e+02). Otherwise fixed point
== notation is used (e.g. 123.456). The default is
== useScientific=false.
== Used by Real.
pre
useScientific <> nil

roundTo (n : Integer)
== Round output of fixed point real numbers to n digits after the
== decimal point. Defaultis 6. Used by Real.
pre
n>=0

end class

The format object mayalso be used by usedefined classes tdetermine the
behaviour of thetoString routine (so that user defined outputcan, for
instance, honouffield width or justification). For afull interface of
OutputFormat see Appendix D8.

15.1.3 Standard Input

Input from standard input is defined for integers, reals, boolaadstrings.

It is done using a group @fiases whichmap to routine calls to the standard
objectinput The aliases are:

readint <=> input.readint

readReal <=>input.readReal

readStr <=> input.readStr

readChar <=> input.readChar
All of these routines are functions returning objects of the according type.
Examples:

num := readint
name = readStr
line [i] := readChar

41

Blue Specification, Version 1.0, 24.7.98

readint andreadRealskip whitespace and end-of-line charactersthé next
characters can not be interpreted in the requfcedhat, they returnnil.
readStrreadsuntil an end-of-line character feund, orthe end offile is
reached. The relevant part of the interface ofcthes 10_Channel ishown
below:

class interface 10_Channel is

readStr -> (s : String) is deferred
== Read a String. Reads characters until
== aline break ("\n") is read or an error condition (such as
== "end-of-file" is encountered). The resulting String does
== not include the line break character.

readChar -> (s : String) is deferred
== Read the next character. Every character (including line
== break characters) are returned as entered. The line break
== character is returned as "\n".

readint -> (i : Integer) is deferred
== Read an Integer. Skips white space (spaces, tabs and
== newlines) before the Integer. Returns "nil" if the
== next non-white characters do not represent a number.
== Numbers are written with an optional - or + sign and digits.

readReal -> (r : Real) is deferred
== Read an Real (floating point number). Skips white space
== (spaces, tabs and newlines) before the number. Returns "nil
== if the next non-white characters cannot be interpreted as a
== number. Real numbers are written with an optional - or +
== sign, digits and a decimal point (.).

endLine is deferred
== Read and discard all characters up to (and including) the next
== NewLine character.

atEnd -> (isAtEnd : Boolean) is deferred
== Return true if the current position is the end of the channel.
== Some channels might not have an end (and atEnd always
== returns false) some might reach an end at a specific point (like
== a file, where the end of the channel might be defined by the
== end of the file). In some channels the end might be
== dynamically defined (i.e. when a terminal allows the user to
== generate and at-end condition via a control key). See the
== concrete subclasses for their individual handling of the at-end
== condition.

end class

42

Blue Specification, Version 1.0, 24.7.98

15.1.4 The TextTerminal Class

As mentioned above, the variableput, output andterminal by default refer

to an object of class TextTerminal, whichcigated by the Blue environment

on system startup (a project does not need to create this object explicitly). The
TextTerminalclass definesdditional routines apart frothose defined in
IO_Channel. Those routines can be called only thrdglvariableterminal

since it is theonly one to be declared afass TextTerminal. There are no
aliasesfor theseroutines. They are calledusing the standard routinecall
syntax. Fir example, to positiotihe cursor onthe screen, a clasmight
include the statement

terminal.cursorTo (4, In)
See Appendix D7 for the complete interface of class TextTerminal.

15.2 File 1/O

Working with files is supported by standard classasilable in thestandard
library (group Standard_1Q. These are thelassesFileSystemHandleand
TextFileHandle Objects ofboth of these classese handles— they give
access to an underlying object. This indicates that, for instance, creéiling a
system handleloes notcreate a filesystem,but rather creates an objabat
gives the user accessttee underlying filesysterwhich exists independently
from the handle object. Equallgreating a TextFileHandldoes notcreate a
text file — it just allows access to a text file that was created earlier.

Class FileSysHandle

The class FileSysHandle is used to actesdile system. Access to thdile
sytem allows operationsuch as creating or removingfiles, reading
directories, checking for the existence of files, etc.

The (incomplete) definition of the claB8eSysHandlas
class interface FileSysHandle is

creation (fileSys : String)
== Create a handle to a file system. The parameter "fileSys"
== identifies the file system to be accessed. On systems that
== have only one file system (e.g. Unix), the parameter is
== ignored.

routines

createFile (name : String) -> (done : Boolean)
== Create a file with file name "name". If the file exists, its
== length is truncated to 0.

deleteFile (name : String) -> (done : Boolean)
== Delete the file with file name "name".

43

Blue Specification, Version 1.0, 24.7.98

copyFile (name : String, newName : String)
-> (done : Boolean)
== Copy the file with name "name" to a second file with name
== "newName".

createDirectory (name : String) -> (done : Boolean)
== Create a directory with name "name".

deleteDirectory (name : String) -> (done : Boolean)
== Delete the directory with name "name". The directory must
== exist and must be empty.

readDirectory (name : String) -> (dir : Array <String>)
== Read the directory with name "name". Returns an array with
== the directory entries. Each entry is the name of a file or
== directory.

exists (name : String) -> (result : Boolean)
== Return result=true if an entry with name "name" exists in
== the file system.

end class

This interface is incomplete.Look atthe interface online in the Blugass
browser, or have a look at "The Blue Libraries" [2] to see the full interface.

Class TextFileHandle

A file handle isused to acceghe contents of &le. A file handle isnot the
file itself. This is anmportant distinction. Creating fle handledoes not
create a file. Creation of a file handle rather corresponds to opening a file.

Example:
This example creates a copy of an text file.

copy (source: String, target: String)is

== Copy the file "source" to file "target" character by character.
var

filesys : FileSysHandle

filel : TextFileHandle

file2 : TextFileHandle
do

filesys := create FileSysHandle (nil)

— — create the target file
if (not filesys.createFile (target)) then

print ("Could not create target file'\n")
return

44

Blue Specification, Version 1.0, 24.7.98

end if
— — open both files

filel := create TextFileHandle (source)
file2 := create TextFileHandle (target)

if (not filel.isReadable) or (not file2.isWritable) then
print ("Could not open files with necessary access.\n")
return

end if

— —do the copying

loop
exit on filel.endOfFile
file2.write (filel.readChar)
end loop

— — close the files

filel.close
file2.close
print ("Done.\n")

end copy

After creating a TextFileHandle, the state of the file handle should be checked.
A file is always opened farading andwriting, if the underlyindfile system
allows this access. Hccess rights ithe file system deny read or write
access, the file is opened in read-only or write-only mollee access can be
checked withthe isReadableand isWritable functions. If no access is
possible at all (either no access was granted by the file system fite thees

not exist) themsReadableandisWritableare both false, aridBadis true. All
attempts to read from a file that is not readable, or to writefite that is not
writable result in runtime errors.

The functionendOfFilecan be used to check whether the curfi@iposition
is at the end of thdile. It must becheckedbefore a read operation is
attempted. Trying to read from a file whdadOfFileis true is an error.

The (incomplete) definition of cla3extFileHandlas
class interface TextFileHandle is 10_Channel

creation (fileName : String)
== Create a handle to a text file. The file "fileName" must exists
==in the file system.

== If a file with the specified name does not exist or if access to
== the file is denied, no file will be opened and the status of the
== TextFileHandle will be set to "isBad" (see routine "isBad"
== below).

== This routine does not create a file. To create a new file, use
== the createFile routine in class FileSystemHandle.

pre

45

Blue Specification, Version 1.0, 24.7.98

fileName <> nil
routines
inherited from IO_Channel

write (s : String) is redefined
== Write 's' to the file.
pre
isWritable

readStr -> (s : String) is redefined
== Read a String from the file. Reads characters until
== aline break ("\n") is read or the end of the file is reached.
== The resulting string does not include the line break character.

pre)
isReadable and not atEnd

readChar -> (s : String) is redefined
== Read the next character from the file. Every character
== (including line break characters) are returned as entered
== The line break character is returned as "\n".
pre
iIsSReadable and not atEnd

readint -> (i : Integer) is redefined
== Read an Integer from the file. Skips white space (spaces,
== tabs and newlines) before the Integer. Returns "nil" if the
== next non-white characters do not represent a number.
== Numbers are recognised with an optional - or + sign and
== digits.
pre

iIsSReadable and not atEnd

atEnd -> (isAtEnd: Boolean)
== Return true if the end of input has been reached. While input
== from a terminal does not have a natural end, end end-of-input
== condition can be generated by pressing CTRL-D.
== If the next character entered is a CTRL-D, 'atEnd' removes
== the character from the input and returns true. If it is any other
== character, 'atEnd' leaves it pending in the input queue and
== returns false.
pre

not isBad

new routines

position -> (pos : Integer)
== Return the read/write position in the file.
== The position is the offset from the beginning of the file.
== The first position (start of file) is O.

46

Blue Specification, Version 1.0, 24.7.98

pre
not isBad

setPosition (pos : Integer)
== Set the read/write position in the file to "pos".
== 0 is the beginning of the file, -1 is the end of the file.
== Positive numbers count from the beginning of the file,
== negative numbers count backwards from the end of the file.
pre
not isBad and pos <> nil

close
== Close the file associated with this handle. In general all files
== should be closed by the user as soon as they are not needed
== anymore. Closing files is important, because the number of
== files a user can have open at the same time is limited. If files
== are not closed, opening of further files might fail. The exact
== number of files that can be open at any one time is system
== dependent.
== Also, output to files is buffered. Text written to the file is
== not immediately written to disk. Only after closing the file or
== calling an explicit "flush" can the user rely on the file content
== being visible to other processes.

== Files not being closed are automatically closed when the file
== handle object is garbage collected. Since the user has no
== influence on the timing of garbage collection, it is bad practice
==to rely on this.

== After closing, the file handle is not usable any more, all read
== and write operations cause runtime errors, and "isBad" returns
== true.

isReadable -> (readable : Boolean)
== Returns true if the file can be read. If access rights in the
== file system specify write-only access, isReadable returns
== false.

isWritable -> (writable : Boolean)
== Returns true if the file can be written. If access rights in the
== file system specify read-only access, isWritable returns false.

isBad -> (bad : Boolean)
== "isBad" returns true if this file handle cannot be used to access
== afile. This can happen if the file specified in the creation
== routine does not exist, or if neither read nor write access was
== permitted. If "isBad" is true, "isReadable" and "isWritable"
== are both false.

end class

47

Blue Specification, Version 1.0, 24.7.98

This interface is incomplete.Look atthe interface online in the Blugass
browser, or have a look at "The Blue Libraries" [2] to see the full interface.

16. Inheritance

Inheritance can be used to define specialisations of previously defasses.
These specialisations arealled subclasses (or“children”™) of their
superclasses (or “parents”).

16.1 Defining Subclasses

Classes can be subclasses of at most one d#ss. The superclass (if any)
is listed in the head of the class definition.

BNF:
class-decl ;= classidentifier ["<" generics-list">"] is
class-definition
class-definition ;= [identifier] general-class-decl
Example

class Car is Vehicle
== Defines a car for a traffic simulation.

end class

A subclass inheritall routines and variables from ifsarent. All interface
routines ofthe parent arelso interface routines ofthe subclass,and all
internals (routines and variableaje availableinside thesubclass. The
creation routine is the only routine that is not inherited by the subclass.

Inherited interfaceoutines cannot be "hidden" (removed frtime interface).
Inheritance is intended to be used to expreak*“is-a” relationships. If such
a relationship is true, there is no need to hnderfaceroutines ofthe parent.

In all situations where a programmaants tohide parts of amterface in a
child, inheritanceshould not beused, but a client-server modg[‘uses”

relationship) should be used instead.

48

Blue Specification, Version 1.0, 24.7.98

16.2

16.3

Redefinition

Children may redefine thenplementationof an inheritedroutine. This is
done by providing a routingnplementation in the chilavith the keyword
redefinedn the routine header.

BNF:
routine-decl =identifier ["(" parameter-list)"]
["->""(" parameter-list }"] is
routine-impl
routine-impl .= [redefined] routine-body
| ...
Example:

move (dest: Location)is redefined
== Move the position of this ...

do

end move

The explicitkeyword redefinedprotects a programmer froaccidentalreuse
of a routine name of thearent.The parameter list in the redefined function
must be the same as the one of the origumattion. Changing oparameter
lists (covariance or contravariance) is illegal.

Only the implementation afoutinesmay beredefined. It is not allowed to
redefine the parameter or result list of an existing routine.

Calling Superclass Functions

Sometimes is is desirable t@ll the original of a functionthat has been
redefined (usually as part tie redefinition of thdunction). Consider the
following example:
Example:

class Person is

print is
== Write this person’s details to the screen

do

print (name, “\n”)

print (“date of birth: “, date, "\n")
end print

endclass

class Student is Person

49

Blue Specification, Version 1.0, 24.7.98

print is redefined
== Write this student’s details to the screen

do
super!print — — write Person details
print (“student number: “, stud_num, "\n")

end print

endclass

The classPersonhas aninterface routingprint that prints outthat person’s
details. The classStudent which inherits fromPerson redefines print to
print out the detail$or the student, whichinclude the detail$or a person.
Student'grint routine can print the person detailsdayling the original print
routine in itssuperclass. This is done pyeceding the routineall with the
keywordsuper and an exclamation marK) (

BNF:

call-chain
[super™!"] unqualified-cal "." unqualified-call }
identifier ["(" expression-list")"]

procedure-call ::
call-chain
unqualified-call::

This construct is oftemised tocall the superclass’sreation routine from a
childs creation routine.
Example:

class Student is Person

interface
creation (name: String, dob: Date, sid: Integer)is
== Create student instance

do
super!creation (name, dob)
student_num := sid

end creation

endclass

| have often been askedhy weuse anexclamation markather than the
usual dot notation in this situation. In other words: why do we write

superlcreation
instead of
super.creation

The answer ishat, althoughsimilar on first glance, thesare two very
different instructions. The dot notation specifiesobject before thelot.
The routine call is performed dhat other object. Theexclamation mark

50

Blue Specification, Version 1.0, 24.7.98

(or "bang notation")specifiesthe execution of eoutine that was define
in anotherclasson this object Thesuperkeyword is ascope specifie
not an object specifier. We regard this distinction asngaortantthat we
want the programmer to bevare ofthe difference. The differerstyntax
is an attempt to emphasise this difference.

16.4 Deferred Routines
Routine implementations can deferred. Deferred routinesre marked with
the keyworddeferred
BNF:
routine-decl = identifier ["(" parameter-list")"]
["->""(" parameter-list ")"] is
routine-impl
routine-impl .= deferred routine-spec
| ...
routine-spec := routine-comment
[pre condition]
[post condition]
end identifier
Example:
move (dest: Location)is deferred
== Move the position of this ...
pre
dest <> nil
end move
If a routine isdeferred,the class does not provide amplementation of the
routine. Classes that contain one or more deferred rowtraesalledabstract
classes No instances can be created of abstkxdses. Children of abstract
classescan provide implementatiorfer deferredroutines. Ifthey do not
provide implementationdor all deferred routines, they remain abstract
themselves.
Implementationgor deferred routineare provided by redefininghe routine
in the child. See section 16.2 for a description of redefinition.
17. Genericity

Classesnay begeneric. Genericity (oftencalled parametric polymorphism
allows classes toclude unspecifiedypes intheir class description, which
are instantiateavhen anobject ofthis class is created. This allowsrere

51

Blue Specification, Version 1.0, 24.7.98

17.1

general form of codeeuse. A list, for instancesan be defined to hold
elements of some type, where the type is not specifidtedime theclass is
implemented. Theactual type of the list elements is thgpecifiedwhen an
object of class list is created. Several instanceghef list canexist, one
holding elements of type Integer, another one elements ofSyp®, and so
on.

Unconstrained Genericity

Most of theBNF rulesinvolved in genericity have been mentionaolove.
Here we repeat the relevant parts:

BNF:
class-decl = classidentifier ["<" generics_list ">"] is
class-definition
generics-list generics-dec{ "," generics-dec}

generics-decl
formal-generic-param ::

formal-generic-paranj is class-typqd
identifier

var-decl = ident-list ":" type[initilisation]

class-type
| formal-generic-param

identifier ["<" actual-generics-list">"]
type{"," type}

type

class-type
actual-generics-list

The following example shows part of a class definition for a generic stack and
code fragments declaring and using the stdaks,instantiating it once as an
Integer Stack and once as a Stack of Figures.

Example:
class Stack <ELEM_TYPE> is
internal

var
st: Array <ELEM_TYPE>

interface
routines
push (elem: ELEM_TYPE) is
== push elem on stack

pop -> (elem: ELEM_TYPE) is
== pop top of stack and return it in elem

52

Blue Specification, Version 1.0, 24.7.98

endclass

class client
uses Stack, Figure

internal
var
sl: Stack <Integer>
s2: Stack <Figure>
f: Figure

sl.push (42)
s2.push (f)

end class

Within the genericclass (here:Stack the formal generic parameter
(ELEM_TYPE s a valid type. It can be used for ttheclaration ofvariables,
parameters and return values.

Classesnay have more than one generic parameter. The ligpes in the
instantiation (in the variable declaration), tual generic parametersmust
have the same number of elements as the list of identifiers clabsheader
(theformal generic parametexs

Example:
class List <T1, T2> is

end class

class Client
uses List
internal
var |: List <String, Integer>

end class

17.1.1 Classes and Types

It is time to revisit the relationship between classes and types. tdmtowe
did not distinguish very carefully betweetasses andypes. This was no
problem because, as long as meneric classesare involved, each class
corresponds t@xactly one type, and the type is referred to hysing the
class's name. Consider

var
p : Person

We sometimes said "p is of claBsrson" or "p is ofype Person”. Amore
accurate (but rather clumsy) way to describe this situation is "p is declared of
the type that is defined by class Person".

53

Blue Specification, Version 1.0, 24.7.98

This now changes with generic classes.

Considerthe class Stackshown above. Stackis a classput because it is
generic, it does not correspond to dgpe, but potentially to manyypes.

Since variable declarations need types @asses)the following declaration

is wrong:

var
s : Stack —-—-ERROR ERROR ERROR'!

Instantiating the generic parameters of a genddss generates tgpe. In
other words: Stackis not atype, but Stack<Integer>is. The following
declaration is legal:

var
s : Stack <Integer>

Almost everywhere in Blue code where we have seen class narfes $as

actually a type that is expected. (TBEF has always showthis correctly.)
For example, the actual generic parameters themselvégaenot classes.
Thus the following declaration is an error:

var
n: Array <Stack> — — ERROR!

The declaration should read

var
n: Array <Stack <Integer>>

The same is true for a supertype of a class, e.g.
class PersonList is List <Person> ...
and for type specifications in tieexpression (see section 10.3).

The only place where class names, rather than a type, are specified is in the
usesclause of a class.

17.1.2 Operations on Formal Generic Types

Since the dynamic type (the real type at runtime) of an object held in a variable
declared of a formal generic type is kotown, nospecial operation can be
allowed on that object.

Consider:
class List <ELEM_TYPE> is
var
head : ELEM_TYPE

end class

At compile time ofclassList the dynamic type oheadcannot beknown.
Only operationghat are allowed omll objects of any clasare allowed on
variables of thigype. These operations are listed in sect®®. They are
assignment and equality check (=, =, <>).

54

Blue Specification, Version 1.0, 24.7.98

17.2 Constrained Genericity

The generic type in generic classes can be constrained.

Example:
class List <T is Comparable> is

end class

In this exampleall actualgeneric parameterfer List in instantiations of this
class have to be of a subclas€omparablgor of classComparablétself).

As a result of this, operations definf Comparablecan beused within the
classList on variables declared of tyfe

18. Concepts not included in Blue

This sectiondiscusses someoncepts included in some other modebject-
oriented languages that are not included in Blue.

These concepts are not explained in detail. dibeussiorratherfocuses on
their relationship to Blue and explains the motivafiontheir exclusion from
the Blue specification.

18.1 Multiple Inheritance

While being a valuable concefitr serious production languageswultiple
inheritance is considered not important on lieginners' level. It isot a
concept we want tdeach in thefirst year, and its introduction into the
languagewould have raised a series oélated problemsthat would have
considerablycomplicated the languagand its implementation (such as
repeated inheritance, solving of name clashes, etc.)

18.2 Routine Parameters

Passing routines agarametersis, while sometimes nicefor elegant
algorithms, notcompatiblewith object-orientedprogramming. It assumes
that pieces of code have an existence of their own, independent from classes.

In a pure object-oriented language caftees onlyexist as part of @lass.

Passing a routine can be achieved (with a bit of overhead) by deficiagsa
with that routine and passing abject of thatclass. Alsooften constrained
genericity offers analternativesolution to problemshat can besolved by

passing routines.

55

Blue Specification, Version 1.0, 24.7.98

18.3

18.4

18.5

18.6

User Defined Infix Operators

User defined infix operators serve only for convenience in writing — they add
no functionalvalue. More importantly, theycan bemisused andtan easily

lead to code that is moreonfusing and lesseadable than code written
without them. Reading and correctness is more importantvwhiging. While

there are dew (frequentlymentioned) examples where thegn sensibly be
used, there seem to be many more where their use is tempting but confusing.

Function Overloading

In Blue, function overloading is included onfpr the predefinedarithmetic
operators (+, -, *, /), which are applicable to both Real and Integer numbers.

User defined overloading is not allowed.

The argument is similar @®r userdefined infix operators: while there are
some nice applications,the gainthrough the use of functionoverloading
seems to be too small and infrequent to make up for the added complexity and
potential source of confusion and misunderstanding.

Union Type

A union type is not needed since simitanstructscan beexpressed with
inheritance and supertypes.

Explicit Blocks

Explicit (user defined) blocksare not needed since in an object-oriented
language functionare expected to be relativedfrort. Explicit blocks serve
mainly asscope restrictions fovariables andshould be superfluous ithat
case.

56

Blue Specification, Version 1.0, 24.7.98

Appendix A: EBNF

class-decl

class-definition

enum-class-decl

general-class-decl

classidentifier ["<" generics_list ">"] is
class-definition

Enumeration enum-class-decl
| [class_typé general-class-decl

class-co_mme_nt _
manifestident-list
endclass

class-comment
uses| ident-list]
[internal

[constconst-decld

[var var-decls]

[routines routine-declq
interface

[creation["(" parameter-list™)"] is

routine-impl]

[routines routine-declq
[invariant condition]
endclass

generics-list
generics-decl
formal-generic-param

generics-dec{ "," generics-dec}
formal-generic-paranf is class-typd
identifier

const-decls := const-decf const-dec}
const-decl = ident-list ":" type initialisation
var-decls := var-decl{ var-decl}

var-decl = ident-list ":" type[initilisation]
ident-list = identifier {"," identifier }
initilisation = ":=" expression

57

Blue Specification, Version 1.0, 24.7.98

type

class-type
actual-generics-list

class-type
| formal-generic-param

identifier ["<" actual-generics-list">"

type{"," type}

routine-decls
routine-decl

parameter-list
param-decl

routine-impl

routine-body

routine-spec

routine-decK routine-decl}
identifier ["(" parameter-list")"]
["->""(" parameter-list ")"] is
routine-impl
param-deck"," param-dec}
identifier ":" type

deferred routine-spec
builtin routine-spec
[redefined] routine-body

routine-comment
pre condition]
constconst-declg
var var-decls]
do

statement-list
[post condition]
end identifier

routine-comment
[pre condition]

[post condition]
end identifier

statement

assignment
assignment-attempt
procedure-call

return

assertion
conditional

selection

loop

assignment

indexed-ident-list:=" expression-list

assignment-attempt

indexed-ident-list?=" expression-list

58

Blue Specification, Version 1.0, 24.7.98

indexed-iden{"," indexed-iden}

expressiod"," expressior}

indexed-ident-list
expression-list

procedure-call ;= call-chain

return = return

assertion .= assert "(" condition")"
conditional .= if conditionthen

statement-list

{ elseif expressiorthen
statement-lis}

[else
statement-list

end if

condition
statement-list

boolean-expression
{ statemen}

selection = caseexpressiorof
{ set_expr':" statement-lis}
[elsestatement-lis}
end case
loop = loop

statement-list
exit on condition
statement-list
{ exit on condition
statement-list}
end loop

59

Blue Specification, Version 1.0, 24.7.98

boolean-expression

expression

expression

function-call
operator-expression
reference-equality

type-equality
in

create
old
this

function-call

call-chain

call-chain
unqualified-call

[super"!"] unqualified-call{ "." unqualified-call }

identifier ["(" expression-list")"]

operator-expression

| expressiorf=>" expression
| entity

reference-equality

expressiorcomparisorexpression

comparison = s

type-equality = expressions type

in = expressionn set_expr

set_expr = "{"[set_eler{"," set _elen}]"}"
set_elem = expressionsubrange

subrange = expression'.." expression

60

Blue Specification, Version 1.0, 24.7.98

create = general-creat¢ array-create
general-create = createclass-iden{ "(" expression-list")"]
array-create = "[" expressio{ "," expressior} "]"
old .= old expression
entity .= indexed-ident

| manifest-constant
indexed-ident = 1dentifier { "[" expressiorn']" }
manifest-constant = integer-constant

| real-constant

| boolean-constant

| string-constant

| enum-constant
enum-constant = identifier

| qualified-ident
gualified-ident .= class-ident'!" identifier

61

Blue Specification, Version 1.0, 24.7.98

62

Blue Specification, Version 1.0, 24.7.98

Appendix B: Complete List of Aliases

alias original applicable to

n+m n.add (m) Integer, Real

n—m n.sub (m) Integer, Real

-n n.neg Integer, Real

n*m n.mult (m) Integer, Real

i1divi2 i1.div (i2) Integer

n mod m n.mod (m) Integer

rl/r2 rl.div (r2) Real

n-m n.power (m) Integer, Real

a<b a.greater (b) Integer, Real, String
a>b a.less (b) Integer, Real, String
a<=b a.greaterEq (b) Integer, Real, String
a>=b a.lessgq (b) Integer, Real, String
not a a.invert Boolean

aorb a.or (b) Boolean

aandb a.and (b) Boolean

s[i] s.substring (i,1) String

a[i] a.getElem (i) Array*

afi] == ... a.putElem (i, ...) Array*

str (a, b, ...) a.toString.concat (b.toString.concat (...3ny type

print (a, b, ...) output.write (str (a, b, ...)) any type

* context sensitive

63

Blue Specification, Version 1.0, 24.7.98

Appendix C: Implementation-Dependent Definitions

This Appendix lists all characteristics of Blue that are explicitly allowed to be
different in different implementations. Blygrograms should notely on
specific definitions for these features.

The implementation dependent features are
* The values of MAXINT and MININT.

64

Blue Specification, Version 1.0, 24.7.98

Appendix D: Interfaces of Predefined Classes

D.1 Integer

class interfacénteger is

== Author: Michael Kolling

== Version: 1.0

== Date: 9 October 1996

== Short: Blue standard Integer class

== "Integer" is a standard class of the Blue language. Itis used to store
== integer numbers. "Integer" is predefined in Blue and thus does not
== have to be imported (i.e. explicitly listed in the "uses" clause). It

== is automatically known in all classes.

== User defined classes cannot inherit from "Integer".

routines

neg-> (result: Integer) is
== Return the negative value of this number.
== Alias: — (prefix) (e.g.—4)

add (other: Integer) -> (sum: Integer) is
== Return the sum of this number and the nunoliesr.
== Alias: + other (e. 3 +4)

sub (other: Integer) -> (diff: Integer) is
== Return the difference of this number and the nurother.
== Alias: —other (e.g.3-9

mult (other: Integer) -> (prod: Integer) is
== Return the product of this number and the nurotiesr.
== Alias: * other (e.9.3*4)

div (other: Integer) -> (quot: Integer) is
== Return the integer part of the quotient of this numbeo#met.
== Alias: div other (e.g.3div 9

mod (other: Integer) -> (rem: Integer) is
== Return the remainder of the integer division of this number and
== other.
== Alias: mod other (e.g.3 mod 3

pow (exp: Integer) -> (result: Integer) is
== Return this number raised to the power specifieeXuy
== Alias: " other (e.0.3" 49

65

Blue Specification, Version 1.0, 24.7.98

greater (other: Integer) -> (result: Boolean) is
== Returntrue if this number is greater thather, otherwisdalse.
== Alias: > other (e.g3>49)

greaterEq (other: Integer) -> (result: Boolean) is
== Returntrue if this number is greater or equal thather, otherwise
==false.
== Alias: >= other (e.B>=4)

less(other: Integer) -> (result: Boolean) is
== Returntrue if this number is less thasther, otherwisdalse.
== Alias: < other (e.g3 < 4)

lessEq(other: Integer) -> (result: Boolean) is
== Returntrue if this number is less or equal thatter, otherwise
==false
== Alias: <= other (e.B<=4)

toString -> (s: String) is
== Return a string representation of this number. The standard format
== object (of class OutputFormat) is used to determine details of the
== appearance.
== Alias: str ()

end class

Real

class interfac®eal is

== Author: Michael Kdlling

== Version: 1.0

== Date: 9 October 1996

== Short: Blue standard Real class

== "Real" is a standard class of the Blue language. It is used to store

== floating point numbers. "Real" is predefined in Blue and thus does not
== have to be imported (i.e. explicitly listed in the "uses" clause). It

== is automatically known in all classes.

== User defined classes cannot inherit from "Real".

creation
== Never used explicitly. "Real" is a manifest class, and all
== real values exist automatically during every execution.
== No further reals can be created at runtime.

routines

neg-> (res: Real)
== Negation. Return the real that represents the value

66

Blue Specification, Version 1.0, 24.7.98

== "-this".

== Alias: -
post

res <> nil

add (other: Real) -> (res: Real)

== Addition. Return the real that represents the value
== "this + other".
== Alias: +

pre
other <> nil

post
res <> nil

sub (other: Real) -> (res: Real)

== Subtraction. Return the real that represents the value
== "this - other".
== Alias: -

pre
other <> nil

post
res <> nil

mult (other: Real) -> (res: Real)

== Multiplication. Return the real that represents the value
== "this * other".
== Alias: *

pre
other <> nil

post
res <> nil

divide (other: Real) -> (res: Real)

== Division. Return the real that represents the value
== "this / other".
== Alias: /

pre
other <> nil and
other <> 0.0

post
res <> nil

power (n: Real) -> (res: Real)

== Power. Return the real that is represents the value
== "this * n" ("this to the power of n").
== Alias: *

pre
n <> nil

post
res <> nil

sqrt -> (res: Real)
== Square root. Return the real that is represents the value
== "sqrt (this)" ("square root of this").
post
res <> nil

67

Blue Specification, Version 1.0, 24.7.98

trunc -> (res: Integer)
== Truncate to integer. Return the integer that is represents the
== whole number part of this number (i.e. "this" is rounded towards
== zero).
post
res <> nil

round -> (res: Integer)
== Round to integer. Return the integer that is nearest to the
== value of "this". (Fractions of value 0.5 or greater will be
==rounded away from zero, fractions less than 0.5 will be rounded
== towards zero.)
post
res <> nil

greater (other: Real) -> (res: Boolean)

== Greater than. Return true if the value of this real is greater
== than the value of "other". Return false otherwise.
== Alias: >

pre
other <> nil

post
res <> nil

greaterEq (other: Real) -> (res: Boolean)

== Greater or equal. Return true if the value of this real is
== greater than or equal to the value of "other". Return false
== otherwise.
== Alias: >=

pre
other <> nil

post
res <> nil

less(other: Real) -> (res: Boolean)

== Less than. Return true if the value of this real is less
== than the value of "other". Return false otherwise.
== Alias: <

pre
other <> nil

post
res <> nil

lessEq(other: Real) -> (res: Boolean)

== Less or equal. Return true if the value of this real is
== less than or equal to the value of "other". Return false
== otherwise.
== Alias: <=

pre
other <> nil

post
res <> nil

toString -> (s: String)
== Conversion to String. Returns a string with a printable
== representation of this real number.

68

Blue Specification, Version 1.0, 24.7.98

D.3

== Alias: str ()
post
s <> nil

end class

Boolean

class interfac&ooleanis

== Author: Michael Kolling

== Version: 1.0

== Date: 8 October 1996

== Short: Blue standard Boolean class

== "Boolean" is a standard class of the Blue language. Itis used to store
== truth values ("true" and "false"). "Boolean" is predefined in Blue and
== thus does not have to be imported (i.e. explicitly listed in the "uses"
== clause). Itis automatically known in all classes.

== User defined classes cannot inherit from "Boolean".

creation
== Never used explicitly. "Boolean" is a manifest class, and the
== boolean values exist automatically during every execution.
== No further boolean values can be created at runtime.

routines

invert -> (res: Boolean)
== Negation. Return "not this", i.e. "false" if this is "true",
== or "true" if this is "false".
== Alias: not
post
res <> nil

and (other: Boolean) -> (res: Boolean)
== Logical and. Return the boolean value "this and other".
== Alias: and
pre
other <> nil
post
res <> nil

or (other: Boolean) -> (res: Boolean)

== Logical or (inclusive). Return the boolean value
== "this or other".
== Alias: or

pre
other <> nil

post
res <> nil

69

Blue Specification, Version 1.0, 24.7.98

toString -> (s: String)
== Conversion to String. Returns a string with a printable
== representation of this boolean value. The string returned is
== "true" for true and "false" for false.
== Alias: str ()
post
s <> nil

end class

String

class interfac&tring is

== Author: Michael Kdlling

== Version: 1.0

== Date: 24.9.96

== Short: Blue standard String class

== This class implements the standard String type for Blue.
== Strings are a sequence of characters. The first character in a string
== has the index 1, the last index is equal to length(string).

== Blue does not have a separate character type. Characters are represented

== by a string of length 1.

creation is

== Never used - strings are created by writing string literals
== in double quotes.
== Example: "This is a string"

routines

length -> (I: Integer) is
== Return the length of the string (number of characters).

concat(s: String) -> (newstring: String) is
== Return the string which is the concatenation of this string
== and 's'. This string and 's' remain unchanged.
== Alias: str ()

substring (start: Integer, len: Integer) -> (s: String) is
== Return the substring from this string which starts at 'start'
== with length 'len’.
== If "len" is nil, the substring from "start" to the end of the
== string is returned.

pre
(start >= 1) and (start <= length)

and

(len <> nil => (start+len <= length+1))

70

Blue Specification, Version 1.0, 24.7.98

find (s: String, n: Integer) -> (pos: Integer) is
== Return the position of 's" in this string, starting the search at
=='n". 'pos'is the index where 's' was found or nil if not found.
pre
(s <> nil) and (n >= 1) and (n <= length)

insert (s: String, pos: Integer) -> (newstring: String) is
== Return a string that is like this string with 's' inserted into this
== string at position 'pos'.
pre
(s <> nil) and (pos >= 1) and (pos <= length)

delete(start: Integer, cnt: Integer) -> (newstring: String) is
== Return a string that is like this string with 'cnt' characters deleted,
== starting at position 'start'.
== If "cnt" is nil, all characters from "start" to the end of the
== string are deleted.
pre
(start >= 1) and (cnt >= 0) and (cnt <= length)

less(s: String) -> (is_less: Boolean) is
== Returns true, if this string is less than 's’, else false.
== See class comment (above) for ordering of strings.
== Alias: <
pre
s <> nil

greater (s: String) -> (is_greater: Boolean) is
== Returns true, if this string is greater than 's’, else false.
== See class comment (above) for ordering of strings.
== Alias: >
pre
s <> nil

lessEq(s: String) -> (is_less_eq: Boolean) is
== Returns true, if this string is less or equal to 's', else
== false.
== See class comment (above) for ordering of strings.
== Alias: <=
pre
s <>nil

greaterEq (s: String) -> (is_greater_eq: Boolean) is
== Returns true, if this string is greater or equal to 's’, else
== false.
== See class comment (above) for ordering of strings.
== Alias: >=
pre
S <> nil

toString -> (s: String)
== Conversion to String. This function returns the string itself.
== It is an identity function. There is usually no need to call
== this function explicitly. It is provided to make the "str()"
== alias work with all standard classes, including string.
== Alias: str ()

71

Blue Specification, Version 1.0, 24.7.98

post
s <> il

toUpper -> (s: String)
== Return a string that is a copy of this string with all lower case
== letters replaced by their upper case equivalent. Other character are
== unchanged.

toLower -> (s: String)
== Return a string that is a copy of this string with all upper case
== |letters replaced by their lower case equivalent. Other character are
== unchanged.

strip -> (s: String)
== Return a string that is a copy of this string with leadfing and
== trailing whitespace removed. Whitespace are spaces, TAB
== characters ("\t") and newlines ("\n").

fill (fill_char : String, front : Boolean, length : Integer) -> (s: String)
== Return a copy of this string that has characters added to the
== front or back. "ill_char' is a character that is added to the
== front (if ‘front'=true) or back (if 'front'=false) of this string
== until the string has length 'length’. If the length of the
== initial string is already equal to or greater than length, the
== string remains unchanged.

== This function can be used to align string output. E.g.
== print (s.fill (" ", true, 20))

== prints the string s right aligned in a field 20 characters wide
pre
(fill_char.length = 1) and (length >= 0)

caseEqual(other: String) -> (is_equal: Boolean)
== "caseEqual" is a case-insensitive string equality test.
== It returns true, if this string and "other" are equal except
== for possible differences in the case of letters.

ord -> (val: Integer)
== Return the ordinal value of the first character of this string.
== The ordinal value of a character is its internal byte
== representation, usually its ASCII (or, more correctly ISO) code.
== If the length of the string is 0, the result is O.

hash (limit: Integer) -> (hash_val: Integer)
== Return a hash value for a string. The value is between O
== and limit.
pre
limit >0
post
hash _val >= 0 and hash_val < limit

end class

72

Blue Specification, Version 1.0, 24.7.98

D.5

Array

class interfacérray <ELEM_TYPE> is

== Author: Michael Kolling

== Version: 1.0

== Date: 14 November 1996

== Short: Blue standard Array class

== "Array" is a Blue standard class that is predefined in the Blue language.
== Array objects can be used to store a number of objects of the same type.
== Arrays are mainly a means for implementation of higher level collection
== classes (such as sets, sequences, lists, etc.) but they can also be used
== directly in user classes.

== Arrays are best used in situations where the number of elements is known
== in advance and does not change very often. Resizing an array can be

== relatively expensive in terms of both time and space required. If the

== number of elements changes regularly dynamically, consider using

== another collection (List, Set, etc.) from the standard collection library.

creation (size: Integer)
== Creation an array with 'size' elements.

routines

getElem(pos: Integer) -> (elem: ELEM_TYPE)
== Return the element at position 'pos'.
pre
pos >=1 and
pos <= size

putElem (pos: Integer, elem: ELEM_TYPE)
== Assign 'elem' to position 'pos’'.
pre
pos >=1 and
pos <= size

init (val: ELEM_TYPE)
== Set all array elements to 'val'.

size-> (sz: Integer)
== Return the current size of the array.
post
sz>=0

setSize(sz: Integer)
== Set the size of the array to 'sz'. If the current size is larger
== the elements at positions greater than 'sz' will be lost. If the
== current size is smaller, the elements at the new positions will
== be undefined.
pre
sz>=0

73

Blue Specification, Version 1.0, 24.7.98

D.6

~ post
Size = sz

end class

Enumeration

class interfac&numeration is

== Author: Michael Kdlling

== Version: 1.0

== Date: 30.11.96

== Short: Abstract superclass for enumerations.

== This class serves as a superclass for all enumeration classes. It is
== abstract — no objects can be created of this class directly.

routines

pred -> (previous:SelfTypgis
== Return the predecessor in this enumeration type. If there is no
== predecessor, retumil.

succ-> (next:SelfTypgis
== Return the successor in this enumeration type. If there is no
== successor, retumil.

ord -> (position: Integer) is
== Return the ordinal position of this element in the enumeration list.
== The first element has the ordinal 1, the next is 2, and so on.

toString -> (s: String) is
== Conversion to String. Returns the name of this enumeration value
== as a string
== Alias: str ()

end class

Note that "SelfType" is nlegal type in Blue. A Bluelasslike this cannotnormally be
written. The meaning of the word "SelfType" in tbetine interfacesabove indicateshat
for everyconcretesubclass of Enumeration that routimeturns the type of thesubclass.
For an Enumeration "Colour", for example, the routine pred returns a result of type Colour.

TextTerminal

class interfac@extTerminal is

== Author: Michael Kalling

== Version: 1.1

== Date: December 1997

== Short: Standard text terminal for the Blue environment

== The TextTerminal provides a simple standard terminal for text 1/O.

74

Blue Specification, Version 1.0, 24.7.98

== Input and output is buffered by default. The output buffer is flushed
== at the end of each line (when a "\n" is written) and on a call of an

== input routine. If single characters have to be written, buffering

== can be switched off (see below).

creation
== Create the TextTerminal

routines
inherited from IO_Channel:

write (s: String) is redefined
== Write 's' to the terminal

readstr -> (s: String) is redefined
== Read a string from the terminal. Reads characters until
== a line break ("\n") is read. The resulting string does
== not include the line break character.

readChar -> (s: String) is redefined
== Read the next character from the terminal. Every character
== (including line break characters) are returned as entered
== The line break character is returned as "\n".
== The input is buffered by default. (This means that editing the
== input line during input is possible for the user, and the program
== will return from this function only after a whole line was
== entered.) For unbuffered input, see getChar and askChar
== below.

== When expecting single character input, note that "readChar" does
== not discard the NewLine character. If the input is, for instance,

== "A<Enter>", then "readChar" will return the "A", while the <Enter>
== remains in the input queue (as a NewLine character). Thus the next
== input operation will immediately read a NewLine. To deal with this
== situation, use readStr instead or call "endLine" after "readChar".

readint -> (i: Integer) is redefined
== Read an integer from the terminal. Skips white space (spaces,
== tabs and newlines) before the integer. Returns "nil" if the next
== non-white characters do not represent a number.
== Numbers are written with an optional - or + sign and digits.

readReal-> (r: Real) is redefined
== Read a real number from the terminal. Skips white space (spaces,
== tabs and newlines) before the number. Returns "nil" if the next
== non-white characters do not represent a real number.
== Numbers are written with an optional - or + sign, digits and a
== decimal point.

endLine is redefined
== Read and discard all characters up to (and including) the next
== NewLine character.

atend -> (isAtEnd: Boolean)
== Return true if the end of input has been reached. While input
== from a terminal does not have a natural end, end end-of-input

75

Blue Specification, Version 1.0, 24.7.98

== condition can be generated by pressing CTRL-D.

== If the next character entered is a CTRL-D, 'atEnd' removes the
== character from the input and returns true. If it is any other

== character, 'atEnd' leaves it pending in the input queue and

== returns false.

new routines:

getChar -> (s: String) is redefined
== Get the next character from the terminal (unbuffered).
== This function is similar to "readChar" (see above), but the
== input is not buffered. The function returns as soon as a
== character is entered - no line editing is provided.

askChar -> (s: String)
== Check whether there is a character to be read from the terminal.
== If so, read it.
== This function is similar to "getChar" (see above), but the
== function always returns immediately. If a character has been
== entered, that character is returned, otherwise "nil" is returned.

show
== Show the terminal window.
== This routine opens the window if it was not open, de-iconifies
== the window if it was iconified and brings it to the top of the
== window stack.

hide
== Hide the terminal window. The window is closed.

clear
== Clear the terminal window and set the cursor to 0,0 (the upper
== |left corner)

width -> (columns: Integer)
== Return the current width of the terminal window in characters.
== (Note that the terminal currently does not support resizing.)

height -> (lines: Integer)
== Return the current height of the terminal window in text lines.
== (Note that the terminal currently does not support resizing.)

cursorTo (x: Integer, y: Integer)
== Set the cursor to position (x,y). The legal ranges for
==xandy are:
== x:0..width-1
== y:0.. heigth-1
== If x or y is outside its range, it is set to the nearest
== legal value.
== This routine works only after the terminal window has been
== exposed at least once (otherwise the terminal size is not known).
pre
x <>nil and y <> nil

cursorOn
== Switch the screen cursor on. (This is the default.)

76

Blue Specification, Version 1.0, 24.7.98

D.8

cursorOff
== Switch the screen cursor off.

buffered (buf_on: Boolean)
== Set the output buffering mode. If buffering is on (the default)
== then the output line is buffered. The buffer is flushed when
== a newline is written or when an input routine is called.
== If output should be visible immediately without a newline, switch
== puffering off. Output without buffering is slower for most
== purposes.
pre
buf_on <> nil

inputEcho (echo : Boolean)
== Switch input echo on/off. The default is "on" (echo=true).
== When echo is on, characters appear on the screen as they are
== typed. When echo is off, characters typed on the keyboard do
== not appear on screen.
pre
echo <> nil

end class

OutputFormat

class interfac®utputFormat is

== Author: Michael Kdlling
== Version: 1.0
== Date: 1.10.1997

== Short: Class defining output formatting options for terminal output.

== The OutputFormat class defines some output formatting options for

== numbers and other data. The Blue system automatically creates an object
== of this class at startup. This object is accessible from all Blue classes

== through the predefined constant "format".

== The following classes use the format object to format their output:

== Integer, Real, Boolean, Enumeration

== User defined classes may use this object for the same purpose if they
== wish. The class String does not use the format object (see routine
== "fill" in class String for formatting string output).

== All the classes above use the field width and alignment setting from this
== class. The class Real uses, in addition to this, the 'scientific' and
== rounding settings.

creation
== Create format object. No parameters needed.

routines

77

Blue Specification, Version 1.0, 24.7.98

setWidth (n : Integer)
== Set field width for output. Defaultis 0. If the string
== representation of a value consists of more characters than
== the field width, the width is ignored.

== Used by Integer, Real, Boolean and Enumeration.

== Note that the class String does not use the format object for
== output. String output is unaffected by the field width. To
== align strings, use the 'fill' function in class String.
pre
n>=0

alignRight (right : Boolean)
== Specify alignment of output in the field defined by 'setWidth'.
== The default is 'left' (spaces will be added to the right of the
== output as appropriate). If 'right' is set to true, output will
== be right-aligned within the specified field width.
== Used by Integer, Real, Boolean and Enumeration.
pre
right <> nil

scientific (useScientific : Boolean)
== If useScientific is true, scientific notation is used for output
== of real numbers (e.g. 1.23456e+02). Otherwise fixed point
== notation is used (e.g. 123.456). The default is useScientific=false.
== Used by Real.
pre
useScientific <> nil

roundTo (n : Integer)
== Round output of fixed point real numbers to n digits after the
== decimal point. Defaultis 6. Used by Real.
pre
n>=0

getWidth -> (n : Integer)
== Return the current field width.

isRightAligned -> (right : Boolean)
== True if right alignment is currently on.

isScientific -> (scientific : Boolean)
== True if scientific notation is currently on.

getRound-> (n : Integer)
== Return the current round value.

reset
== Reset all values to their defaults

end class

78

Blue Specification, Version 1.0, 24.7.98

Index
manifest 4, 13
— Seecomment, implementation predefined 35, 40
! 50 user defined 40
= 4 comment 36
<> 5 implementation 38
= 5 interface 37
== Seecomment, interface routine 22
=> Seeimplies comparison 5
concat 40
—A— conditional 31
conformance 2425, 29
abstract Seeclass, abstract const See constant
alias 2 constant 19
bracket ([]) 10 initialisation 20
list of 63 named 19
print 39 constrained genericitySeegenericity, constrained
readChar 41 control structures 31
readint 41 conversion
readReal 41 Integer to Real 6, 7
readStr 41 to String 40
str 40 create 30
Array 3,5,10 creation routine Seeroutine, creation
boundaries 10 current object See this
class interface 73
example 10 —D—
index type 10
literal 10 data
assertion 27 internal 11
assignment 42 4 deferred 51
multi- 24 defined 17
assignment attempt 25 dynamic See class, dynamic
dynamictype 25
—B—
—E—
blocks 56
Boolean 3,4,57, 19 EBNF 57
class interface 69 else Seeconditional
builtin 23 encapsulation 17
Enumeration 413
—C— class interface 74
example 13
case 32 qualified 14
of characters 15 environment variables 39
character equality 28
and string 8 evaluation
special 9 partial 7
child Seeinheritance exit
class 3 from loop 33
abstract 51 from routine 33
and type 2, 53 expression 27
comment Seecomment, interface
dynamic 4 —F—
enumeration 13
example 11, 16 FileHandle 44
general 11 FileSystem 43
generic Seegenericity format (predefined constant) 39, 40
interface of predefined 65 format (predfined constant) 41
invariant Seeinvariant function 21

Blue Specification, Version 1.0, 24.7.98

function call

genericity
constrained
eaxmple
unconstrained
GUI

110

file
identifier
if-statement

implementation dependent

implemetation comment
implies
in operator
infix operators
user defined
information hiding
inheritance
and uses
multiple
initialisation
of objects
In-operator
example
input
standard
input (variable)
Integer
class interface
interface
and inheritance
view
interface comment
interface routine
internal
data
internal routine
invariant
is-operator
iteration

literal
Array
Boolean
Integer
Real
set
String
loop
pretest/posttest

manifest

MAXINT

MININT
multi-assignment

28

Seeconditional

Seecomment, impl.
35
20

56
Seeencapsulation
48
16
55

3, 4, 56, 19
65
12, 37

12
Seecomment, interf.
11, 48

11
11
36
Seetype equality
33

——

See class, manifest
6
6
24, 28

64

—N—
nil 17, 26, 42
—0O0—
old 35
operations
general 4
operator
precedence 14
output
formatting 40
standard 39
output (variable) 39
OutputFormat
class interface 77
OutputFormat 39, 40
overloading 56
—p—
parameter 21
formal generic 53
parameters
routines as 55
parent Seeinheritance
pass by value 21
polymorphism Seegenericity
postcondition 22,34
precondition 22,34
predefined
and uses 16
classes 35, 40
objects 39
variables 39
print Seealias, print
procedure 21
procedure call 26
program 11
Programming Environment 1, 12
project 2
—R—
readChar Seealias, readChar
readInt Seealias, readint
readReal Seealias, readReal
readStr Seealias, readStr
Real 3,4,56, 19
class interface 66
redefine 3549, 50, 51
redefinition Seeredefine
repeat loop 33
return 26
return value 21, 27, 28
routine 21, 48
builtin Seebuiltin
comment Seecomment, interface
creation 11, 30, 48
deferred Seedeferred
example 21
interface Seeinterface routine
internal Seeinternal routine

80

Blue Specification, Version 1.0, 24.7.98

visibility 22
runtime error —T—
assertion failure 27
invariant violation 36 TextTerminal 39,43
missing loop exit 34 class interface 74
pre/postcondition violation 34 this 30
undefined result 22 toString 40, 41
undefined variable 17 type 52
and class 53
—S— dynamic See dynamic type
formal generic 54
scope predefined 5
of constants 19 static See static type
of routines 22 user defined 11
of variables 16 type equality 29, 54
selection 32
set constant 20, 32 —U—
stable state 36
statement 24 undefined 17, 22
static type 25 user interface 39
strSeealias, str uses 15
String 3,4,58, 19
and characters 8 —\V—
and manifest 8
class interface 70 variable 4,16, 48
long 9 and nil 17
subclass Seeinheritance encapsulation 17
super 49, 50 lifetime 17
superclass Seeinheritance state and value 17
calling Seesuper visibility
supertype 54 of routines 22
syntax
special See alias —\W—
while loop 33

81

