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Abstract

We describe GGI, a visual system that allows the user
to execute an automatically generated data flow graph con-
taining code modules that perform natural language pro-
cessing tasks. These code modules operate on text docu-
ments. GGI has a suite of text visualisation tools that allows
the user useful views of the annotation data that is produced
by the modules in the executable graph. GGI forms part of
the GATE natural language engineering system.

1. Introduction
The current relationship between visual languages and

natural language processing (NLP) is restricted to translat-
ing graphical languages into natural language [1] or visual
representations of text processing languages [13]. We be-
lieve that there is a great deal of potential for expressing
the execution of NLP systems visually. One reason for this
is the modular nature of NLP algorithms, which mean that
a data flow visual language is a natural way of represent-
ing NLP programs. There is also a great need for generic
tools that allow the visualisation of data associated with tex-
tual documents after they have been analysed by NLP tech-
niques.

This paper concentrates on the visual execution of NLP
tasks using data flow techniques, and visualising the inform-
ation that results. Specifically, the paper describes GGI –
the GATE Graphical Interface. GGI is a tool for visualising
the execution and data of programs integrated into GATE
[5], a natural language engineering environment which aims
to support researchers and developers of NLP systems and
applications by supplying facilities for modular reuse of
NLP software, management of large text collections, and
visualisation of processing results (see Section 2).

While GGI provides a full user interface to GATE, in-
cluding, for example, support for file management, there
are two aspects of it that are of interest here. First,
GGI provides an autogenerating, customisable, graph for
controlling the execution of interdependent NLP modules.
Second, GGI provides a class of generic visualisation tools
for viewing the complex information computed about texts
by NLP modules.

In GATE, execution of all modules is performed in an
executable graph that is a simple form of data flow diagram
in which the nodes are the modules or functions to be ex-
ecuted and the arcs represent data flows. We call this graph
thesystem graph. The functions that form the nodes have a
large computational granularity and are of comparable com-
putational size to the functions seen in, e.g., ConMan [9].

This graph is less computationally expressive than is typ-
ically found in visual data flow languages [10, 18], as it con-
tains no looping (iteration) or distributor constructs (by dis-
tributor construct we mean that the result of execution of an
upstream module defines which downstream module is to
be executed). However, this simplicity has benefits for the
modular system development architecture that GATE aims
to supply.

In particular, it is possible to autogenerate the data flow
program (system graph) from the declaratively stated pre-
and postconditions that each module in the GATE system
must have. The preconditions define the data that must
be present before a module can be run; the postconditions
define the data that will be present after a module has been
run. Together these permit the dynamic construction of the
execution graph’s arcs and mean that no ‘hard-coding’ of
module connections is required. At run time actual data
flow is mediated by a common database through which all
modules intercommunicate and the execution graph con-
veys the state of the database to the user through the col-
ouring of modules according to a traffic-light metaphor to
indicate their executability.

The autogeneration procedure means that users do not
need to take directly into account the other modules in the
system (or unknown modules that might in the future be ad-
ded to the system) when they integrate a new module into
GATE. It thus helps to realise GATE’s objective of provid-
ing a ‘plug-and-play’ architecture for natural language en-
gineering. The executable graph is described in more detail
in Section 3.

The second aspect of the GGI we describe below is the
set of data visualisation tools it provides. The data produced
from the execution of a module can be viewed directly from
the system graph. Clicking on the module brings up the list
of postcondition data types, i.e., the data that the module
has created. Selecting one launches an appropriate results
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Figure 1. The GATE System Graph

viewer. These data visualisation tools range from the simple
highlighting of annotations in the text to graph representa-
tions of parse trees and conceptual hierarchies represented
as DAGs and are described in more detail in Section 4.

2. Background: GATE and NLP
GATE, and as a consequence GGI, is the result of re-

cent developments towards code reuse in NLP. In particu-
lar GATE is based on an underlying database which con-
forms to the TIPSTER database standard [8]. This stand-
ard has been defined by the Architecture Committee of the
ARPA-sponsored TIPSTER programme with the intention
of providing a common framework for advanced text pro-
cessing systems, such as information retrieval and inform-
ation extraction systems. We have adopted this standard
in GATE believing it to have even wider potential util-
ity within natural language engineering, for example for
machine translation, summarisation, and computer-assisted
language learning.

In the TIPSTER model arbitraryannotationsabout doc-
uments are stored in a database separate from the text. An
annotation consists of at least anannotation typeand one
or morespans(a pair of numbers that indicate a start point
and an end point in the text). Furtherattributes(attribute-
value pairs) can be associated with an annotation, including
references to other annotations.

Figure 2 shows some annotations. It contains two kinds
of annotation type: sentences and tokens. Tokens are the
result of tokenization, a process that divides a text up into
elements such as punctuation and ‘words’. Associated with
the token annotations are part-of-speech attributes which in-
dicate the word class of each token. The sentence annota-
tions have references to the tokens that are in them.

Integration of NLP modules in GATE is achieved by re-
quiring modules to read and write their final annotations to

a TISPTER database. A module is an interface to a resource
which may be predominantly algorithmic (e.g. a parser) or
predominantly data (e.g. a lexicon), or a mixture of both.
Typically, a GATE module will be a wrapper around a pre-
existing NLP module or database (hence, software reuse).
It might seem that pipelining communication of executable
modules through a database is inefficient. However, such
is the nature of NLP tasks that any module might perform a
large amount of computation which reduces the significance
of the database overhead. Further, the objective of GATE
is to promote code reuse between research groups and the
construction of experimental systems for which efficiency is
not the prime concern. Finally, the model maps naturally to
client-server setup which easily supports distributed access
to algorithmic and data resources.

The example in Figure 2 also illustrates how modules
operate in GATE. The information shown there has actually
been produced by three modules: a tokeniser module has
produced the token annotations; a sentence-splitter mod-
ule has determined sentence boundaries and added the sen-
tence annotations and their associated constituent attributes;
and a part-of-speech tagging module has added the part-of-
speech attributes to the token annotations. These modules
are shown in Figure 1. For the most part modules are com-
ponents for building information extraction systems, sys-
tems designed to extract prespecified types of information
from unstructured natural language text (such as newswire
reports, journal articles, patents, e-mail, web pages, etc.)
and place it into database-style structured representations,
or ‘templates’.

Most of these modules originated in the LaSIE system
[6], our entry in the ARPA-sponsored MUC-6 information
extraction system evaluation. These modules have been ‘re-
used’ in GATE by extracting them from LaSIE and writ-
ing simple wrappers around them to enforce communica-



Figure 2. Some Annotations

tion through the GATE database.
GATE is a fully implemented system and is currently in

use in a number of NLP research groups around the world.
The GGI code is implemented in Tcl/Tk. GATE is imple-
mented in C++, however the modules may be written in any
language. There are currently Perl, Prolog, Tcl, C, C++,
flex, and Common Lisp modules integrated into GATE.

3. Executable Graphs
A main purpose of the GGI is to allow execution of the

modules within GATE. Section 3.1 describes the meaning
of the primitives in the graph and how it is executed, Section
3.2 describes the method used to autogenerate the graph,
and Section 3.3 discusses the method of creating manage-
able subgraphs.

3.1. Graph Syntax and Semantics
An example of a system graph is shown in Figure 1. A

system graph is an executable graph, and is a simple data
flow program. Modules are shown as nodes in the graph,
with the data flow indicated by the arcs. Each incoming
arc to a module indicates a dependency on results of pre-
vious processing. All modules at the source of arcs con-
necting to a dependent module must be run before the de-
pendent module is executed, except where the incoming
arcs are connected by lines, in which case the module re-
quires the execution of only one of the modules at the other
end of the arc (these arcs are then termedor-arcs). Thus,
in the example graph of Figure 1, thebuChart Parser
module may only be run if the results of theGazetteer
Lookup module and either theTagged Morph module
or the Morph module are available. They in turn have
earlier dependencies. TheTokenizer module has no de-
pendencies and so begins execution. There are two mod-
ules with no downstream children:MUC-6 Results and

MUC-6 NE Results, so either of these must produce an
end result. However, because results from modules in the
middle of the graph may be of interest to a NLP researcher,
any module can be chosen as the final one that will be ex-
ecuted.

At any point in time, the state of execution of the sys-
tem, or, more accurately, the availability of data from vari-
ous modules, is depicted through colour-coding of the mod-
ule boxes. Figure 1 shows a system window. Light grey
modules (green, in the real display) can be executed. Mod-
ules that require input from others not yet executed, and so
cannot be executed yet, are shown with a white background
(amber, in reality). The modules that have already been ex-
ecuted are shown in dark grey (red).

The system graph can either be run in batch mode or in
an interactive manner. To run in batch mode, the user selects
a path though the graph and clicks on the final module. The
current state of the graph, and the document (or collection of
documents) currently undergoing execution is shown. The
system ensures that the path chosen by the user is valid by
only allowing a module to be selected if all its inputs have
already been selected. Selected modules are executed in a
data driven manner, with modules being executed as soon
as their input data is available.

The interactive mode is designed for module developers.
The modules under development can be executed as with
the batch mode then the module or modules to be retried
(after the underlying code or resources have been changed)
can be reset by a mouse click. This clears the database of
the postcondition annotations and allows the modules to be
rerun.

The nature of the database (where each module produces
a specific set of annotation types) means that it is possible
to view partial results of execution without recourse to buf-
fering intermediate data [19].



3.2. Autogeneration

The graph shown in Figure 1 is in fact thecustom graph.
This is the system graph that shows all the modules in
the particular GATE environment. The custom window is
automatically generated from the configuration information
that is associated with each module, e.g., for thebuChart
module:

set creole_config(buchart) {
title {buChart Parser}
pre_conditions {

document_attributes {language_english}
annotations {token sentence morph lookup}

}
post_conditions {

document_attributes {language_english}
annotations {name syntax semantics}

}
viewers {

{name single_span}
{syntax tree}
{semantics raw}

}
}

The autogeneration algorithm creates data flow arcs from
modules that have an annotation type in their postconditions
to the other modules that have the same annotation type in
their precondition. For example,Gazetteer Lookup
has the annotation typelookup in its postconditions, so
an arc connects it withbuChart Parser, which has
that annotation type in its preconditions. Arcs are not cre-
ated between modules that operate on different languages,
however in Figure 1, all the modules operate on English
language documents. When more than one module has the
same annotation type in its postcondition then it is assumed
that either module may produce the required result, and so
the two arcs areor-arcs and are connected by a line (both
Morph andTagged Morph produce the same annotation
and so haveor-arcs intobuChart Parser).

The most computationally expensive part of autogen-
eration goes into discarding redundant arcs. Redundant
arcs are those that connect an upstream module to a down-
stream module where it can be deduced that the precon-
ditions of modules between the two given modules cover
the annotation types that the arc represents. For example,
the Tokenizer produces annotation types required by
buChart Parser, but there is no need for a data flow
arc between these modules as modules between them also
require these annotation types.

The autogeneration facility allows easy integration of
new modules into the GGI. Most NLP tasks can be ex-
pressed in the simple data flow techniques of this system,
but it is currently not possible to integrate NLP tasks that
require iteration.

Some modules have the same annotation type in both
pre- and postconditions. These modify the result of previ-
ous computation and pass the data flow down stream. This

kind of module, termed afilter, cannot be automatically po-
sitioned in the diagram, instead the user selects the position
of filters from the arcs on which they may appear (arcs from
modules that produce the annotation type the filter operates
on). During execution filters are treated as normal modules.

3.3. Customising Graphs

The system graphs are displayed with the DAWG tool
[14]. This is also used in the tree based visualisation tools
described in Section 4. DAWG allows commands to be
associated with nodes, hence it can be used for data flow
graphs. It has a layout algorithm based on the method used
by daVinci [4] to minimise arc crossing.

GGI suffers from the scaling problem [2], as the size of
the custom graph quickly becomes unmanageable. This can
be alleviated by creating new system graphs from specified
subgraphs of the custom graph.

It is possible to group these derived system graphs to-
gether so that the user may chose from a selection of tasks
at the top level of the GGI (not shown here for space reas-
ons). Having chosen a task (e.g. parsing), an intermediate
level display appears, presenting the user with a selection
of icons, one for each of the one or more specific systems
capable of performing the selected task (e.g. the buChart
parser or the Plink parser). Once a particular system is se-
lected, a final window appears displaying the appropriate
system graph.

4. Visualisation of NLP Data

NLP data is wide ranging in scope but has specific char-
acteristics that mean the problems with visualising large
amounts of data [2] are less significant. This is because
either the information is visualised as coloured markup
on the text (meaning that the text can be displayed using
traditional textual techniques [12]), or the information is
grouped over small segments of text, such as paragraphs
or sentences.

Figure 3. Multiple Span Viewer



Figure 4. Tree Viewer

GGI has several viewers for the display of annotations.
The viewer for each postcondition annotation is specified
by the module configuration file, an example of which is
given in Section 3.2. The viewers can be classified into
those which display the text and overlay the annotations
as colours or shades (‘single span’, ‘multiple span’, ‘text-
attribute’); and those that visualise a more complex relation-
ship between annotations in an acyclic graph format (‘tree’).
Where no viewer is specified, a default annotation dump is
displayed (similar to that of Figure 2). The configuration
file for thebuChart Parser module in Section 3.2 spe-
cifies that the ‘name’ annotation type is assigned the ‘single
span’ viewer, ‘syntax’ the ‘tree’ viewer, and ‘semantics’ the
‘raw’ or annotation dump viewer. New viewers can be writ-
ten where the default ones are not appropriate for new an-
notation types.

The ‘single span’ and ‘text-attribute’ viewers are fairly
simple, assigning different colours to each annotation.
‘multiple span’ is more complex, as it is designed to view
annotation chains. An annotation chain is a list of annota-
tions specified by annotation references. The user chooses a
highlighted part of the text, and all the other highlights that
are part of the same chain are displayed. Figure 3 shows this
viewer displaying the results of a coreference task. Corefer-
ence identifies elements of the text that are interpreted as
referring to the same real world entity. For example, a per-
son and a pronoun might be coreferential. In Figure 3 the
user has chosen one of the highlights referring to ‘Richard
Bartlett’.

The ‘tree’ viewer containing ‘syntax’ annotations (pro-

duced by thebuChart Parser) is shown in Figure 4.
The parse trees currently integrated into GATE span at most
a sentence, so that the tree size is always manageable.

The viewers are activated by first clicking with the
mouse on the module in the system graph which reveals a
menu of annotations, choosing an annotation brings up the
appropriate viewer.

There is a certain amount of connectivity between these
viewers, as it is possible to click on a node in the parse
tree and have the area of text highlighted in a text display
window, or it is possible to highlight areas of text and dis-
play the raw annotations that are contained within the high-
lighted span.

5. Concluding Remarks

We have described a tool called GGI that supports the
visual execution of NLP systems that consist of multiple in-
terdependent modules. The execution graphs in GGI are
autogenerated from declaratively stated input and output
specifications of the component modules, a feature which
makes it easy to integrate new modules. The graphs are also
customisable, permitting a user to define straightforwardly a
new subgraph of interest. GGI also includes a range of tools
for visualising the complex annotations that NLP modules
may produce as a result of analysing texts.

GGI is proving to be an invaluable tool for the rapid de-
velopment and integration of new NLP modules into a lar-
ger application. Feedback from users of the system has in-
dicated that the graph-based execution model is appealing
and that the visualisation tools are a great aid to research-



ers.
Further work will be driven by user feedback. Increas-

ing the visual content of the system graph is a possibility.
The discrete nature of the tasks would make iconic nodes a
potentially useful addition because icons could ne used to
group nodes that perform particular tasks, such as parsing
or tagging. The labelling of arcs with the annotations that
flow along them is also a possible future feature.

The data flow execution method presented here covers
many NLP applications and allows the modules that form
the nodes of the graph to be placed automatically. However,
there are tasks that require more expressivity. The field
of multilinguistic text analysis involves deciding what lan-
guage a given document is written in. Allowing this sort
of module would require the addition of distributor primit-
ives. The current batch mode of execution might have to be
modified because it may not be practical to choose a path
through a graph when the path may branch.

Allowing iteration within the system graph would enable
the NLP modules to be finer grained, and could allow NLP
algorithms to be encoded with the data flow model. This
would have a profound effect on the GGI model as presen-
ted here, complicating considerably the autogeneration pro-
cess. The problems of procedural abstraction and the visual
display of large graphs [7] would also have to be considered.

Finally, it is worth mentioning that there are other po-
tential applications of visual languages to NLP. In particu-
lar, a visual approach to parsing seems promising as both
the connection between parsing and graph grammars [11],
and between graph grammars and visual languages [15, 16]
has already been made. Another application area concerns
graph-based semantic network representations which are
widely used for knowledge representation by NLP systems
[17]. Visual languages that examine the structure of graphs
[3] could be used when manipulating such data.
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