

nted
d Catal-
s a
ticians
sation

ineer-

,
 cen-

ployed

re/post-
n.

 behav-
ail.
is is

ent for-
ake

].

e

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository
Constraint Diagrams: Visualising Assertions in
Object-Oriented Models

Stuart Kent
Division of Computing,

University of Brighton, Lewes Rd., Brighton, UK.
http://www.comp.it.brighton.ac.uk/~sjhk

Stuart.Kent@brighton.ac.uk
fax: ++44 1273 642405, tel: ++44 1273 642494

Abstract. A new visual notation is proposed for precisely expressing constraints in object-orie
models, as an alternative to mathematical logic notation used in methods such as Syntropy an
ysis. The notation is intuitive, expressive, integrates well with existing visual notations, and ha
clear and unambiguous semantics. It has similarities with informal diagrams used by mathema
for illustrating relations and borrows much from Venn diagrams. It may be viewed as a generali
of instance diagrams.

Subject areas: Analysis and design methods, language design, formal methods, software eng
ing practices.

Kind of paper: Research.

1 Introduction

There is a strand of object-oriented (OO) modelling, in particular Syntropy (Cook and Daniels
1994) and Catalysis (D’Souza and Wills, 1995, 1997), where precision is held to be one of the
tral tenets of building object-oriented models. In this context, being precise means:

• being precise about the meaning of the visual notations (type models, statecharts etc.) em
in the model descriptions, in terms of a common model;

• supplementing these notations with precise mathematical expression of constraints (e.g. p
conditions and invariants) that it is not easy or possible to express using the visual notatio

The latter is advocated as a way of achieving a level of detail necessary for a comprehensive
ioural description, at a level of abstraction that avoids irrelevant implementation or design det
Unfortunately it is also unintuitive and off-putting to many working software engineers. That th
so is evident from the limited success of formal methods in practical software development.
Amongst other things, Parnas (1996) attributes this to the demanding mathematical skills curr
mal methods seem to expect of the software engineer, and to the lack of intuitive notation to m
this maths more palatable:

“Mathematical methods offered to the working software engineer are not very practical [...
Most, but not all, are theoretically sound but very difficult to use than the mathematics that
has been developed for use in other areas of engineering. [...] We need a lot more work on
notation. The notation that is purveyed by most formal methods researchers is cumbersom
and hard to read. Even the best notation I know (mine of course) is inadequate.”
Stuart Kent 7 March 1997 1

https://core.ac.uk/display/63272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

rnas
mple,

s of
 them
ver
t is sim-

 precise

the set

strated
med
ble to
e con-
ed
on-
ticians
sation

 a
 on a
describ-
ose

xamples

 of the
ng the
dia-
s how
s on type
tes their
y. The
 how the
ndi-

ummary

xtends

e
n-
From our experience of teaching (potential) software engineers OO modelling techniques, Pa
seems to be quite accurate in his observations. Engineers have little difficulty in using, for exa
instance diagrams to understand and explain what is happening, and to identify various case
behaviour to be considered; but formalising these into mathematical notation is often hard for
to do. However, the process of formalisation can be extremely valuable in that it helps to unco
gaps and misunderstandings, as well as providing a general characterisation of behaviour tha
ply not possible to achieve through instance diagrams alone.

What is required is a notation which is as intuitive as instance diagrams and as expressive and
as mathematical assertions. This paper proposes a candidate notation.

In essence, all the OO modelling notations may be viewed as imposing constraints either on
of allowable system states, examples of which can be illustrated using instance diagrams or snap-
shots, or on the allowable execution paths through those states, examples of which can be illu
through filmstrips - sequences of snapshots (one per frame) annotated with the actions perfor
between each frame. Current graphical notations are inadequate in the constraints they are a
impose, so need to be supplemented by mathematical assertions describing the more intricat
straints. We propose a visual notation, constraint diagrams, which, in many cases, replaces the ne
to write assertions mathematically, and we argue, provides a far more intuitive picture of the c
straints being imposed. The notation has similarities with informal diagrams used by mathema
for illustrating relations and borrows much from Venn diagrams. It may be viewed as a generali
of snapshot notation.

The paper is structured around the construction of an object-oriented (specification) model of
library system. The specification is presented through a number of views each one focussing
different aspect of the model. Each view comprises a type diagram, mathematical assertions
ing addional constraints (invariants, pre/post specifications of actions), and visualisations of th
assertions as one or more constraint diagrams. Sometimes the maths is omitted, if previous e
already illustrate the relationship between the constraint diagrams and the maths.

§2, p.3 is a short problem description for the library system. This is introduced first as the rest
paper uses this example for illustration. §3, p.3 gives the type diagrams for the library, illustrati
semantics in terms of snapshots, writing invariants both mathematically and using constraint
grams. In this way, the main components of the notation are introduced. §3.3, p.10 also show
constraint diagrams can be used to define constraints on states, as an alternative to state type
diagrams and some aspects of statecharts. §4, p.12 gives some action specifications, illustra
semantics using filmstrips, writing the pre and post-conditions mathematically and then visuall
interesting extensions here are how changes in state can be expressed in the notation, that is
old state may be depicted visually in the constraint diagrams representing the pre and post-co
tions; and also how the creation of new objects may be depicted. §5, p.23 and §6, p.23 are a s
and an indication of further work, respectively.

Apart from constraint diagrams, the notation used throughout is essentially Catalysis, which e
OMT/UML notation with mathematical expression of constraints. The OMT (Rumbaugh et al.,
1991) style of notation e.g. for type diagrams, is used in this paper, though this could easily b
replaced with UML (UML, 1997) or similar notations; it makes no difference to the essential co
cepts.
Stuart Kent 7 March 1997 2

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

 of loans
e
s and

rrowed
r
, it still
, when
 the
n the
s may

od-
s the

 of
ct at the

 differ-
 the

, and

 may be

rld”

n
 and
2 Problem Description for a Library System

The general requirements are to produce a computerized system to support the management
in a university library. A library maintains a catalog of publications (books, CD’s etc.) which ar
available for lending to users. There may be many copies of the same publication. Publication
copies may be added to and removed from the library. Copies available for lending may be bo
by active users registered with the library. When a publication (or more specifically a particula
copy) has been borrowed it is on loan, and is not available for lending to other users. However
belongs to the library and so is still part of its collection. Users are able to reserve publications
none of the copies are available for loan. A user may not place more than one reservation for
same publication. When a copy is returned after it has been out on loan, it may be put back o
shelf or, alternatively, held for a user who has reserved the publication of which it is a copy. Thi
be done immediately on return, or delayed, and done as part of a batch of returned copies.

3 Invariants

Invariants are constraints which restrict the set of allowable snapshots that the system being m
elled can enter. In OO modelling invariants accompany type diagrams. A type diagram define
kinds or types of object that may appear in the system being modelled and the links or associations
that may exist between those objects. It also includes notation for constraining the multiplicity
associations: how many objects at the target of the association may be connected to the obje
source.

When modelling a system, it is often a good idea to draw different type diagrams focussing on
ent aspects of functionality. This is the approach taken here. There are three main aspects to
library system as described in §2, p.3.

Users, publications and copies. These are the “real world” objects the system needs to keep
track of.

Loans. The part of the system for tracking loans.

Reservations. The part of the system for tracking reservations.

Each is dealt with in turn below, following the format: type diagram, illustration with snapshots
invariants, expressed both mathematically and using constraint diagrams.

Where it is clear what is happening, the snapshots and mathematical expression of invariants
omitted.

3.1 Basic Notation: Users, publications and copies

This section introduces the basic notation, at the same time introducing the essential “real wo
objects appearing in a model of a library system.

A library needs to know about users, publications and copies of publications. Thus Figure 1 o
page 4 includes types for all these objects and shows the possible associations between them
library system objects and between each other.
Stuart Kent 7 March 1997 3

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

t has

 (nearly

come
a

ed
 system
nt asso-

t seem
gh

e type

s
enied

ciated
The types ����, ����	
��	� and ��� have been enclosed inside the type �	�����, for two meth-
odological reasons, and one semantic:

• To make it clear that these types are being defined in the context of a library, so no though
been put into how they might be used in a different context.

• Because it is much easier to draw these diagrams if the “system” type encloses the others
all other types will have a link with the system type).

• We suppose that all the objects that a type within the enclosure refers to are those that be
associated with the system object, either through internal creation, or by being passed as
parameter. A consequence of this is that the associations to �	����� are all optional, or single.
One can navigate from a copy either through the association ����	
��	���
�����, or through
the association �
���
�	�. Whatever route is taken, the same library object must be reach
(hence the associations can not be multiple). Note that e.g. a copy may be passed into the
as a parameter, in which case it need not be connected to the library object by a permane
ciation (hence the associations can be optional).

This semantics is similar to that suggested for Catalysis; the main difference is that they do no
to account for the possibility that the “system” object may only know about other objects throu
temporary links, such as when they are passed through as parameters to system actions.

Table 1 on page 5 gives some snapshots indicating whether or not they are consistent with th
diagram and/or consistent with the “real world” situation we are trying to model.

Snapshots 1 and 2 represent undesirable situations, which are rejected by the type diagram a
required. 1 shows a copy attached to a publication from a different library: this is specifically d
by enclosing the type ��� within the type �	����� (the optional multiplicities on the
����� and

���
�	� associations are not enough by themselves). 2 shows a case where a copy is asso
with two publications, which is denied by the single multiplicity on the association from ��� to
����	
��	�.

Figure 1: Basic view of library

��������������

��	���	�

���������
���������
��������

�������

���	
�����

�������	��

���	�
Stuart Kent 7 March 1997 4

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

nd 6, on
 -
s

Snapshots 3 and 4 represent desirable situations which are accepted by the type diagram. 5 a
the other hand, show undesirable situations accepted by the type diagram; additional constraints
invariants - are required to ensure their rejection. The invariant corresponding to snapshot 5 i

snapshot
consistent with

type model
consistent with
“real world”

1.

� �

2. � �

3. � �

4. � �

5. � �

6. � �

Table 1: Snapshots of users, publications and copies

��������

��������

��	
�

���������	�

����������

������	

��������

��	
�

���������	�

���������	�

����������

������	 ����������

��������

��	
�

��	
�

����������

����������

�	��
�

��������

��	�
������

����

������	

����������

��������

��	�
������

����

�������

���������	

����

��������

��	
�
������
Stuart Kent 7 March 1997 5

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

soci-
ion

iven in

tion

er
ssio
Invariants apply to ����. Thus this says that the set of objects obtained by first traversing the as
ation
����� from ����, followed by�
�	��,1is equal to that obtained by traversing the associat

���
�	�.2

Similarly, the invariant corresponding to snapshot 6 is:

The active users must also be registered. A constraint diagram visualising these invariants is g
Figure 2 on page 6. Notes of explanation are included on the diagram. In particular note:

1. In line with common practise, if the rolename of an association is omitted then the name of the type to which the associa is
directed is used as the rolename, in its plural form if the association is multiple.

2. This is the interpretation of navigation expressions used by Catalysis, and as will be seen this is a (the) key concept undpinning
the visual notation. In other attempts to integrate formal assertions with OO modelling notation (e.g. Syntropy) this expren

would have to be rewritten .

Figure 2: Constraint diagram for basic view

������
�	��
���
�	�=

������ � ��	
������� � ������� ������∧∈,∃ �={ } ���������⊇

�
�	�� ���	������⊆

��������

�	�
������
���

����������������	

Represents the ob jec t
which is ����

A box l ike th is ind icates the set
o f ob jec ts o f the named type

Ind icates the set o f ob jects (a t the target) obta ined
by nav iga t ing the named assoc ia t ion f rom the se t a t
the source. The ro lename used is the same as tha t a t
the target o f the assoc ia t ion, nav igated in the
d i rec t ion o f the ar row, in the type d iagram.

Ind ica tes a set o f ob jects
o f the named type .

Venn d iag rams ind ica te
re la t ionsh ips between se ts

����

�	����
�������
Stuart Kent 7 March 1997 6

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

e!)

 was
e
hich is
 on
pty),

w it
erating

al
h the
apshot
 part of
apshot
t active,
• associations are depicted as relations between sets of objects (after all that’s what they ar

• the use of Venn diagrams to express relationships between associations

• the depiction of types as sets

• navigation always begins at the ���� object

Links are directed for the following reason. Consider Figure 3 on page 7. The association ���	���

���� indicates, for any user, which set of copies is available for loan to that user. If the arrow
omitted then we would not know in which direction to read the diagram. Reading the link in th
other direction would mean that any set of copies are always available only to a single user w
the same for all copies in that set. This is clearly not the case. Instead we could draw Figure 4
page 7, which says that for any user there is a set of copies available to that user (possibly em

and for any copy in that set, that user is one of the users for which the copy is available.

3.2 A More Substantial Example: Loans

The loans view illustrates a more substantial example of a constraint diagram, in particular ho
tends to lead to more comprehensive coverage of invariants than an alternative method of gen
snapshots and deriving invariants from them.

Figure 5 on page 8 is the part of the type diagram focussing on loans.

As with the basic view of the library system, we generate snapshots to establish what addition
invariants need to be expressed, looking, in particular, for snapshots which are consistent wit
type model but not with the real world. Two such snapshots are given in Table 2 on page 8. Sn
1 represents an undesirable situation, as the current loan associated with the copy is actually
the history of loans. The intention is that the sets of current and historical loans are disjoint. Sn
2 is undesirable on two counts: the current loan depicted is associated with a user which is no
and it is also not a current loan of any copy.

Figure 3: The ���������� link (i)

Figure 4: The ���������� link (ii)

���� ���
�����������

���� ���
�����������

����������
Stuart Kent 7 March 1997 7

Constraint Diagrams: Visualising Assertions in Object-Oriented Models
Reading directly off from these snapshots we might come up with the invariants below.

1.

2.

Figure 5: Loans

snapshot
consistent with

type model
consistent with
“real world”

1. � �

2. � �

Table 2: Snapshots for loans

��������������

��	���	�

���
���

������

�������

����	����

��������

��	����

��������

����������

������

����	
	�

���	

���
�

�	����
��

�����
�� �����

��

���

����������

����	
	�

���	

���
�

�	����
��

��

����
�����

����������

�����∀ � �	�����∈ ���
������ �	=⇒,

�����∀ �
�������∈
������ �
�	��∈ ���
������ �	�≠∧()

⇒,
Stuart Kent 7 March 1997 8

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

 to be
ses

 that
ing the
ed the

ew
This is only a small selection of the snapshots, with corresponding invariants, that would need
generated, so that, even for this small system, it begins to get difficult to ascertain when all ca
have been considered.

On the other hand, drawing a constraint diagram tends to provide the kind of overarching view
leads to comprehensive coverage more quickly. One considers each association in turn, draw
appropriate set at the target of the association on the diagram. As a new association is includ
notation forces you to consider its relationship with those already there.

The constraint diagram for the loans view is given in Figure 6 on page 9. An explanation of n

notation is annotated on the diagram.

Figure 6: Constraint diagram for loans

����

�����

	�
�����

���

��������

�	
�����

�����	��

�������

���	��

���	
�����

Indicates that there are no elements in
this area of the set

��������

A set (in this case a singleton)
with no l inks targeted on i t . This
means any (i .e. universal
quanti f icat ion) arbitrary set l ike
this within the smal lest
containing set depicted.
Stuart Kent 7 March 1997 9

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

ents

njunc-
e.g. Syn-

 partic-
The invariants derived from this diagram are listed in Table 3 on page 10 are obtained. Comm

are written next to some invariants to highlight the most interesting cases.

3.3 Use with Statecharts: The Reservations View

The reservations view illustrates how constraint diagrams connect with and can be used in co
tion with statecharts as an alternative to using state types on type diagrams, as suggested in
tropy, Catalysis and UML. The part of the type model concerned with reservations is given in
Figure 7 on page 10. The invariants on reservations have a lot to do with the state of copies, in

ular whether they are on hold or not. It is therefore worth first exploring the states of ���, and draw-

�
������ and ������� partition the set at
the target of ���������������, as they do not
intersect and the area outside of them is indi-
cated as having no elements.

As above.

Notice the use of universal quantification. In
addition one could say that

, but this is deriv-
able from invariant above

Table 3: Invariants for loans (from constraint diagram)

Figure 7: Reservations

�������� �	
�����∩ ∅=

���������
��
 ���	��⊆

���	�� ���	
�����⊆

���	
���������
 �������� �	
�����∪=

�������	������
 �������� �	
�����∪=

�������	��������� ��������=

������∀ � ��������∈ ��������� �	�≠⇒,

�������� �������	��∈

��������������

��	���	�

���������
���������
��������

�	�	��������	�	�������

�������

���	
�����

�������

�	
�����

�������	�

���	�������

��������
��������

���	��
Stuart Kent 7 March 1997 10

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

th

ram

of
, to

m-
e
 of the

waiting
ociation.
e
alysis

the dia-
are in
t was

ailable
ing up some invariants to relate them to the associations on the type model. Similarly it is wor
exploring the states of ��������	�. Doing this also illustrates how constraint diagrams relate to
statecharts.

A statechart for ��� is given in Figure 8 on page 11. If the transitions are ignored, then the diag

looks just like part of a constraint diagram. This is in fact the case. The states represent sets
objects, namely those objects in that state. They are, of course, disjoint. It is natural, therefore
draw a constraint diagram relating associations with states. This is done for the states of ��� and
��������	� in Figure 9 on page 12. As discussed in §3.1, p.3, the type ��� represents all the
��� objects known in any way to ����, for any particular snapshot, whether by permanent or te
porary association. Similarly for ��������	� and ����. The states represent the subsets of thos
sets of objects which are in a particular state. The diagram informs us that if an object is in any
states �� ����, ��������, ��!�� or ���, then it is a copy in the library’s collection. In other
words, a copy object should not be passed in as a parameter in a state �� ����, for example.1 The
set of objects in the �������� state is exactly that reached through the association ��������.2 Sim-
ilarly All the waiting and pending reservations are in
�������, and the fulfilled ones in �	�����.
The associations of objects in particular states with objects of other types are also intuitively
depicted on the type diagram. Thus we see that the set of copies on hold map into the set of
reservations and vice-versa, and copies/reservations in other states do not have such an ass
The use of constraint diagrams in this way provides an alternative and, we think, more intuitiv
approach than introducing state subtypes on a type diagram, as is done in e.g. Syntropy, Cat
and UML.

The constraint diagram for reservations can now be given. Figure 10 on page 13 is similar to
gram for loans, with the addition of the notation to identify the sets of objects from a type that
a particular state (as introduced in Figure 9). This diagram includes additional information tha
not really relevant to the diagram constraining states; for example that navigating via
����������
�����	�� gets you to the union of �	����� and
�������. Also included is the constraint that a
copy on hold, must be on hold for a current reservation, and that the only user to whom it is av

1. If this is not desired, then there is notation, introduced in the latter part of §4.4, p.17, which allows the intersection of objects in a
particular state with objects from another set (e.g. collection) to be easily represented.

2. Of course this association is redundant. However, having it does make the visual specification of the ����������	
 transaction in
§4.4, p.17 less cluttered.

Figure 8: Statechart for ����

���

������ ���

����	���
�������

��������

��������	

�
�
�
�
�
�

������
Stuart Kent 7 March 1997 11

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

 to all
cts in a

f pre
for loan is the user associated with that reservation, and that copies on the shelf are available
active users. Textual versions of these constraints are given, as they illustrate how sets of obje
particular state translate into the mathematical assertion language.

4 Action Specifications

Formal assertions are also used to write specifications for the behaviour of actions in terms o
and post-conditions. This section shows how constraint diagrams can be used in this role.

Figure 9: Constraints on states of ���� and ����������

����

�����	
���
����

���

�������
������

���������

�	�
������

�����
��

�������
��

��������

��������������

��������

���������

��������

��������

�
������

�����

�
����

����∀

 ��!��∈
��!��"������
����	������=⇒()

 �� ����∈
����	������ �
�	��=⇒()

∧
,

Stuart Kent 7 March 1997 12

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

ystem
stem

ary

ess of
nd

ed
s draw-

refer

nt asso-
As before, the specifications are considered with respect to the different views of the library s
model. Since this is a specification model, all the actions are assumed to take place on the sy
object (D’Souza and Wills, 1997). The actions considered are ���	��������, as it illustrates the
point made earlier that some objects may only be known to the system object through tempor
associations, and
��
#��, ������, ������� and
�����������, as they have some of the most
interesting behaviour and therefore give a good indication of the expressiveness and intuitiven
the notation. Of course actions would also be required for adding and removing publications a
copies to the library stock, removing users etc.

���	�������� is specified in terms of the “basic” view of the library; ������� and
�����������
are specified in terms of the reservations view; and
��
#�� and ������ are actions specified
(largely) in terms of the loans view. We say “largely” as
��
#�� does impact a little on reserva-
tions: this will provide an opportunity to show how the specification of an action may be factor
into different components, each concerned with a different aspect of the system, which mean
ing separate constraint diagrams, one per component, which can then be “composed”.

4.1 Filmstrips: ���	��������

This section introduces filmstrips, first using snapshots, and then using constraint diagrams. We
to the latter as generalised filmstrips. The example used - ���	�������� - also illustrates why the
objects known to the system object (in this case a library) can include objects not in permane
ciation with that object, as originally discussed in §3.1, p.3.

Figure 10: Constraint diagram for reservations

����

����	
	�

���	�
����

������
����

��	

	������

�������

	������

���������

�	��
�

����������

�
��������� �
���������

������ �������
Stuart Kent 7 March 1997 13

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

 with
a snap-

 placed

f
.

us
ecifica-
 identi-
In working out the specification of an action it is usual to produce one or more filmstrips, each
two frames: the first a snapshot satisfying (or not) the pre-condition of the action; the second
shot satisfying (or not) the post-condition. A filmstrip for ���	�������� is given in Figure 11 on
page 14, where the snapshots satisfy the pre and post-conditions, respectively. The filmstrip is

alongside an object interaction diagram (this is Catalysis notation), as a powerful technique o
explaining how the state of a system changes as the actions on various objects are performed

Following common practice, a dotted link indicates a temporary association with an object. Th
there are objects which the system needs to know about and which we need to refer to for sp
tion purposes which are not permanently associated with the system. Here one such object is
fied to the system through the temporary association �, and in the pre snapshot this object is not
permanently associated with the system.

A formal specification of the action is:

���	����$������%
���
� is not registered

Figure 11: Filmstrip for �����������

�	����
���
���

����

�

��������

�	����
��

�����

���	

���	

��������

���	

���	

�	����
��

�����

�
�����

�	����
��
Stuart Kent 7 March 1997 14

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

11 on

indicate

n this
ng of
-condi-
���
� is now registered and active

By replacing the snapshots with constraint diagrams, we produce a generalised filmstrip (Figure 12
on page 15) which expresses exactly what the formal specification expresses1. This, and the formal
specification, are more general in that they cover all cases, not just the one depicted in Figure
page 14 (for example, the cases when ���	������ is an empty set or has more than a single ele-
ment). The first constraint diagram both represents the pre-condition and also can be used to

1. It actually says a bit more, specifically that in both the pre and post-conditions. In the pre-conditio
is guaranteed by the invariant (see §3.1, p.3) so is redundant, and, assuming that nothing else changes except the placi� in
the sets ������ and ���
����� (see following discussion), is guaranteed to be preserved by the action, so true in the post
tion.

Figure 12: Generalised filmstrip for �����������

� ���	������∉

� ���	������∈ � �
�	��∈∧

����� ���������⊆

�	����
���
���

����

����

�

��������

�	����
��

�����

����

�

��������

�	����
��

�����

Indicates a
temporary
associat ion.
Stuart Kent 7 March 1997 15

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

e by

ion in
 from
instead
the dia-
eds fur-

ion
reated.

be
what associations are affected by the action. In this case the associations ���	������ and �
�	��
are depicted to indicate that they are likely to change when the action is performed in this cas
gaining the object identified through��. Currently we make no claims about the representation of
frame conditions i.e. stating what doesn’t change, as this is a difficult area for formal specificat
general (Borgida et al. 1995); for this reason frame conditions have deliberately been omitted
the textual representation of the action post-condition, for example by using set membership
of set union. Nevertheless, intuitively one can see that anything not indicated as changed on
gram may be assumed to be unaffected by this action. Working out the detailed semantics ne
ther work (see §6, p.23).

4.2 Object creation:
��
#��

The generalised filmstrip for
��
#�� is given in Figure 13 on page 16. The new piece of notat
introduced here is to indicate that a new object, previously unknown to the system, has been c
In this example, the object in question is a ���, which is used in the post-condition to record that
the copy (
) is on loan to the user (�). Nothing will be gained by further explanation, that can not

Figure 13: Generalised filmstrip for ������
�

�������

���	 �
��

������������

���

����

����

	�
�

�

������

����������

�

�	��
��

����

����

	�
�

�

�

��������

�	��
��

�������

�����������

Indicates a
new object .
Stuart Kent 7 March 1997 16

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

at in
he text

n to

l

e it
The
e

dicate
discovered by examining the textual specification read off from this diagram, except to note th
Catalysis ��& is the set of new objects created in moving from the pre state to the post state. T
is given below.

��
#���$������'�
����%
���
� is an active user

 is available for lending to the user �.1

���

 is no longer available for lending.

The loan of
 to � is recorded and marked as current.

4.3 �� state: ������

������ illustrates a specification where direct reference needs to be made in the post-conditio
the pre state. Textually, we write ���(or , where (is an association, to identify the value of (in
the pre state. Similar notation can be used in a constraint diagram, as is done in that for ������ in
Figure 14 on page 18. Here, the loan that was
������ for
, the copy being returned, in the pre
state, is placed into the loan history.
�
������ in the post state becomes unattached. The textua
specification is again read off directly from the diagram.

������$
����%
���

 is on loan.

���

 is marked as ‘returned’, waiting to be reshelved or put on hold.

The loan of
 to � is no longer current.

4.4 �������

������� introduces no new notation, but is included for the sake of completeness and becaus
helps to understand the next example. Its specification is visualised in Figure 15 on page 19.
post-condition is very similar to that of
��
#��: a new reservation object is created to record th
fact that there is a current reservation for the user � of publication �. The pre-condition is more
sophisticated than has so far been encountered: note the use of a in the pre-condition to in

1. In the case that � is on hold, � must be the user associated with the reservation for which � is on hold.

� �
�	��∈

�
����	������∈

�
������ �	�≠

� ��� � ��&∈ �
������� ������ �=
��
��
=
���
������ �=

∧ ∧
∧

∈∧,:∃

(

�
������ �	�≠

���������� �	�≠

�
������ �	�
�
������
�������
�
������ �	�����∈∧∉∧=
Stuart Kent 7 March 1997 17

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

nt

cifi-
ent of
that there is no existing current reservation of � for �, and the use of Venn diagram notation (disjoi
sets) to indicate that there are no copies of � available for lending to �. The textual specification
derived from the diagram is:

�������$������	
��	�'�������%
���
� is not currently reserved by �.

there is no copy of � available for lending to �

���
The reservation of � to � is recorded and marked as current.

4.5 States (again) and Set Counting:
�����������

����������� is significantly more difficult to specify than the actions so far described. Its spe
cation illustrates how relationships between set counts may be depicted, and shows a refinem
the notation for referring to objects in a particular state.

Figure 14: Generalised filmstrip for ���
��

��

���

���
����

����

���
���

����������

�

��������

��

����

�����
��

��

���

���
���

�

��������

��

����

�����
��

��

���

���
���

���
���

Al lows direct reference
to values of associat ions
in the pre state.

����������	��
������� ����������	��∩ ∩ ∅=

�����	������ ��
�	��∩ ∅=

� ��������	� � ��&∈ �
�������∈
������ �= ������	
��	�

∧ ∧
∧

,:∃
�=
Stuart Kent 7 March 1997 18

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

ns that

ding
specifi-
ll we
tions.

eds

ing an
 of the
When a copy is returned it is marked as returned, which by invariants given in §3.3, p.10, mea
it is unavailable for lending - it is waiting to be put on hold or put back on the shelf. The
�����
������� action takes all those copies that have been returned and matches them up with pen
reservations, those that still require copies (one each) to be put on hold for them. As this is a
cation, we do not wish to fix on any particular algorithm for matching copies to reservations; a
wish to ensure is that the correct number of copies are put on hold for the appropriate reserva

The specification is given by Figure 16 on page 20. It introduces some new notation which ne
explaining:

• Two ways are shown for “counting” sets or placing restrictions on the size of a set: annotat
association targeted on the set, as in the pre-condition, and placing a box on the boundary

Figure 15: Generalised filmstrip for reserve

���
������

����

����

�	�
������

����������

�

�����

����������

�

��������

���

�����������

����

�	�
������

����������

�

�

��������

��

����

��

����
Stuart Kent 7 March 1997 19

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

e size

e con-
ding

 for
ion.
set, which contains the counting restriction or defines an integer variable whose value is th
of the set, as in the post-condition.

• The use of notation like to indicate the set of objects in a particular state which ar
tained within the smallest containing set, in this case the set of reservations which are pen
and are reservations for the publication depicted.

• Arbitrary temporary associations have been introduced (here) and *) for allowing reference to a
particular set, derived from other sets.) represents all those copies that have been returned
the particular publication depicted; * represents all the pending reservations for that publicat

Figure 16: Generalised filmstrip for ��������
���

����
����
��

����

�	�
������

����������

��������

���

������	

�

������	

��

����

����������

��������

���

�

!�����	

��"���

��#����

����$���

��"���%�
� &

'�����&�

����$���

���
���

���
���

������	

≥1

Indicates the set of objects in the named set
which are a lso conta ined in the smal lest
contain ing set depicted (in th is case the
intersect ion).

Mul t ip l ic i t ies can
be ind icated against
l inks.

Element counts can be d i rect ly a t tached
to the set. A "var iable" al lows the size
of a set to be used in the def in i t ion of
the size of other sets.

����	��
Stuart Kent 7 March 1997 20

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

y,
reserva-
are
s ensure

ing
diffi-
con-

es

e
The diagram then shows the sets) and * (defined in the pre frame) being partitioned, respectivel
between the copies that are put on hold and those that are put on the shelf, and between the
tions which are awaiting collection, and those which remain pending. The copies put on hold
matched to the reservations awaiting collection on a one-one basis. The size indicators on set
that the number of copy/reservation pairs matched in this way is the minimum of

the number of reservations for the depicted publication that are pending

the number of returned copies for that publication

The textual specification derived from the diagram is given below. It is perhaps worth mention
that this specification was first attempted without the aid of the diagram and found to be very
cult to write; we only arrived at (what we think is) the correct specification by constructing the
straint diagram; previous attempts were either incomplete or inconsistent.

�����������
���
There are copies waiting to be shelved.

���
For every publication � in the catalog

Let) represent all the returned copies for � in the pre state

Let * represent all the pending reservations for � in the pre state

Every copy in) put on hold must be put on hold for a reservation in * that has been
marked as waiting

Any two reservations in * that have been marked as waiting must have different copi
put on hold for them, and those copies must be in) and must have been put on hold

Copies in) have either been put on hold or put on the shelf

Reservations in * have either been marked as waiting or left pending

The number of reservations in * marked as waiting (which by earlier relationships is th
same as the number of copies in) put on hold) is the minimum of the size of) and *,
respectively.

There are no returned copies left

)

�������� �	�≠

������	
��	�∀ �
�����∈ (⇒,

����) �������� ��
�	��∩ �	�=

����* ����������	��
������� ����	��∩ ∩ �	�=

����∀
 ��!��)∩∈
��!��"� +�	�	�� *∩∈⇒,

�1 �2, ���������	�∀ �1 +�	�	�� *∩∈ �2 +�	�	�� *∩∈ �1 �2≠∧ ∧()

�1 �������� �2 ��������

�1 ��������)∈ �1 ��������)∈∧ ∧

≠

�2 �������� �	�≠ �2 �������� �	�≠∧ ∧

(

)

⇒

,

��!��)∩) �� ����)∩()∪)=

����	�� *∩) +�	�	�� *∩()∪ *=

+�	�	�� *∩ ,	�) *,()=

�������� �	�=
Stuart Kent 7 March 1997 21

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

rked as
: go
upport,
ecifi-

into
 and
 specifi-
gener-

cifically
4.6 Diagram Composition: Impact of
��
#�� on Reservations

When a copy which is on hold is checked out, then the reservation it is on hold for must be ma
fulfilled. This aspect of its specification was not dealt with in §4.2, p.16. There are two choices
back and change the original specification, or, assuming appropriate notational and semantic s
deal with this part of the specification separately and then just “compose” it with the original sp
cation. The latter approach is more appealing as, in general, it lets us split up a specification
more manageable pieces. Catalysis tells us how to compose textual specifications of actions,
this, in turn, has been taken from research in formal methods. Since we can derive the textual
cation from the constraint diagrams, this provides a semantic underpinning to composition of
alised filmstrips. Intuitively it is just the overlaying of diagrams, as we would expect.

The constraint diagram showing the impact of
��
#�� on reservations is given in Figure 17 on
page 22. Comparing this with Figure 13 on page 16 we see that there are no mismatches: spe

both pre and post-conditions in Figure 17 only consider associations between the copy
 and ������
���	� objects, which are not mentioned in Figure 13.

Figure 17: Impact of ������
� on reservations

�������������

����

���

����������

�

��������

��"���%�
 �������

���

����������

�

��������

��"���%�
 �	
��

��

��"���%�

Stuart Kent 7 March 1997 22

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

ns for
tion of
otation
ed in
s of the
tion,

 are

 the

dia-
w they

ia-
h dif-

on-

typing
on-
 Wirfs-

onality
aviour,

 of

24.
e

 pro-

ories
del-
 is to
one has
isjunc-
5 Summary

The paper has introduced a new notation, constraint diagrams, for visualising assertions in object-
oriented modelling. The notation has similarities with informal diagrams used by mathematicia
illustrating relations and borrows much from Venn diagrams; it may be viewed as a generalisa
snapshot or instance diagram notation. We have shown, by means of a case study, how the n
may be used to express invariants and pre/post-conditions, and, in addition, how it may be us
conjunction with existing visual notations, such as type models and statecharts. The semantic
notation has been informally sketched through the use of instance diagrams, informal descrip
and mappings into formal assertions.

6 Further Work

Constraint diagrams have opened up a number of avenues for further research. A few of them
listed below:

Relationships with Other Notations. The examples in the paper have illustrated to some extent
relationships between constraint diagrams and other visual notations. Further investigation is
required to explore these relationships in more generality, in particular (a) whether constraint
grams could actually be used as the sole notation, hence underpin other notations, and (b) ho
could best be used in conjunction with other notations. So far we have observed:

• Multiplicity constraints on associations on type diagrams can be expressed in constraint d
grams by annotating links, annotating sets, or using different notation for different sets wit
ferent multiplicity: = 1, = 0,1, = 0 or more.

• State types on type diagrams, and constraints on them, can be intuitively represented on c
straint diagrams. See §3.3, p.10 and §4.5, p.18.

• Types are represented as sets on constraint diagrams. Thus, as with substating, static sub
and associated constraints (partitions, disjoint types, etc.) can be represented directly in c
straint diagrams using Venn diagrams. This accords with explanations of subtyping e.g. in
Brock et al. (1990).

• Statecharts could be simplified, with constraint diagrams used to show nesting and orthog
of states. Then the primary focus of statecharts would be on describing state transition beh
providing an alternative way of visualising the specifications of actions e.g. as discussed in
D’Souza and Wills (1997). Following this route might make it easier to split the description
transition behaviour for one type over many statecharts.

• Constraint diagrams can be overlayed with snapshots, as illustrated by Figure 18 on page
Similarly for filmstrips. Links can then be compared to establish if one is consistent with th
other. Figure 18 on page 24 is inconsistent: look at the
������ links. Visually this may be use-
ful in design, especially with appropriate tool support. A “logical” overlaying process could
vide the basis for consistency checking algorithms.

Semantics. Work has begun on describing the semantics of the notation in terms of logical the
in Larch (Guttag and Horning, 1993). This builds open recent work in interpreting existing mo
ling notations (Bourdeau and Cheng, 1995; Hamie and Howse, 1997ab). The aim of this work
check that the consistency and expressiveness of the notation - basically to ensure that no st
been left unturned. A particular area of interest here is to look at diagram composition, both d
Stuart Kent 7 March 1997 23

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

ame
sed to
e in a
ns,

, then
ous
ations
 to be

 com-

ful
ns; and
ns
her

for
hots and
st dia-

rams;
atching
tion and conjunction. This may open up new avenues of investigation into the expression of fr
conditions (see e.g. Borgida et al., 1995). As hinted above, the notation looks as if it could be u
give the semantics of existing visual notations. With its own formal semantics, we would then b
position to provide formal, yet intuitive, semantic underpinnings to other OO modelling notatio
such as those introduced by UML (UML, 1997).

Concepts. If the notation is able to express most constraints that one requires in OO modelling
it is interesting to see if it is able to clarify certain concepts in that world. By exploring the vari
possibilities, a better and more precise characterisation of the intended semantics of new not
could be given. Specifically we have in mind the area of composite objects, where there seem
many possible semantics (see e.g. Civello, 1993), and how this impacts on notations such as
posite classes in UML.

Use of the notation. Further investigation is required into (a) whether the notation would be use
in practice and whether it really is more intuitive and easier to use than mathematical assertio
(b) what are the most appropriate ways to use it, in particular in conjunction with other notatio
such as stachecharts and type models. It would also be interesting to compare its use with ot
approaches to making assertions easier to write and understand such as ADL (ADL, 1997).

Tools. We foresee interesting possibilities for providing sophisticated yet intuitive tool support
semantic checking of models. Some of this has already been hinted at e.g. in checking snaps
filmstrips against constraint diagrams. Other areas to consider are the generation of constrain
grams from snapshots and filmstrips; animation of models, visualised through constraint diag
and consistency checking between notations by mapping into constraint diagrams and then m
the results.

Figure 18: Integration with snapshot diagram

���������	

�
���

�������

��	�
���

��������

���	

�
��

���

��������

��	�
���

�
����
�

�������

������

����	�����

������

����	�����

�
����
�

��������
Stuart Kent 7 March 1997 24

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

 and
and
nking.
Acknowledgements

I am grateful to the BIRO research team at Brighton, in particular Franco Civello, John Howse
Richard Mitchell for many useful comments and feedback. Thanks are also due to Alan Wills
Desmond D’Souza whose work on Catalysis has had considerable influence on my recent thi
This research was partially funded by the UK EPSRC under grant number GR/K67304.
Stuart Kent 7 March 1997 25

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

a-
References

ADL (1997) Assertion Definition Language, The Open Group (formerly X/Open), http://
adl.xopen.org.

Borgida A., Mylopoulos J. and Reiter E. (1995) “On the Frame Problem in Procedure Specific
tions”, IEEE Transactions in Software Engineering, Vol. 21, No. 10.

Bourdeau H. and Cheng B. (1995) A Formal Semantics for Object Model Diagrams, in IEEE Trans-
actions on Software Engineering 21, 799-821.

Civello F. (1993) “Roles of Composite Objects in Object-Oriented Analysis and Design”, in OOP-
SLA’93, pp.376-393, ACM Press.

Cook S. and Daniels J. (1994) Designing Object Systems, Prentice Hall Object-Oriented Series.

D’Souza D. and Wills A. (1995) Catalysis: Practical Rigour and Refinement, technical report avail-
able at http://www.iconcomp.com.

D’Souza D. and Wills A. (1997) Component-Based Development Using Catalysis, book submitted
for publication, manuscript available at http://www.iconcomp.com.

Guttag J. and Horning J. (1993) Larch: Languages and Tools for Formal Specifications, Springer-
Verlag.

Hamie A. and Howse J. (1997a) A Larch-based Semantics for the Type Views of Syntropy, submitted
to FME97.

Hamie A and Howse J (1997b) A Larch-based Semantics for the Statecharts of Syntropy, submitted
to ECOOP97.

Parnas, D. (1996) “Mathematical methods: What we need and don’t need”, in An Invitation to For-
mal Methods, IEEE Computer.

Rumbaugh J., Blaha M., Premerali W., Eddy F. and Lorensen W. (1991) Object-Oriented Modelling
and Design, Prentice Hall.

UML (1997) Unified Modeling Language v1.0, Rational Software Corporation, available at http://
www.rational.com.

Wirfs-Brock R., Wilkerson B. and Wiener L. (1990) Designing Object-Oriented Software, Prentice
Hall.
Stuart Kent 7 March 1997 26

	1 Introduction
	2 Problem Description for a Library System
	3 Invariants
	3.1 Basic Notation: Users, publications and copies...
	Figure 1: Basic view of library
	Table 1: Snapshots of users, publications and copi...
	Figure 2: Constraint diagram for basic view
	Figure 3: The availableTo link (i)
	Figure 4: The availableTo link (ii)

	3.2 A More Substantial Example: Loans
	Figure 5: Loans
	Table 2: Snapshots for loans
	Figure 6: Constraint diagram for loans
	Table 3: Invariants for loans (from constraint dia...

	3.3 Use with Statecharts: The Reservations View
	Figure 7: Reservations
	Figure 8: Statechart for Copy
	Figure 9: Constraints on states of Copy and Reserv...
	Figure 10: Constraint diagram for reservations

	4 Action Specifications
	4.1 Filmstrips: registerUser
	Figure 11: Filmstrip for registerUser
	Figure 12: Generalised filmstrip for registerUser

	4.2 Object creation: checkout
	Figure 13: Generalised filmstrip for checkout

	4.3 old state: return
	Figure 14: Generalised filmstrip for return

	4.4 reserve
	Figure 15: Generalised filmstrip for reserve

	4.5 States (again) and Set Counting: clearReturns
	Figure 16: Generalised filmstrip for clearReturns

	4.6 Diagram Composition: Impact of checkout on Res...
	Figure 17: Impact of checkout on reservations

	5 Summary
	6 Further Work
	Figure 18: Integration with snapshot diagram

	Acknowledgements
	References

