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Summary 

1. Hydroacoustics (2002 to 2004) and long-term oxygen data (1969 to 2004) have 

been used in conjunction to examine the habitat of Arctic charr in the north and south 

basins of Windermere, U.K., a temperate lake subjected to cultural eutrophication and 

subsequent nutrient management. 

2. Since 1969 there has been a gradual decline in the oxygen concentration in the 

bottom waters of both basins of 0.03 – 0.04 mg L-1yr-1, resulting in up to 43 % of the 

volume of the south basin having an oxygen concentration < 5 mg L-1 in the early 

autumn.  

3. Hydroacoustic data indicate that most Arctic charr routinely avoid the upper 10 m 

of the water column irrespective of temperature, with the implication that an observed 

gradual warming of the lake has not yet directly impacted upon their habitat. 

4. In recent years there has been a behavioural response of the Arctic charr population 

to migrate vertically to avoid oxygen concentrations < 2.3 to 3.1 mg L-1. Further, the 

depth of the lower bound of the Arctic charr population is shown to be highly 

correlated with the deep water oxygen concentration throughout the year prior to 

autumnal overturn. 
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Introduction 

The availability of oxygen, together with water temperature on which it is partially 

dependent, has been acknowledged as one of the most important abiotic 

environmental characteristics affecting the distribution of freshwater fish at the habitat 

scale (e.g. Rudstam & Magnuson, 1985; Spoor, 1990; Kalikhman, Walline & Gophen, 

1992; Swierzowski, Godlewska & Poltorak, 2000; Burleson, Wilhelm & Smatresk, 

2001; Klumb et al., 2004; Larsson, 2005). Despite this widespread influence, the 

effects of this factor are taxa-specific to the degree that while many cyprinids and 

some percids can tolerate relatively low levels of dissolved oxygen, salmonids require 

significantly higher availabilities (Alabaster & Lloyd, 1980). In lake habitats, 

salmonids such as Arctic charr (Salvelinus alpinus (L.)) may consequently be amongst 

the species most sensitive to deteriorating oxygen conditions which typically 

accompany eutrophication. In addition, this holarctic species can also be expected to 

be impacted by further reductions in oxygen availability which are anticipated under 

climate change, particularly in the hypolimnia of productive systems (Carpenter et al., 

1992). 

 

Windermere is the largest natural lake in England and, like many other large 

temperate lakes, has a long history of cultural eutrophication and subsequent nutrient 

management (reviewed by Pickering, 2001). Following increases in nutrients in the 

lake’s north and particularly south basins between the 1940s and the late 1980s, when 

substantial deepwater anoxia became a recurring problem in the south basin during 

the late summer and autumn, phosphate stripping was introduced to local sewage 

treatment works in 1992 (Elliott & Reynolds, 1996). One of the main drivers behind 

this action was concern over the lake’s populations of Arctic charr. In an early 
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application of hydroacoustic techniques in 1988, Mills et al. (1990) observed that 

Arctic charr were displaced from the deepest areas of the south basin at a time when 

local oxygen levels were low. 

 

In addition to supporting a small semi-commercial fishery (Mills, 1989), the Arctic 

charr of Windermere has a great importance for local tourism arising from its national 

rarity and perceived indication of a healthy environment. The local stocks also have a 

long-standing interest for evolutionary biologists because they comprise autumn- and 

spring-spawning sub-populations in both basins (Partington & Mills, 1988), while the 

species is recognised to hold significant biodiversity conservation value at a national 

level (Maitland et al., 2007). On the basis of these attributes and the observations of 

Mills et al. (1990), the Arctic charr of both basins have been monitored by monthly 

hydroacoustic surveys since 1989 (Winfield, Fletcher & James, 2007a). To date, 

analyses of these hydroacoustic data have been restricted to changes in population 

abundance (Elliott et al., 1996), horizontal distribution (Baroudy & Elliott, 1993) and 

survey design (Winfield, Fletcher & James, 2007b), that is, no further studies of 

vertical distributions in relation to oxygen concentration beyond the limited 

observations of Mills et al. (1990) have been undertaken. 

 

It is unclear precisely what lower level of oxygen concentration will impact Arctic 

charr populations in terms of either direct mortality or restrictions in habitat use. 

Laboratory experiments on young Arctic charr from Windermere (Baroudy & Elliott, 

1994) revealed that incipient lethal levels of oxygen (i.e. survival over seven days) 

were as low as 1.8 to 2.0 mg L-1 at low acclimation temperatures (5 and 10 oC) and 
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2.2 to 2.4 mg L-1 at higher acclimation temperatures (15 and 20 oC). Such values are 

similar to a threshold of 1.8 to 1.9 mg L-1 reported for the congeneric brook trout 

(Salvelinus fontinalis Mitchill) by Shepard (1955), but lower than values reported for 

related Salmo species (see Baroudy & Elliott (op. cit.)) leading Elliott & Baroudy 

(1995) to conclude that Arctic charr are amongst the most tolerant of salmonids to low 

oxygen levels. Such laboratory experiments cannot, of course, address the more 

complex issue of habitat avoidance due to low oxygen levels. 

 

The aims of this study were to combine results from long-term dissolved oxygen 

profiles of the north and south basins of Windermere with more recently acquired fish 

vertical distribution data to assess changes in oxygen concentrations and to investigate 

their impacts on habitat availability for Arctic charr. 

 

 

Methods 

 

Windermere is situated in the English Lake District in the north-west of the country at 

approximately 54.5oN, 3oW. It is a mesotrophic, lowland, valley lake surrounded by 

fells of a few hundred metres height. The lake comprises two basins, one to the north 

and one to the south of a shallow sill populated with islets approximately halfway 

along the length of the lake. The north basin of Windermere has a surface area of 8.05 

km2 and a maximum depth of 64 m, while the south basin covers 6.72 km2 and 

descends to a maximum of 42 m; the bathymetry of both basins being detailed by 

Ramsbottom (1976). The fish community is relatively simple with the only species of 

numerical importance being Arctic charr, Atlantic salmon (Salmo salar L.), brown 

trout (Salmo trutta L.), European eel (Anguilla anguilla (L.)), perch (Perca fluviatilis 
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L.), pike (Esox lucius (L.)) and, in recent years, roach (Rutilus rutilus (L.)), although 

Pickering (2001) notes the presence of a further nine minor species. 

 

Oxygen concentrations and temperatures have been monitored in both basins of 

Windermere since June 1968. Initially this routine monitoring took place every week, 

but in 1980 monitoring in the winter was changed to once every two weeks, and in 

1992 and onwards all monitoring has been at a frequency of once every two weeks. 

Measurements were routinely taken at the surface and the bottom and at a varying 

number of depths in between. Typically measurements were tightly spaced through 

stratification in order that the temperature measurements accurately resolved the 

thermocline, but less tightly spaced when the lake was isothermal and the oxygen well 

mixed. To avoid any inherent biasing from this spatial and temporal variation, the 

data have been linearly interpolated on to a 1 m resolution daily grid prior to analysis. 

Measurements were originally taken with an YSI model 58 sonde (YSI, Yellow 

Springs, Ohio, U.S.A.) and latterly with a WTW Oxi 340i probe (WTW, Weilheim, 

Germany). 

 

For each day the volume of water in the south and north basins that had an oxygen 

concentration less than 5 mg L-1 was calculated. By comparing with the total volume 

of the basin and averaging over each month of each year the average monthly 

percentage of the basin with water less than 5 mg L-1 was calculated. Similar 

calculations were done for the percentage of water with an oxygen concentration less 

than 3 mg L-1 and less than 1 mg L-1. 
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Day and night hydroacoustic surveys of Windermere have been conducted at 

approximately monthly intervals since 1989 as part of an Arctic charr monitoring 

programme (see Winfield et al., 2007a). However, data appropriate for detailed 

vertical profile analysis have only been collected since January 2002, following 

upgrade of the hydroacoustic system to a BioSonics DT6000 echo sounder (BioSonics 

Inc, Seattle, U.S.A.). This system was subsequently upgraded to a BioSonics DT-X 

echo sounder in November 2004, although with no implications in the context of the 

present study.  Accordingly, three years of hydroacoustic data were used here: 2002, 

2003 and 2004. Throughout the surveys, the 200 kHz transducer (beam angle 6.5°) 

was mounted at 0.5 m below the lake surface, the data threshold was set at -70 dB, the 

pulse rate was set at 5 pulses s-1 with a width at 0.4 ms and data recorded from a range 

of 2 m from the transducer. For the present study, data were taken from single 

transects nearest the deepest areas of each of Windermere’s two basins. For the north 

basin this transect ran from 54°, 23.480’ N, 2°, 56.330 W to 54°, 24.030’ N, 2°, 

57.550 W, while for the south basin it ran from 54°, 18.950’ N, 2°, 57.340 W to 54°, 

18.050’ N, 2°, 57.070 W. Of a theoretical total of 144 such transects (36 months x two 

basins x day and night), 13 transects were lost, primarily due to adverse weather 

conditions, leaving an actual total of 131 transects (91%) available for analysis. 

 

Subsequent data analysis in the laboratory was performed by fish tracking using 

Sonar5-Pro Version 5.9.6 (Lindem Data Acquisition, Oslo, Norway, 

www.fys.uio.no/~hbalk/sonar4_5) with a target threshold of -70 dB. For 

hydroacoustic data files collected before 1 January 2004 and for which GPS data were 

not directly available, this information was later added using Sonar5-Pro as described 

by Balk & Lindem (2006). Data analysis involved the water columns of each transect 
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being divided into 1 m deep strata from a depth of 2 m below the transducer down to 

the lake bottom. Fish population densities expressed as individuals per 1000 m3 

(converted to individuals ha-1 of lake surface area in some analyses – see results) for 

each transect were exported via the Winfield table function of Sonar5-Pro to a 

spreadsheet for further analysis including combination with oxygen concentration 

data. Estimates of target strengths produced by Sonar5-Pro were converted to fish 

lengths using the relationship described by Love (1971): 

 

TS = (19.1 log10 L) – (0.9 log10F) – 62.0, 

 

where TS is target strength in dB, L is fish length in cm and F is frequency in kHz. A 

breakpoint of –43 dB was used to pool targets into two length classes of less than and 

greater than 200 mm. The above calculations of fish population densities were thus 

produced for both length classes and for total fish for each basin and for day and night 

of each month. 

 

In addition to Arctic charr, significant numbers of small individuals of other species 

less than 200 mm in length are also seasonally present in the pelagic upper waters of 

Windermere (Winfield & Durie, 2004;  CEH, unpublished data).  Consequently, 

subsequent analyses combining hydroacoustic and environmental data were 

performed only for individuals of at least this length to ensure that they were based 

exclusively on Arctic charr. Using the bathymetry of Windermere, population 

densities were also converted to absolute numbers of individuals present in each depth 

stratum. These absolute population distributions were then used to calculate, for each 

transect, the depths at which 90% of the population was situated below or above the 

depth stratum; hereafter referred to as the lower and upper 90% bounds of the Arctic 
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charr vertical distributions. These parameters gave a more robust measure of the 

vertical distributions of fish than that produced simply by the minimum and maximum 

recorded fish depths.  

 

 

Results 

Between 1969 and 2004 there has been a significant reduction in the annually 

averaged oxygen concentration in the bottom water of both basins of Windermere 

(Fig. 1a,b). In the north basin this decline has been at the rate of 0.030 mg L-1yr-1, 

while in the south basin a somewhat higher rate was noted (0.042 mg L-1yr-1). Oxygen 

concentrations have also typically been absolutely higher in the north basin than in the 

south basin throughout this period.   

 

 In the south basin, from January to the end of May, there were no occasions when the 

monthly average oxygen concentration was < 5 mg L-1. In June and December there 

was only one occurrence each month and in July there were nine occurrences. For 

August, September, October and November there have been a number of years in 

which the monthly average oxygen concentration has been below 5 mg L-1, 3 mg L-1 

or even 1 mg L-1 (Fig. 2a–d). Although in the late 1960s and early 1970s virtually the 

whole basin had an oxygen concentration > 5 mg L-1, in the 1980s much of the basin 

suffered severe oxygen depletion, with portions of the basin regularly experiencing < 

1 mg L-1 in the early autumn. In years immediately following upgrading of sewage 

treatment works in early 1992, the percentage of the basin with low oxygen 

concentration was considerably reduced. Subsequently, however, the volume of water 

with a low oxygen concentration has increased, with the largest volume of water with 
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a concentration < 5 mg L-1 since monitoring began occurring in September 2002 (43 

%). The volume of low oxygen concentration water tends to be highest in September 

and October, shortly before the autumnal overturn. Since 1992, the percentage volume 

of water in October with an oxygen concentration < 3 mg L-1 has been increasing at a 

significant rate of approximately 1.5 % yr-1. 

 

In the north basin, only a few occasions with oxygen concentrations < 5 mg L-1 were 

noted. An average monthly concentration < 5 mg L-1 was recorded somewhere in the 

basin for a total of nine months during the 1980s and for five months post 2000. Thus, 

whilst there are signs of a recent increase in volume of low oxygen concentration 

water in the north basin, in comparison to the south basin the basin is relatively well 

oxygenated. 

 

In the south basin, despite warming in the summer, the 16 oC isotherm rarely 

penetrated below 10 m, and the 12 oC isotherm was never lower than 20 m during 

2002, 2003 and 2004 (Fig. 3a,b,c). Both the annual pattern of depleted oxygen 

concentration and the seasonal positioning of the upper and lower 90% bounds of 

Arctic charr were broadly similar each year (Fig. 3a,b,c). The lake was fully mixed 

throughout the winter, but routinely stratified between approximately April and 

November. Oxygen concentrations correspondingly declined in the hypolimnion to a 

minimum in autumn, shortly before overturn. It is notable that the lower 90 % bound 

exhibited the same trend each year, increasing from about 35 m in early summer to 

about 25 m in autumn. Another common trend was that the upper 90 % bound was 

rarely < 10 m depth, even during the isothermal hibernal months. Moreover, there is 
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some indication of the upper 90 % bound increasing in tandem with the lower 90 % 

bound.  

 

Isotherms in the north basin showed similar trends to those in the south but, despite 

being a deeper basin, oxygen concentrations were rarely < 5 mg L-1 (Fig. 4a,b,c). The 

lower 90 % bound was typically a few metres deeper in the water column than the 

corresponding bound in the south basin, but there was a less pronounced elevation in 

the bound through the summer and autumn. Once again the upper bound was almost 

always beneath 10 m depth throughout the year. 

 

The average depths of the lower and upper 90% bounds of Arctic charr vertical 

distributions over the three years showed a clear increase in the lower bound between 

winter and autumn in the south basin, but less of an increase in the north basin (Fig. 

5a). There was also a systematic greater depth of the lower bound in the north 

compared to the south basin. Though the average bound range over the three years 

was usually greater in the north than in the south basin, in neither basin was there an 

obvious systematic seasonal change in bound range (Fig. 5b). The average depths of 

the lower and upper bounds were 30.8 m and 15.9 m, respectively, in the south basin 

and 37.1 m and 16.3 m, respectively, in the north basin, leading to average band 

widths of 14.9 m in the south and 20.8 m in the north basins. 

 

An indication of the oxygen concentrations that Arctic charr avoid in the south basin 

can be estimated from the minimum concentration of the interpolated oxygen data that 

the lower 90 % bound reached on a day when a hydroacoustic survey was carried out. 
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This was 2.3, 2.7 and 2.7 mg L-1 in 2002, 2003 and 2004, respectively, and in all three 

years occurred in October. Alternatively, the minimum preferred oxygen 

concentration can also be estimated from the monthly averaged concentration of 

oxygen at the depth the lower 90 % bound reached in October each year; using this 

method gave values of 2.8, 3.0 and 3.1 mg L-1 for the years 2002, 2003 and 2004, 

respectively. However, this latter method is likely to overestimate minimum 

concentration as it is based on a monthly average rather than a daily concentration and 

does not rely on temporal interpolation. The corresponding values for the north basin 

were somewhat greater compared to the south basin, namely 6.0, 6.2 and 5.7 mg L-1 

for 2002, 2003 and 2004, respectively. 

 

Oxygen concentrations for each month averaged from 2002 until 2004 at the depth of 

the annually averaged lower 90 % bound of Arctic charr vertical distributions (31 m 

depth in the south basin, 37 m depth in the north basin) were very similar in the two 

basins at the beginning of the year, but started to diverge in May (Fig. 6). Both 

showed a pattern of declining oxygen concentration until late autumn, followed by a 

steep increase. In the south basin the decline was much greater than in the north basin. 

The standard deviation of this monthly oxygen concentration was always small, with 

the exception of the oxygen concentration in the south basin in November when 

overturn occurs and concentrations consequently rapidly shift from near anoxia 

towards the hibernal maximum. 

 

Depths of the lower 90 % bound of Arctic charr vertical distributions each month 

averaged over the three years were correlated with the corresponding monthly 
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averaged oxygen concentration at the annual average depth of the lower bounds (Fig. 

7). Only the pre-overturn months of January to October have been included in this 

Figure, as adult Arctic charr move to shallow waters in the late autumn to spawn and 

also at this time there is a radical change in the oxygen concentration at depth (Fig. 6) 

resulting from the autumnal overturn. The oxygen concentration at the average depths 

of the lower bounds were chosen as being indicative of the ambient oxygen 

concentration experienced by fish at depth in the lake.  

 

Discussion 

This study has clearly shown that the vertical distribution of Arctic charr in 

Windermere is significantly influenced by the availability of oxygen in the lower 

hypolimnion, particularly in the more nutrient-enriched south basin. The present 

findings also show that, despite the introduction of phosphate stripping in early 1992 

and a subsequent initial improvement in water quality, the lake has not since 

recovered to the conditions observed in the 1960s. Indeed, recent measurements 

indicate further decreases in oxygen concentrations. This decline in oxygen 

concentration at depth, particularly in the south basin, signifies a potential loss of 

habitat volume for the Arctic charr. In theory, changes in the algal community, in lake 

temperature or in the duration of stratification could have effected this depletion. 

 

One oxygen threshold for Arctic charr habitat relates to the minimum oxygen 

concentration which the Arctic charr can endure for prolonged periods of time. In the 

period 2002 to 2004, the lower 90 % bound of Arctic charr vertical distribution was 

observed at a minimum oxygen concentration of c. 3 mg L-1 in the south basin, 
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allowing for uncertainties in the interpolation of the oxygen data. This suggests that, 

in the wild, the Arctic charr of Windermere will avoid spending prolonged periods in 

water below this oxygen concentration. This range is noticeably similar to the values 

observed in laboratory experiments on incipient lethal oxygen concentrations of 

individual Windermere Arctic charr parr carried out by Baroudy & Elliott (1994), but 

slightly below the avoidance level of 4 mg L-1 reported by Spoor (1990) for 

fingerlings of the closely related brook trout. A conservative approximation, 

therefore, to the recent (1992 – 2004) rate of Arctic charr habitat decline is shown by 

the volume of water with a concentration < 3 mg L-1 in October to be 1.5 % yr-1. 

 

Moreover, our results indicate a tendency for Arctic charr to seek more oxygenated 

waters by upward migration even when ambient oxygen concentrations are high. For 

example, we noted that the vertical distribution of Arctic charr in the south basin 

began in early spring, when oxygen concentrations were still well above incipient 

lethal levels. Although oxygen concentration is clearly not the only driver of 

positioning in the water column, the correlation that we noted in the south basin 

between oxygen at depth and Arctic charr positioning suggests that oxygen 

concentration is of considerable importance. Despite this increase in the lower 90% 

bound of Arctic charr vertical distributions, the upper bound rarely increased above a 

depth of 10 m in either basin. This suggests that avoidance of surface waters is 

another strong driver of Arctic charr positioning in the water column, irrespective of 

local oxygen concentrations. The near-surface distributions of Arctic charr may also 

be influenced by changes in basin-specific zooplankton abundances and distributions, 

given the dominance of such prey in their diet (Frost, 1977). Unfortunately, 

appropriate long-term zooplankton spatial distribution data are not available for 
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Windermere. Furthermore, any such influences may have recently been dramatically 

changed by the expanding epilimnetic population of roach (Winfield et al., 2007a) 

and their predatory impacts on cladoceran zooplankton. Consequently, this issue 

remains unresolved although its potential importance is acknowledged.  

 

In addition to eutrophication, another potential threat to the habitat of the Arctic charr 

in Windermere is a changing climate, which has recently warmed the lake above its 

long-term average (Winfield et al., 2004). Mills et al. (1990), following Elliott (1981), 

suggested the preferred maximum temperature for Arctic charr was 16 oC and thus 

any deepening of this isotherm as the lake warmed could potentially restrict available 

habitat.  In a more extensive study based on Arctic charr from eleven widespread 

European locations, Larsson et al. (2005) similarly found maximum growth to occur 

between 14.4 and 17.2 oC.  In Windermere, the position of the upper 90 % bound for 

Arctic charr habitat was rarely above 10 m depth in either basin during the years 2002 

to 2004 and so crossed the 16 oC isotherm only occasionally. However, Larsson 

(2005) reported notably lower actual preferred temperatures for Arctic charr from two 

populations in Sweden of 10.8 and 11.8 oC. Similarly, Mortensen, Ugedal & Lund (in 

press) observed a population in northern Norway to prefer a temperature of 11.5 to 

11.8 oC from spring to autumn and then 8.7 oC in winter. Irrespective of whether 

Arctic charr in Windermere also occupy this preferred lower temperature range or 

they indeed inhabit warmer water allowing maximum growth rate, water at 10 m is 

still sufficiently cool to be inhabitable. Moreover, for the time being, the Arctic charr 

can still rise through the water column in the late summer, without needing to inhabit 

the top 10 m. Therefore, whilst there has been a significant rise in the surface 

temperature of Windermere with implications for littoral fish species (Winfield et al., 
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2004), the increases in temperature have not yet directly impacted on the volume of 

habitat available to the Arctic charr. However, as changing temperatures and 

stratification are known to have other effects on lake ecosystems (Elliott, 1996; 

Winfield et al., 2004; Elliott, Jones & Thackeray, 2006; Madgwick et al., 2006; 

Winfield et al., 2007a), an indirect but still significant impact upon the Arctic charr 

cannot be discounted. 

 

The data presented in this paper have a number of implications. Firstly, despite 

phosphorus striping there has been a decline in oxygen concentration in England’s 

largest lake. Secondly, recent hydroacoustic data suggest that, with the known 

exception of a brief inshore spawning season when mature individuals visit shallow 

areas (Kipling, 1984), the majority of the adult Arctic charr stay below the upper 10 m 

of the lake. As such, it is unlikely that the direct effects of climate warming have 

directly impinged upon this species. However, studies by Nakano, Kitano & Maekawa 

(1996) concerning the potential loss of habitat for the closely related Dolly Varden 

(Salvelinus malma (Walbaum)) and white-spotted charr (Salvelinus leucomaenis 

(Pallas)) of the Japanese archipelago and by Janssen & Hesslein (2004) for the closely 

related lake trout (Salvelinus namaycush (Walbaum)) in temperate zone lakes, clearly 

indicate the potential scope of this threat. Thirdly, while the combined oxygen 

measurements and hydroacoustic data suggest that Arctic charr populations in 

Windermere will avoid areas with oxygen concentrations which previous laboratory 

experiments have shown to be approaching lethal levels (Baroudy & Elliott, 1994), 

they also suggest sensitivity to all levels of oxygen. This was most apparent in the 

south basin of Windermere where a vertical migration was shown to begin in the 
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spring as oxygen concentrations declined in the deep waters following the onset of 

stratification. 

 

Although this study has exclusively addressed the Arctic charr populations of 

Windermere, our findings have a wider relevance given that Maitland et al. (2007) 

recognised eutrophication and climate change to be two of the major threats facing the 

conservation of this species elsewhere in the British Isles. The same threats are 

important on a global basis; both to the Arctic charr and to its congeners (see Magnan 

et al., 2002). With specific respect to climate change, in their examination of the 

potential effects of this threat on fish habitats including that of the closely related lake 

trout in temperate zone lakes, Janssen & Hesslein (2004) noted that the impact of 

oxygen deficits on habitat availability will be influenced by lake trophic status. In this 

context, the extensive datasets on Arctic charr vertical distributions and associated 

environmental parameters available for Windermere offer an invaluable opportunity 

for further studies of the detailed interactions between oxygen availability, water 

column temperatures and habitat use by this ecologically and economically important 

species. 

 17



Acknowledgments  

We would like to thank our colleagues Janice Fletcher, Ben James, David Abel, Mitzi 

De Ville, Jack Kelly, Paul Hodgson and others for undertaking the hydroacoustic and 

environmental surveys which underpinned this work. We are also grateful to the 

Freshwater Biological Association for their joint stewardship of the long-term 

monitoring data of Windermere. The work was co-funded by the Natural Environment 

Research Council and the Environment Agency. We are particularly grateful to 

Cameron Durie of the latter for his input to this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18



References 

Alabaster J.S. & Lloyd R. (1980) Water quality criteria for freshwater fishes. 

Butterworth Scientific, London, UK, 297 pp. 

Balk H. & Lindem T. (2006) Sonar4, Sonar5 and Sonar6 post processing systems, 

operator manual version 5.9.6.  Lindem Data Acquisition , Oslo, Norway, 412 pp.  

Baroudy E. & Elliott J.M. (1993) The effect of large-scale spatial variation of pelagic 

fish on hydroacoustic estimates of their population density in Windermere (northwest 

England). Ecology of Freshwater Fish, 2, 160–166. 

Baroudy E. & Elliott J.M. (1994) Tolerance of parr of Arctic charr, Salvelinus 

alpinus, to reduced dissolved oxygen concentrations. Journal of Fish Biology, 44, 

736–738. 

Burleson M.L., Wilhelm D.R. & Smatresk N.J.  (2001) The influence of fish size size 

on the avoidance of hypoxia and oxygen selection by largemouth bass. Journal of 

Fish Biology, 59, 1336–1349. 

Carpenter S.R., Fisher S.G., Grimm N.B. & Kitchell J.F. (1992) Global change and 

freshwater ecosystems. Annual Review of Ecology and Systematics, 23, 119–140. 

Elliott J.A., Jones I.D. & Thackeray S.J. (2006) Testing the sensitivity of 

phytoplankton communities to changes in water temperature and nutrient load, in a 

temperate lake. Hydrobiologia, 559, 401–411. 

Elliott J.M. (1981) Some aspects of thermal stress on freshwater teleosts. In: Stress 

and Fish (ed A.D. Pickering) , pp. 209–243,Academic Press, London, U.K. 

 19



Elliott J.M. (1996) Temperature-related fluctuations in the timing of emergence and 

pupation of Windermere alder-flies over 30 years. Ecological Entomology, 21, 241–

247. 

Elliott J.M. & Baroudy E. (1995) The ecology of Arctic charr, Salvelinus alpinus, and 

brown trout, Salmo trutta, in Windermere (northwest England). Nordic Journal of 

Freshwater Research, 71, 33–48. 

Elliott J.M., Fletcher J.M., Elliott J.A., Cubby P.R. & Baroudy E. (1996) Changes in 

the population density of pelagic salmonids in relation to changes in lake enrichment 

in Windermere (northwest England). Ecology of Freshwater Fish, 5, 153–162. 

Elliott J.M. & Reynolds C.S. (1996) Lake enrichment and Windermere charr. 

Biological Sciences, 8(5), 17–20. 

Frost W.E. (1977) The food of Charr, Salvelinus willughbii (Günther), in 

Windermere. Journal of Fish Biology, 11, 531–547. 

Janssen W. & Hesslein R.H. (2004) Potential effects of climate warming on fish 

habitats in temperate zone lakes with special reference to Lake 239 of the 

experimental lakes area (ELA), north-western Ontario. Environmental Biology of 

Fishes, 70, 1–22. 

Kalikhman I., Walline P. & Gophen M. (1992) Simultaneous patterns of temperature, 

oxygen, zooplankton and fish distribution in Lake Kinneret, Israel. Freshwater 

Biology, 28, 337–347. 

Kipling C. (1984) Some observations on autumn-spawning charr, Salvelinus alpinus 

L., in Windermere, 1939-1982. Journal of Fish Biology, 24, 229–234. 

Klumb R.A., Bunch K.L., Mills E.L., Rudstam L.G., Brown G., Knauf C., Burton R. 

& Arrhenius F. (2004) Establishment of a metalimnetic oxygen refuge for 

 20



zooplankton in a productive Lake Ontario embayment. Ecological Applications, 14, 

113–131. 

Larsson, S. (2005) Thermal preference of Arctic charr, Salvelinus alpinus, and brown 

trout, Salmo trutta – implications for their niche segregation. Environmental Biology 

of Fishes, 73, 89–96. 

Larsson S., Forseth T., Berglund I., Jensen A.J., Naslund I., Elliott J.M. & Jonsson B.  

(2005) Thermal adaptation of Arctic charr:  experimental studies of growth in eleven 

charr populations from Sweden, Norway and Britain. Freshwater Biology, 50, 353–

368. 

Love R.G. (1971) Dorsal aspect target strength of an individual fish at any aspect.  

Journal of the Acoustic Society of America, 49, 816–823. 

Madgwick G., Jones I.D., Thackeray S.J., Elliott J.A. & Miller H.J. (2006) 

Phytoplankton communities and antecedent conditions: high resolution sampling in 

Esthwaite Water. Freshwater Biology, 51, 1798–1810. 

Magnan P., Audet C., Glémet H., Legault M., Rodríguez M.A., Taylor E.B. (2002) 

Ecology, behaviour and conservation of the charrs, genus Salvelinus. Environmental 

Biology of Fishes, 64, 1–351. 

Maitland P.S., Winfield I.J., McCarthy I.D. & Igoe F. (2007) The status of Arctic 

charr Salvelinus alpinus in Britain and Ireland. Ecology of Freshwater Fish, 16, 6–19. 

Mills C.A. (1989) The Windermere populations of Arctic charr, Salvelinus alpinus. 

Physiological Ecology, Japan Special Volume, 1, 371–382. 

Mills C.A., Heaney S.I., Butterwick C., Corry J.E. & Elliott J.M. (1990) Lake 

enrichment and the status of Windermere charr, Salvelinus alpinus (L.). Journal of 

Fish Biology, 37, 167–174.  

 21



Mortensen A., Ugedal O. & Lund F.  (in press)  Seasonal variation in the temperature 

preference of Arctic charr (Salvelinus alpinus). Journal of Thermal Biology. 

Nakano S., Kitano F. & Maekawa K.  (1996) Potential fragmentation and loss of 

thermal habitats for charrs in the Japanese archipelago due to climatic warming.  

Freshwater Biology, 36, 711–722. 

Partington J.D. & Mills C.A. (1988) An electrophoretic and biometric study of Arctic 

charr, Salvelinus alpinus (L.), from ten British lakes. Journal of Fish Biology, 33, 

791–814. 

Pickering A.D. (2001) Windermere:  restoring the health of England's largest lake.  

Freshwater Biological Association Special Publication No 11.  Freshwater Biological 

Association, Ambleside, UK, 136 pp. 

Ramsbottom A.E. (1976) Depth charts of the Cumbrian lakes. Freshwater Biological 

Association Scientific Publication No. 33, Ambleside, United Kingdom, 39 pp. 

Rudstam L.G. & Magnuson J.J. (1985) Predicting the vertical distribution of fish 

populations: Analysis of cisco, Coregonus artedii, and yellow perch, Perca 

flavescens.  Canadian Journal of Fisheries and Aquatic Sciences, 42, 1178–1188. 

Shepard M. P. (1955) Resistance and tolerance of young speckled trout (Salvelinus 

fontinalis) to oxygen lack, with special reference to low oxygen acclimation. Journal 

of the Fisheries Research Board of Canada, 12, 387–446. 

Spoor W.A. (1990) Distribution of fingerling brook trout, Salvelinus fontinalis 

(Mitchill), in dissolved oxygen concentration gradients. Journal of Fish Biology, 36, 

363–373. 

 22



Swierzowski A., Godlewska, M. & Poltorak T. (2000) The relationship between the 

spatial distribution of fish, zooplankton and other environmental parameters in the 

Solina reservoir, Poland. Aquatic Living Resources, 13, 373–377. 

Winfield I. J. & Durie N. C. (2004) Fish introductions and their management in the 

English Lake District. Fisheries Management and Ecology, 11, 1–7. 

Winfield I.J., Fletcher J.M., Hewitt D.P. & James J.B. (2004) Long-term trends in the 

timing of the spawning season of Eurasian perch (Perca fluviatilis) in the north basin 

of Windermere, U.K.  In:  Proceedings of Percis III:  The Third International Percid 

Fish Symposium. (eds T.P. Barry & J.A.Malison), pp. 95–96, University of Wisconsin 

Sea Grant Institute, Madison, WI. 

Winfield I.J., Fletcher J.M. & James J.B. (2007a) The Arctic charr (Salvelinus 

alpinus) populations of Windermere, U.K.: population trends associated with 

eutrophication, climate change and increased abundance of roach (Rutilus rutilus).  

Environmental Biology of Fishes.  DOI 10.1007/s10641-007-9235-4. 

Winfield I.J., Fletcher J.M. & James J.B. (2007b) Seasonal variability in the 

abundance of Arctic charr (Salvelinus alpinus (L.)) recorded using hydroacoustics in 

Windermere, U.K., and its implications for survey design. Ecology of Freshwater 

Fish, 16, 64–69. 

 

 

 

 

 

 

 23



Figure Legends 

Figure 1. Regression plots of annually-averaged oxygen concentration from 1969 to 

2004 at the near-bottom for the south (A) and north (B) basins of Windermere.  

 

Figure 2. Percentage of the south basin volume with oxygen concentration < 5 mg L-1 

(♦), < 3 mg L-1 (x) and < 1 mg L-1 (o), from 1968 – 2004 in August (A), September 

(B), October (C) and November (D). A regression line is shown only for the percent 

volume < 3 mg L-1 in October (C) for the years 1992 – 2004. 

 

Figure 3. Depths of lower (dashed line and circles) and upper (dashed line and 

crosses) 90 % bounds of Arctic charr vertical distributions in the south basin, depths 

at which oxygen concentration was < 5 mg L-1 (thin line), < 3 mg L-1 (thin dash-dot 

line) and < 1 mg L-1 (thin dashed line) and the 16 °C (thick line) and 12 oC (very thick 

line) isotherms for 2002 (A), 2003 (B) and 2004 (C). 

 

Figure 4. Depths of lower (dashed line and circles) and upper (dashed line and 

crosses) 90 % bounds of Arctic charr vertical distributions in the north basin, depths 

at which oxygen concentration is < 5 mg L-1 (thin line) and the 16 °C (thick line) and 

12 oC (very thick line) isotherms for 2002 (A), 2003 (B) and 2004 (C). Note that the 

oxygen concentration is always > 5 mg L-1 except briefly in 2004. 

 

Figure 5. Average lower (circles) and upper (crosses) 90 % bounds of Arctic charr 

vertical distributions (A) and average range (squares) between lower and upper 90 % 
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bounds (B) for the south (thick line) and north (dashed line) basins for the years 2002 

to 2004. 

 

Figure 6. Oxygen concentrations (squares) averaged over 2002 to 2004 at the average 

depths of the lower 90 % bound of Arctic charr vertical distributions in each basin, i.e. 

31 m in the south and 37 m in the north basins. Oxygen concentrations ± 1 SD are 

also shown in grey; dashed lines for the north basin, solid lines for the south basin. 

 

Figure 7. Correlations between the depth of the lower 90 % bound of Arctic charr 

vertical distributions and the oxygen concentration at the annual average depth of the 

lower 90 % bound, averaged for the years 2002 to 2004 for each month, January – 

October, for the south (stars) and the north (triangles) basins. 
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Figure 4 
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Figure 5 

 

-60

-50

-40

-30

-20

-10

0

D
ep

th
 o

f b
ou

nd
s (

m
)

(A)

0

10

20

30

R
an

ge
 o

f b
ou

nd
s (

m
)

(B)

Fe
b

M
ar

A
pr

M
ay Ju
n Ju
l

A
ug Se
p

O
ct

N
ov D
ecJa
n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30



 

Figure 6 
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Figure 7 
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