
Fran in action!Anthony C. DanielsLanguages and Programming GroupDepartment of Computer Science, University of Nottinghamacd@cs.nott.ac.ukJuly 14, 1997AbstractFran is a Haskell library for creating real-time interactive anima-tions. This paper demonstrates how the system can be used to createa realistic animation and indicates how this can be extended to formlarge, complex animations. We emphasize the exibility, composabilityand ease of construction a�orded by the system from this pragmaticperspective. No knowledge of Fran is required to read this paper. Wehope that functional programmers will be able to use it as a tutorial.1 IntroductionFran [4] stands for Functional Reactive Animation. It is being developedprincipally by Conal Elliott at Microsoft Research and in conjunction withresearchers at Glasgow, Nottingham and Yale Universities. Its aim is to easethe task of building interactive animations. The system is intended to bevery general, but various speci�c application areas appear particularly wellsuited, for example, multimedia, teaching, simulation, communication andWWW pages. Furthermore, we intend that Fran will exploit the currentand future hardware developments for graphics on PCs.Some of the key ideas behind Fran [4, 3] were developed in previous systems,in particular TBAG [2, 5]. Fran is the latest prototype implementationof this work. So far, the bene�ts of choosing a lazy functional languagefor the implementation have been considerable, especially for prototypingdi�erent representations of the central concepts. Strong typing, type classes,1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

polymorphism, higher order functions and laziness have all been useful. Themajor drawback is low e�ciency, but we have also experienced di�cultiesanalyzing the behavior of complicated reactive elements (often recursivelyde�ned) within the system.1.1 The aim of this paperFor keen readers this paper can be used as an introductory tutorial; Fran isfreely available on the WWW at:http://research.microsoft.com/~conal/Fran/The complete source code for these animations can be obtained from theauthors home-page:http://www.cs.nott.ac.uk/~acd/Alternatively it can be read more quickly to get a feel for the system andhow it may be used. Elliott and Hudak [4] give detailed explanations ofthe main concepts; their paper is essential reading for those with an in-terest in the theoretical foundations on which Fran is based. This papercomments on the applicability of functional languages to this domain, mo-tivated by an example animation. Readers without experience of functionalprogramming, or of Haskell in particular, are referred to introductory textsas prerequisites [1, 7].1.2 Our exampleIn this paper we develop an animation of an oarsman performing the rowingaction. Fran is currently restricted to 2D graphics, limiting the realism of the�nal animation. However, our animation demonstrates the fundamentals ofgood rowing technique; it might, for example, serve as a rowing tutor or asa component of a larger animation. We build up the animation component-wise (i.e., bottom up) since we �nd this a natural way to approach theproblem and Fran allows us to combine separate components easily.
2

Figure 1: The rower2 An oarsmanTo create any animation we �rst need to construct images.1 In Section 2.1we de�ne static images using primitives in Fran. These are really animatedimages that are constant, meaning that their position and form does not varywith time. It is possible to modify these de�nitions to introduce motion; thisis the subject of Section 2.2. Section 2.3 desribes how the animation canbe modi�ed to make the model more realistic. We �nd it convenient todescribe the legs using a constraint in Section 2.4. Finally we mention theremaining components of the animation, without going into all the details,in Section 2.5 and summarize in Section 2.6.2.1 Constructing imagesOur starting point is the sliding seat, which gives us a base to put our oars-man upon. We can crudely represent the seat with a small rectangle. Thefunction rectangleLW is a rectangle of the length (horizontal component)1Note that we distinguish between the construction of images from smaller compo-nents and the process of drawing or rendering those images on a display. Naturally, theimplementation of Fran includes code to deal with the latter, but it is the former that isemphasized in the users view of the system [3].3

and width (vertical component) given by its arguments2:
rectangleLW 0.3 0.02The default color is white; the withColor function takes a color and animage and produces a new version of the image in the given color. Thus wecan re-de�ne our seat to be brown as follows:
withColor brown (rectangleLW 0.3 0.02)By default, image primitives are displayed in the center (origin) of the win-dow which has logical coordinates from -1 to 1 on both axes. We need tomove our seat down and to the left. To do this we apply a transformation.The operator *% takes a transformation as its �rst argument and applies itto an image, given as the second argument. In this case our transformationis a translation. The diagram below shows this image; we have added theaxes and numbers to mark the logical co-ordinates:2To display such a de�nition using Fran, write a module that imports bothFran and Disp and then assign the de�nition to a top level value, for example,seat = rectangleLW 0.3 0.02. Then enter disp (const seat) at the prompt.

4

translate2 (vector2XY (-0.5) (-0.5)) *%withColor brown (rectangle 0.3 0.02)
The constructor vector2XY builds a two dimensional vector from its argu-ments which are Cartesian x and y coordinates. translate2 then creates atranslation transformation in two dimensions from the given vector.The seat runs on wheels on a slide. To create a wheel, we begin with a bluecircle and apply a scaling transformation so that it is the required size; inthis case a scale factor of 0.014 (found by experiment) works well becausethe wheels are quite small:aWheel = uscale2 0.014 *% (withColor blue circle)The uscale2 function shown here constructs a uniform scaling transforma-tion in two dimensions. This image of a wheel is used for both the frontand rear wheels. We apply appropriate translations to position the wheels.These components could be combined in one de�nition. However, we willgive names to some of the components to make the de�nition more read-able and introduce top level de�nitions for the width and length dimensionsbecause they are used elsewhere:seatW, seatL :: RealB -- (see next section)seatW = 0.02 -- WidthseatL = 0.3 -- LengthseatPosition = vector2XY (-0.5) (-0.5)seat = translate2 seatPosition *%(seatImage `over` 5

rearWheel `over`frontWheel)whereseatImage = withColor brown(rectangleLW seatL seatW)aWheel = uscale2 0.014 *%(withColor (gray 0.5) circle)rearWheel = translate2 rearPos *% aWheelrearPos = vector2XY (0.014 - seatL/2.0) (-seatW)frontWheel = translate2 frontPos *% aWheelfrontPos = vector2XY (seatL/2.0 - 0.014) (-seatW)The over function simply overlays one image on top of another; hence wenow have a seat with two small wheels at each end:
The use of Haskell's in�x notation with over results in a natural reading.The slide, which the seat moves back and forth upon, is a gray rectangleof appropriate position and dimensions.3 The whole image so far can bede�ned as:seat `over` slideWhen more parts of the rower are de�ned, we can add them to the animationby adding the new part using over to the above de�nition. The order of thecomponents determines the order the images are overlaid; earlier images arealways on top of later ones. The manner in which images are composed fromthe primitives is reminiscent of Henderson's Functional Geometry[6]. Thesame bene�ts Henderson identi�ed therefore apply to constructing staticimages in Fran; the resulting code is clear, concise and easily modi�able.3Complete de�nitions are given in the source code.6

2.2 AnimatingTo create an animation the seat must move back and forth along the slide.Although the images described above are static, they are actually animationsin which the positions of the components are constant. In Fran, we usebehaviors for temporal modeling. A behavior is a value that varies withtime; in the functional paradigm you can think of behaviors (conceptually)as functions from time to values.4 The type of these values may di�er indi�erent contexts. For example, seat de�ned above is an image behavior. Itis constructed from primitive image behaviors and transformations that, inturn, are built from vector and scalar behaviors. We can create behaviors ofany type, for example a real-valued behavior5. In fact, Fran uses overloadingto lift all numeric constants so that they are (constant) real-valued behaviors.Haskell's overloading is also used to create lifted versions of many operators,such as cos, + and *. However, the type restrictions sometimes prevent usfrom overloading operators, for example, we can not overload + to add avector to a point because the argument types must be the same.Point2 is the type of a co-ordinate in two dimensions and Point2B is thebehavior version (or lifted type). It is therefore simple to create a movingseat by de�ning its position using a non-constant Point2 behavior. Wefactor out the initial position and the distance that the seat moves from thisposition as separate top-level values:-- The central position of the seat, as above.seatPosition0 = point2XY (-0.5) (-0.5)-- The distance the seat moves from its central position-- on the slide.seatDistance = 0.23 :: RealB-- Our new seat position behavior (replaces previous one).seatPosition = seatPosition0 .+^vector2XY (seatDistance * (cos time)) 0.04For a number of reasons, particularly e�ciency considerations, the implementationdoes not represent behaviors this way.5Haskell's Double type is given the synonym RealVal and the real-valued behavior typeis called RealB. 7

Here we used a new operator .+^ which adds a vector (right argument) toa point (left argument). We also use our �rst non-constant behavior: time.This behavior gives the current time, which changes as the animation pro-gresses. The function cos is the usual cosine function lifted to the behaviorlevel. So our seat oscillates about a central position by a vector of magnitudeseatDistance in the x direction multiplied by the cosine of time. Here isan illustration of the animation:
Ideally we would like to control the rating, or strokes per minute, that ouroarsman performs. We can achieve this by de�ning two simple functionsand some appropriate constants:rating = 20.0 :: RealBstrokesPerSec = rating/60.0-- Given a time, multiplies so that a stroke takes one time-- unit.strokeIn1 x = x*strokesPerSec-- The cosine function with period 1.cosPeriod1 x = cos (2.0*pi*x)seatCos = cosPeriod1 . strokeIn1Now if we replace cos in the de�nition of seatPosition above with seatCos,the seat will go up and down the slide exactly twenty times per minute.2.3 ModelingWe shall now turn our attention to modeling the motion of a real oarsman.Our rower will be composed of a number of connected limbs that we willde�ne using rounded rectangles (rectangles with circles at each end). Wecan abstract from the low level description of these limbs by factoring outthe common elements into a general limb function. Rather than giving the8

position of the center of a limb and its size, we will use the end points andwidth as parameters to limb. This is because we will calculate the positionof the oarsman's joints, which are the end points of limbs. Hence our limbfunction has the following type:limb :: Point2B -> Point2B -> RealB -> ColorB -> ImageBThe �rst two arguments (point behaviors) are the end points, followed bythe width and color of the limb. Its de�nition is simply a rectangle ofappropriate dimensions with a rotation and a translation applied so thatthe ends of the rectangle are at the given end points. Circles (of radius halfthe width of the rectangle) are overlaid at the end points to round o� theappearance of the limbs. We think using functions such as limb greatlyimproves the readability of the source code.Let's add the torso. We adopt a naming convention in our code using post�xW and L for the width and length of the limbs respectively. The hip ispositioned centrally just above the seat:shoulder = hip .+^ vector2Polar bodyL bodyAnglehip = seatT .+^vector2XY (seatL/2.0) ((seatW + bodyW)/2.0)bodyW = 0.15 :: RealBbodyL = 0.6 :: RealBbodyAngle = pi/2.0 - (pi/6.0)*bodyCos :: RealBbodyCos = cosPeriod1 . strokeIn1body = limb shoulder hip bodyW redThe vector2Polar constructor takes a length and an angle and creates thevector using polar coordinates. Hence our rowers hip is positioned abovethe seat and his torso extends at an angle given by bodyAngle from the hip.We have de�ned this angle to vary between -�=6 and �=6 from the vertical,using bodyCos which is the same as seatCos de�ned previously. However,on running this animation, any rowing enthusiast will immediately identifya number of serious aws in our rowers technique, even though at this stagehe only consits of a body on a seat. Essentially, the back should not swingbackwards until the seat is near backstops, i.e., its left most position, to9

maximize the power obtained from the leg drive. To reect this we will needto increase the accuracy of our model. One approach would be to de�nea periodic function that directly gives the angle of the back at any giventime. We use a simpler solution; the motion proceeds in one direction andthen back in the opposite direction during one stroke, or in other words,the motion is monotone over a half period. We can write any such functionusing a special function composed with cos, giving a smooth, continuousperiodic function. The required function maps from the origin to (1, 1)monotonically increasing and represents the relative rate of the motion. Hereare the de�nitions, leading to a new bodyCos function which replaces theone above:-- Maps times to congruent times in the fundamental-- interval [0, 1) of the periodic function.modulo1 x = x - fromIntegerB (floorB x)periodicFn relativeRate= cosPeriod1 . relativeRate . modulo1 . strokeIn1bodyCos = periodicFn relativeRate timewhererelativeRate x = cond (x <* openBackT0)(drive x)(cond (x <* bodyLeanT1)(bodyLean x)(bodyLeant x))wherebodyLeanT1 = 0.55 -- Body now lent over fully.openBackT1 = 0.35 -- Now leaning back at finish.drive x = 0.0bodyLean x = 2.5*x - 0.375bodyLeant x = 1.0cond is the analogue of if ... then ... else for behaviors and <* is thebehavior level < operator. Now the body swings over towards the end of thedrive as required. We can use the same technique to model the motion of theseat, which moves quickly during the drive (right to left) and slowly during10

the recovery.6 Higher-order functions helped us to describe this aspect of themodel and we feel the resulting code is clear and modular. In particular, thegeneral principal of using cos and a relative rate to create various periodicfunctions was abstracted by the periodicFn function. This function is quitecomplicated, but it naturally decomposes into four simple functions whichare composed to form the complete de�nition.2.4 ConstraintsTo form the thigh, we must know the position of each end of the limb. Wealready know where the hip joint is but not the knee. The knee connectsthe thigh to the lower leg (shin) which is connected to the foot. The foot isstrapped onto the foot-plate, so we know that the bottom of the shin (ankle)is �xed. To calculate the knee joint we observe that it is just the point ofintersection of two circles, one centered at the hip the other at the anklewith radii given by the thigh length and the shin length, respectively. Ourde�nition of knee uses a function circleIntersectsCirclewhich gives thispoint. Note that there are two points where overlapping circles intersect;the �nal argument to circleIntersectsCircle is a Boolean value to enablethe selection of the point we require:kneeJoint = circleIntersectsCircle hip anklethighL shinL TruethighW = 0.1 :: RealBthighL = 0.5 :: RealBthigh = limb hip kneeJoint thighW yellowDe�nitions for the shin are similar, and the foot and foot-plate are simplestatic images.2.5 Finishing touchesIt is straightforward to add the upper arm and forearm; the position ofthe shoulder is known and the arm swings according to armCos. This is a6The part of the stroke when the rower is going back up the slide towards frontstops,with the blade held clear of the water. 11

Figure 2: The crew rowing animationfunction de�ned using periodicFn and the appropriate relative rate functionto describe how the arm swings. The neck and head are also straightforwardto de�ne; since the rower always looks ahead we calculate the top of his headusing a vertical vector added to the bottom of his head (which is joined tothe neck and so on.)2.6 Summary so farWe have encapsulated the essential model components (limbs and periodicfunctions) in general functions. De�ning our man was then easy; join thelimbs in sequence and work out where the other end goes. For animatingpeople in general we could apply inverse kinematics techniques and encodethese principles in some general functions abstracting out the necessary pa-rameters. Such generalizations are made possible by the underlying func-tional language, Haskell, on which Fran is based. Furthermore, we couldexpect general partial evaluation techniques to optimize these de�nitions,helping to produce more e�cient compiled code.3 Making the rower work for usIn this section we will give some examples to illustrate re-use and composi-bility of animations in Fran, by creating various animations based on ourrower.3.1 Crew RowingAn obvious application is to put our rower in a boat with some other rowers.Our crew rowing animation consists of four rowers positioned horizontally12

across the screen in a boat with a coxswain.7 Juxtaposing images is a verycommon operation so we de�ne a general function that takes a list of imagesand overlays them horizontally. It assumes the images �ll the display (i.e.,the region (-1, -1) to (1, 1)) and re-sizes them horizontally so the resultingimage also �ts in the display. Also, it takes a further argument that speci�esthe gap to use between adjacent images. In our animation, we actually wantthe rowers to overlap, so we supply a negative argument:besidesGap is g= foldl1 over (map scaleAndMove (zip [0..] is))wheren = length is :: Intp = 1/(fromIntegral n) :: DoublescaleAndMove (r, image)= translate2 pos *%scale2 (vector2XY (lift0 p) (lift0 p)) *% imagewherepos = vector2XY (lift0 (-1.0 + p +2*(fromIntegral r)*p + gap r)) 0gap r| even n= g * (1/2 + fromIntegral (r - (n `div` 2)))| otherwise= g * fromIntegral (r - ((n-1) `div` 2))Using besidesGap, the crew is quite easy to de�ne:crew = besidesGap (replicate 4 rower) (-0.15)The boat and cox are de�ned using the primitive for creating static imagesprovided by Fran. Now boat, crew and cox can be combined and we canmake them move:boatAndCrew t0 = translate2 pos *%(boat `over` crew `over` cox)wherepos = point2XY (2.0 - (time/10.0)) 0.07The coxswain, or cox, is the steersman, usually seated in the stern of the boat.13

With the current implementation this animation has quite a low frame rate,even on a powerful PC, so developing it further is di�cult at this stage.However, it is easy to imagine, how it could progress: a river, another crew,a race, an entire regatta!3.2 Play, stop, fast-forwardTo illustrate how interactive features can be used with Fran animations, wewill add VCR-like buttons to the display so that the user can stop, play andfast-forward the animation. The rower has limited scope for interactivity, sothis example is illustrative rather than particularly inspiring. To implementthis feature we use a time transformation and hence we do not provide arewind button because we can not go back in time. Rewinding could beachieved by reversing the rower's actions while still moving forward in time.However, that would require a di�erent model of controlling the VCR, basedon changing the actual animation, rather than a simple manipulation of real-time.We will now describe the main de�nition which is called controlRower. The�rst line of controlRower describes the three buttons overlaid on our basicrower, with a time transformation applied:controlRower t0= (buttons `over` rower)`timeTransform`integral (playV t0 1.0) t0where ...The buttons themselves are simple static images. A time transformationliterally maps actual time to a di�erent time frame which is then used forthe animation. In practice, when sampling the animation (evaluating oneframe) at a time t, the time transformation is �rst applied to t and thenthe resulting value is used to sample the behavior. The t0's appearing inthe above de�nition are start times. When an animation is displayed a starttime is passed to the de�nition so that it can use this information. Wehave not needed to use start times in any of the previous de�nitions; theyare ignored by writing animations that do not take a start time and usingconst. 14

The tricky part of this de�nition is the time transformation, which is bro-ken down in the where clause. The reactive behavior playV is the rate atwhich time is advancing on the VCR. Thus, in the main de�nition above weintegrate playV and this gives the (VCR) time the animation has reached(because integrating a rate gives the a value that is changing at this rate).Now we will describe the de�nition of playV which is given below. It isa piecewise constant behavior that, over an interval, is one of three valuesrepresenting the current playing rate: 1 for play mode, 4 for fast-forwardor 0 for stop. We change between these three constant values by detectingbutton press events and recursively calling playV with the new playing rate.To implement this we need to make use of Fran's event combinators. Anevent occurs at a (one) particular time yielding a value. `untilB` is used tocreate piecewise behaviors; b `untilB` e gives the value of the behavior buntil the event e occurs. Then it takes the value that the event yielded. The�rst line of the de�nition below can now be read as: �rstly lift the constantvalue rate0 to a constant behavior. The behavior playV will then take thisvalue until the event on the RHS of untilB occurs. The occurrence of abutton press event is captured by newRate t0 which is the event that yieldsthe (new) rate corresponding to the control clicked. The actual behavior werequire is the behavior which starts o� with our new rate and then continuesto behave like a VCR. This is of course playV t v where t is the time thelast event occurred and v is the new rate - the value which the event yielded.We use the event combinator +=> which passes on the time and value to avoidhaving to explicitly write these parameters.So newRate is the event that occurs when a control is clicked on and yieldsthe corresponding rate. It uses the event combinator .|. which gives theearlier of two events, so the newRate event occurs when either of the threebutton press events occur, and corresponds to whichever one occurs �rst.The individual events representing each button are de�ned using -=> whichtakes an event (clicking on a button) on the LHS and gives a new eventwhich occurs the same time but yields the value on the RHS; in this casethe new rate of 1, 4 or 0:playV t0 rate0 = lift0 rate0 `untilB` newRate t0 +=> playVwherenewRate t0 = pickEvent playIm t0 -=> 1.0.|. pickEvent ffwdIm t0 -=> 4.0.|. pickEvent stopIm t0 -=> 0.015

Figure 3: The rower with VCR controlsThe events that occur when a button is clicked on are given in terms of ageneral function called pickEvent. This takes an image and a start timeand gives the event that occurs when the user clicks on the given image.The event yields the value of the release event which we ignore above byusing -=>. The exact details of the de�nition of pickEvent can be under-stood by reading Elliott and Hudak's paper [4]. Essentially, when the mousebutton is clicked (the event lbp t0) we grab the mouse position (snapshotthe mouse position). Then we use suchThat, which ensures that the mainevent only occurs when this event occurs (clicking the left button) and afurther condition is satis�ed. This further condition is that the mouse ispositioned over the given image when the button was pressed. A simplepicking function, S.pick2, is used to determine this:pickEvent iB t0= ((\t0 -> lbp t0 `snapshot` (pairB (mouse t0) iB))`suchThat`mouseOnImage) t0 ==> fstwheremouseOnImage (releaseEvent, (mousePos, i))= S.pick2 i mousePos
16

3.3 Sophisticated modelingThe previous animation introduced simple interaction with the user, butinteraction can also occur between components of the animation. So, forexample, the crew could contain separate rowers who interact with eachother. To accomplish this it would be necessary to de�ne how each rowerresponds to the other rowers. For example, the stroke8 could row at a givenrating and the other members of the crew could follow him, perhaps withslight variability to model the imperfection of a real oarsman's timing. Thede�nitions would become more complicated, but because all components are�rst-class values they can be built compositionally which helps animatorscreate extendible, maintainable programs. Of course, the sophistication ofthe model is virtually limitless; one can imagine imperfect rowers who allrespond to their senses, for example making adjustments to correct the bal-ance in a three-dimensional model. A serious mistake such as `catching acrab'9 could cause major upset to the crew, and justly the rower may bestruck from behind by an oar handle in his kidney. Of course such modelswould require considerable computing power and are beyond the scope ofthe average user, but they illustrate the potential of the forms of declarativereactivity a�orded by the system. Now consider rowers reacting not onlyto the person in front of them, but also to the person behind (for example,stopping when accidentally hit in the back). Any rower's actions dependon the rower behind, who in turn depends on this rower. In other words,we have a system of mutually recursive de�nitions. Fran is able to solvethese equations by sampling at discrete times10. From this perspective, thesystem is actually executing a speci�cation, by computing an approximatesolution to some potentially complicated set of equations.3.4 Using modulesWe used Haskell's module system to structure our animation. Here are themodules used with a brief description:8In a crew, the stroke is the rower nearest the cox who sets the rating, or strokes perminute, which is followed by the rest of the crew.9Catching a crab means failing to extract the blade from the water at the �nish (theend of the stroke). The boat continues to move but your blade is stuck in the waterholding back the boat.10The general applicability of this idea is still under investigation; it has been used togood e�ect in speci�c cases, for example, an animation of planetary orbits.17

1. Geometry: This includes functions like circleIntersectCircle.2. Rower: The basic rower, as de�ned in Section 2.3. Crew: The crew rowing de�nitions from Section 3.1.4. Compose: Contains functions like besidesGap.5. ControlRower: The de�nitions from Section 3.2.6. PickEvent: The pickEvent function.All modules import the standard Fran library. Further module import de-pendencies are shown below; each module imports the modules below itwhen they are joined by a line:ControlRower CrewPickEvent Rower ComposeGeometry4 EvaluationWe will evaluate three di�erent aspects of this system. The �rst two arefrom an animators' perspective; they examine the actual results producedand the di�culty of creating them. We then evaluate the use of Haskell forimplementing Fran.4.1 The end resultOur animation shows the rowing action quite accurately. We were able tomodel the body movements in two dimensions and, in particular, to adjustthe speed of these movements to reect actual rowing (so our rower has agood `rhythm'). The performance of this animation was fairly poor on agood PC, reecting the early stage of development of this prototype system.18

The realism would be greatly enhanced by the addition of 3D data typesto the system, at the cost of slightly more work de�ning the positions andshapes. In theory, more realism could also be obtained using texture map-ping and other rendering techniques, although in practice this may requirespecialized graphics hardware to obtain acceptable real-time performanceon PCs. Still, our simple rower serves a purpose - demonstrating the ba-sic rowing technique - and can be put to many uses, as described in theprevious section.4.2 The ease of constructionA good measure for how (relatively) easy it is to construct an animation canbe obtained by considering the pure modeling approach. Fran uses modelingbased semantics which helps to abstract away from presentation tasks [3].Let us de�ne a pure model as a complete (mathematical) description of theanimation that is unambiguous but uses any reasonable notation deemedappropriate. Such models are optimal in terms of requiring the minimumamount of work to de�ne. If you try writing such a de�nition usually it willnot di�er signi�cantly from the corresponding Fran program. In our opinion,this is because Fran has a very natural declarative semantics. Because wehave not had to do much more work than describing the pure model, weclaim that for some interactive animations the Fran system is near optimalin terms of ease of construction. However, it is not di�cult to �nd examples,particularly where complex interaction is involved, when this is not true.This suggests where most of the future research e�ort on the semantics ofthe system is likely to be directed.More speci�cally, we cite the following reasons for relative easy of construc-tion:� Behaviors are �rst-class values of various types. This makes them easyto manipulate and compose.� Fran has a declarative semantics that is naturally implemented in alanguage like Haskell. The declarative style is exactly what we wantfor describing our models of animations on a computer.� Systems of recursive equations can be entered and assuming no circu-larity Fran will do the right thing.� Fran is almost executing a speci�cation.19

� Using the Haskell module system, we can separate components. Byencapsulating components in modules, we gain the usual advantagesof security, re-usability, understandability and separate compilation.It is interesting to note some technical problems that arise when trying tocreate animations like this using primitive techniques, such as programmingin C without the use of a powerful library like Fran:� Animating in real time. How do you ensure the rower performs at theexact rating speci�ed by the model? How would our controlRoweranimation be de�ned?� Composing animation components. If components use side e�ects willthey interfere, limiting composability?Essentially, these problems are due to combining the modeling and presen-tation tasks in the implementation. There are considerable advantages tobe gained by separating these two tasks, although how to do this e�cientlyin practice is still a hot research topic.To sum up, for this example and many others we have found Fran to be aneasy and productive system for creating interactive animations.4.3 The use of Haskell4.3.1 Haskell as the host languageHaskell plays a critical role as the host language of the Fran library. Some ofthe bene�ts of Fran detailed in the previous section are due to Haskell. In-deed, it is di�cult to see how Fran could be embedded into an existing imper-ative language for reasons given below; instead a completely new languagespeci�c to animation would need to be implemented. Using a functional lan-guage avoids this considerable overhead. Other functional languages maybe suitable host languages, the essential criteria being:� No (or restricted) side-e�ects, so that components can be composedand re-used without interfering with each other. However, it may bethe case that the ability to create abstract data types, even in animperative language, is su�cient.� A declarative style, which is bene�cial for modeling.20

� Polymorphism, so, for example, behaviors can be represented in auniform manner. In particular, it is di�cult to see how lifting couldbe achieved without parametric polymorphism to de�ne the liftingfunctions and overloading to enable convenient notation (e.g., a Numinstance for behaviors). Without uniform lifting it may not be possibleto encapsulate behaviors as an abstract data type.� The order of evaluation should be independent from the model, so thatthe presentation engine can be separated and given full control overexecution of the animation.4.3.2 Haskell as the implementation languageMany features of Haskell have eased the implementation of Fran. Polymor-phism is almost essential because we lift many di�erent types to behaviors,and without polymorphism it may not be possible to encapsulate behaviorsas mentioned above. Type classes have also been useful for de�ning opera-tions that apply to some types of behaviors but not all, for example we canonly integrate behaviors that are vectorspaces.Laziness appears extremely useful for the representation of behaviors. Be-haviors contain an in�nite amount of information but, at any one time, weare only interested in a small part of this. We can use laziness to simplifythe construction of behaviors by building the entire in�nite structure whichdescribes the behavior over all times in the future. Because evaluation islazy, the presentation engine drives the evaluation of this in�nite structureso that for each sample time only the values necessary for constructing thecurrent frame are computed.Finally, we have found many of the advantages usually enjoyed when pro-gramming in a functional language useful:� Strong typing.� Higher-order functions.� Concise syntax.� Composability and orthogonality.So Haskell has been excellent for implementing the system, but, as notedearlier, it is rather slow. However, the system is in an early stage of devel-opment and there is a lot of scope for improvement. In particular, we hope21

that Fran will be able to exploit a commingle of new technologies and thattogether these will transform the performance.5 Conclusion and futureWe have created a basic animation and built di�erent animations re-usingthis component. We have evaluated the Fran system for this task.Some ideas for animations you might like to try are: bungee jumping, GUIcomponents, educational programs (e.g., teaching mathematics and physicssuch as simple harmonic motion, resonance, Kepler's laws), colliding balls,springs and weights, juggling, planetary motion and pong.Future system enhancements include 3D graphics, sound and optimizationsfor improved performance.References[1] Richard Bird and Philip Wadler. An Introduction to Functional Pro-gramming. Prentice-Hall., 1987.[2] Ricky Yeung Conal Elliott, Greg Schechter and Salim Abi-Ezzi. TBAG:A high level framework for interactive, animated 3D graphics applica-tions. In SIGGRAPH, 1994.[3] Conal Elliott. The essence of active VRML. Technical report, MicrosoftResearch, 1996.[4] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP,1997.[5] Ricky Yeung Greg Schechter, Conal Elliott and Salim Abi-Ezzi. Func-tional 3D graphics in C++ - with an object-oriented, multiple dispatch-ing implementation. Technical report, SunSoft, Inc., 1995.[6] Peter Henderson. Functional geometry. In ACM Symposium on LISPand Functional Programming, pages 179{187, 1982.[7] P. Hudak and J. Fasel. A gentle introduction to Haskell. SIGPLANNotices, 27(5):Section T, 1992. 22

