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Abstract

This paper explores how certain ideas in object oriented languages have their
correspondentsin functional languages. In particular we look at the analogue of
the iterators of the C++ standard template library. We also give an example of the
use of constructor classeswhich feature in Haskell 1.3 and Gofer.

1 Introduction

The combination of higher order and polymorphic functions in modern programming
languages — chiefly in functiona languages, but increasingly in object-oriented lan-
guages as well — makes them most suitable for software reuse. Polymorphism alows
operationsto be applied over whole classes of types, whilst function parameters mean
that particular operations can be abstracted away, to be passed in as values on applica
tion. the first part of the paper provides a tutorial on this, in the Miranda® functional
programming language.

Beyond this *algorithmic’ abstraction, there lies data abstraction: access to a par-
ticular type can be given (soldy) through asignature of operations, hiding the concrete
nature of the type. In the second haf of the paper we show that using a higher-order,
polymorphic interface signature we can describe the essential properties of various
types, and using this approach, we can treat one type as if it were another. The ex-
amples in the paper include treating lists as trees, and trees as lists. The inspiration
for thiswork came from the iterators of [Musser and Stepanov, 1994]. An iterator is
an abstract index into a sequentia structure, giving a uniform trestment of lists arrays
and trees. The aim of the work here is to extend that approach in two ways. First,
we wanted to see how to describe an iterator in a functional language — the list-like
types. Moreimportantly, wewanted to be ableto take adifferent abstract view of types:
the paradigm embodied by trees is divide and conquer, and we show that if we take a
tree-like view of lists, the Quicksort algorithm can be developed in avery natural way.

Any language allowing higher order functionscan be used to i mplement theseidess,
but extrafeatures can facilitateit further. In particular the constructor classes of Gofer,
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[Jones, 1993], alow the recursion operators to be overloaded, avoiding the necessity
of passing the appropriate parameters into applications. The paper concludes with a
survey of the different language features which can be used to aid the implementation
of these ideas.

| am grateful to lan Utting for his patient explanationsof some of the arcana of C++,
and for pointing me in the direction of the Standard Template Library, [Stepanov and
Lee, 1994], which isimplemented using the iterator classes.

2 Functional programming

Modern functional programming languages like Miranda, Standard ML and Haskell
[Turner, 1985, Milner et al., 1990, Hudak et al., 1992] are based on function definitions
as equations or more generally as sequences of equations. For example, suppose we
have aready defined the function

sales :: num -> num

that is a function sales which takes a numerical argument (i.e. an argument of type
num) and returns a number. We can then write a function to return the sum of the first
n valuesof sales thus:

totalSales :: num -> num

totalSales 0 0
totalSales n = totalSales (n-1) + sales (n-1)

Thefirst equation givesthevalue of totalSales on 0, the second on non-zero values,
illustrating the fact that the ordering of the defining equationsis significant, the first
oneto apply being chosen.

Functions can have various alternatives on the right-hand side. If we want only to
add the positive sales we may write

totalPosSales :: num -> num

totalPosSales 0 = 0O

totalPosSales n
= totalPosSales (n-1) + sales (n-1) , 1f sales (n-1) > 0
= totalPosSales (n-1) , otherwise

Finding the time of the maximum sales, we can write

maxMonth 0
maxMonth n

0
n , 1f sales n > sales old



= old , otherwise
where
0ld = maxMonth (n-1)

in which the where clause attached to the second equation is used to make loca
definitionswhose scope is that equation.
If t isatype, then [t] isthetype of listsof itemsfrom type t, so, for example,

[2,3,4] :: [num] [[2],01,03,4]1] :: [[numl]

Functions over lists are defined by equations just as above, so to sum alist of numbers
wewrite

sum :: [num] -> num
sum [] =0
sum (a:x) = a + sum x

On the left hand sides of the equations are seen patternsrather than variables. Patterns
provide a case anadysis: isthelist empty, [1 or not, (a:x)? In the latter case it has
afirst element, or head, a and remainder, or tail, x; these components can be used in
calculating the result, thus pattern matching allows the selection of parts of structured
data objects.

Thus far, what we have seen has much in common with traditional imperative
programming languages: alternatives are provided by equations with multiple right
hand sides, iteration by recursion, and local definitions and calculations by where
clauses.

3 Higher-order functions

The function totalSales returns runningtotalsfor thefunction sales; if wewishto
do the samefor newSales we havetowriterewritethefunction totalSales. All that
changes isthe function called. Instead of demanding are-write, we can abstract from
the particular function to be summed, and make thisa parameter, thus:

total :: (num -> num) -> num -> num

total £ O 0
total £ n = total £ (n-1) + £ (n-1)

The running totals of particular functions are then given by

totalSales = total sales



totallNewSales = total newSales

where we have partially applied the function total to the first of its arguments; the
result is itself a function, which when given a number returns a number. We call a
function higher order when it takes a function as argument or returns a function as
result; total ishigher-order in both senses.

The abstraction here turns a particular operation, sales, into a parameter, £; the
cal culation of running total scan then be reused in many situations, both of similar sales
calculationsand in completely different contexts.

In asimilar way, we might round all numbersin alist to the closest integer,

roundList :: [num] -> [num]

roundList [] (]
roundList (a:x) = round a : roundList x

round v = entier (v + 0.5)

The operation of rounding is obviously only one of awhole class of possiblefunctions
to be applied to every element of alist. The general functionto ‘map’ afunctionis

mapNum :: (num -> num) -> [num] -> [num]

l

f a : mapNum f x

mapNum £ []
mapNum f (a:x)

and

roundList = mapNum round

This Section has shown how abstracting a particul ar sort of behaviour from afunction
incresses its generality: not only isit applicable to forming its origind target, but aso
it can be used to form a host of other functions.

4  Polymor phism

Suppose we want the length of alist of numbers. We can write

# [ =0 (1)
# (a:x) =#x +1

(Notethat function application binds more tightly then operator application, so that
# x + 1equas (# x)+1.) Thedefinition contains no reference to the type of objects



inthelist argument, and so it isapplicableto alist of any type. Itstypeis

# :: [*¥] -> num (2)

in which the ‘*" isatype variable. Just as for an ordinary variable, atypevariableis
used to signify that the property isvalid for any instance of the variable. In this case,
(2) impliesthat

# :: [[num]] —> num
# :: [booll -> num

totaketwo examples. Types containing variables, such as (2), are called polymorphic;
aternatively we might call the definition (1) generic.
Other objects of polymorphictypeare [] :: [*] and

swap :: (k,%%) —=> (%)
swap (a,b) = (b,a)

where the elementsin a pair have their order swapped. For instance, swap (True,3)
is (3,True); from thisexampleit is apparent that the type variables * and ** can be
given different instances, so that

swap :: (bool,num) -> (num,bool)

in the exampl e seen above.
Polymorphism supportsre-use: afunction intended to givethe length of numerical
lists can be used over any list type, for example.

5 Higher-Order + Polymorphic

Separately, we have seen that higher-order functions and polymorphic functions each
support reuse. Together, we have general functions of considerable power. In Section
3 wedefined a higher-order functionto ‘map’ numeric functionsaong listsof numbers.
Nowhere in the definition is it apparent that the lists are numerical, and we have the
generd definition

map :: (¥ => *%) —> [*] -> [*x*]
map £ [] =0
map £ (a:x) = f a : map f x

We have two dimensions of generality here:
e The type of list dlong which the operation is applied is arbitrary, asisthe result



type of the operation.

¢ Once theinput and output types are known, there is a choice of operationsto be
applied: the choiceisgiven asan argument when map is applied.

Forming general functions

How dowe find the definitionsof general functions? Often it can be seen asatwo-stage
process, which weillustrate with the sum function from Section 2.

sum :: [num] -> num
sum [] =0
sum (a:x) = a + sum x

What can become a parameter here?

o The operation we use to combinethe values, (+) isafunction of type
num —-> num —> num

e The start value, 0, isanumber.

Rewriting, we have

foldr :: (num—->num->num) -> num —-> [num] —-> num

foldr f st [] st (3)
foldr £ st (a:x) = £ a (foldr £ st x)

sum = foldr (+) 0O

The operation is called foldr because it involves folding in the function £ from the
right. For example,

foldr (+) 0 [vi,ve,...,vpl = vy + (vo +...+ (vp + 0)...)

Aftertransforming fromtheparticul ar definitionto sum alist, thedefinition (3) becomes
polymorphic, since there is no longer any reference to the lists being made up of
numbers. We have

foldr :: (*=>%=>%) —> * —=> [*] -> *

so that we can join alist of listsby folding in the operator ++ which joinstogether two
lists:

concat :: [[*¥]]1 —> [*]



concat = foldr (++) []

concat [[2,3],[],[4,1]]
= [2,3] ++ ([1 ++ ([4,1]1 ++ [1))
= [2,3,4,1]

Infact, the full generality? of thetypeis

foldr :: (k—>%k—>%%) —-> *k*x —> [*] —-> *x*

In other words, there is no reason for the function folded in to return a value of the
same type as the elements of the list. For example, we can define the length function
by foldingin addOne

# = foldr addOne O
where
addOne val len = len + 1

General vspolymorphic

Itisinstructiveto examinethe polymorphicfunctionsprovidedintheMiranda‘ standard
environment’. A few are first-order: they return the length of alist, reverse alist or
dividealist into parts by taking or dropping a number of elements; all these functions
are ‘structural’, in that their operation isindependent of the elements of the list.

The majority of the library functions over lists will examine e ements, and these
functions are higher-order, since the way in which the elements are examined is pack-
aged as a function or functions, passed into the general functionwhen it is applied.#

Thisanalysis is based on examining a functional library, but there is every reason
to believethat in an imperative context asimilar conclusion will be reached. [Kershen-
baum et al., 1988] discusses therole of higher order imperative programs.

The way in which instantiation takes place is assumed here to be function appli-
cation; an argument can be made for replacing higher-order functions by parametrised
modules, [Goguen, 1990], but this mechanism appears to be simultaneousy more
cumbersome and less powerful; we discuss thisfurther in Section 9 bel ow.

2This greater than anticipated generality is not an isolated phenomenon.

3This intuitive characterisation can be made formal; the functions are strict in the spine the list, but are
lazy in the elements themselves.

4In general these functionswill be strict in the elements of their list arguments. For instance, map f isas
strict in the elements asis the function £.



6 Theessenceof lists

Thetype [*] ischaracterised by its constructors

1 :: []
(:) 0 x> [*¥] —> [*]

thelist [2, 12] being built thus:

2 (12 : [

Every list can be seen asarising inthisway, by repeatedly adding e ementsto the empty
list. How arelistsused? A typical definition has the form

g O = st
g (a:x) .

.a ... X ... g X ...

where theright-hand side of the definitionof g (a:x) usesthe componentsa and x as
well asthevalueof g onthetail, g x. Rewriting thisas afunction application, we have

g O = st
g (a:x) = h (g a) ax

Asahigher order function, we define

fold :: (Fk —> % => [*] -> **) —> %%k -> [*] -> **
fold h st [] = st
fold h st (a:x) = h (fold h st x) a x

which can be seen as a generalisation of the foldr function, in that h takes the tail x
as an argument in addition to the head of the list and the recursive call of the folding
function.®

Using fold, empty = [1 and cons = (:) we can define any list processing
function. For example,

tail = fold tailPart (error '"tail')
where
tailPart v a x = x
map g = fold h empty
where
hvax=cons (ga)v

5Note that the fold function hereis not the same as the fo1d in the Miranda standard environment.



From another, more abstract, point of view, we can see any family of typest #* asbeing
alist of * if we have objects

empty :: t *
cons :: * -> t % —> t % (4)
fold :: (kk => % => £ * —> **) -> *k*k —> t * —-> *kx*

These obj ects can become parametersto the definitionsof tail, map, and so on, giving

mapGen :: ( t * |
¥ -> t k -> t ¥
(k% => % => t % => **%) —=> %% -> t * —> %% ) —>
(Fkx —> dkkk) —> t kkk —> t kkkk
mapGen (empty,cons,fold) g
= fold h empty
where
hvax=cons (ga)v

To summarise, we have shown in this Section that a family of typest #* islist-likeif
we can define functions conforming to the signature (4). Given such afamily, we can
define al the general functions over listsover thetypesin the family.

The novelty of thisapproachisthat t * can beany family of types: we shall seein
the next Section that trees and error types conform to this signature.

This characterisation isinspired by the iterators of the Standard Template Library
for c++, [Stepanov and Lee, 1994, Musser and Stepanov, 1994]. Iterators are an
abstraction from indices (or pointers), alowing a walk through a sequentia structure.
List-like types are analogue of these in a functional setting, and the tree-like types
discussed in Section 8 generalise them in providinga‘ divide and conquer’ interface to
adata structure, which is not provided (at least directly) by iterators.

7 Viewsof data: list-like types
We have various examples of list-liketypes, which we enumerate now.

Treesaslists
Given the definition

tree * ::= Leaf | Node * (tree *) (tree *)

we can make a sequential traversal of these trees. The definitions of empty, cons and
fold follow now.



empty = Leaf

cons a Leaf Node a Leaf Leaf
cons a (Node b t1 t2) = Node b (cons a t1) t2

As can be seen from the definition, in this case the traversal is in pre-order; other
traversals of the trees giverise to other definitions and therefore other ‘views' of trees
aslists.

fold £ st Leaf = st

fold £ st t f (fold f st t’) b ¢’
where
(b,t?) = splitTree t

and the splitting up of the general tree isgiven by

splitTree :: tree * —-> (¥,tree *)

splitTree Leaf = error "splitTree"

splitTree (Node a Leaf t) = (a,t)

splitTree (Node a t1 t2) = (b,Node a t1’ t2)
where

(b,t1’) = splitTree ti

As we remarked above, other traversals give rise to other cons and fold functions;
whatever the case, the family of general list processing functionswill be available.
Snoclists

Elements are added to the end of alist rather than the start by cons, and foldingisaso
done from that end. The requisite definitionsare

empty = []
cons = snoc
fold = foldAlt

where

[a]

b : snoc a x

snoc a []
snoc a (b:x)

foldAlt £ st [1 = st
foldAlt £ st x f (foldAlt f st x’) a x’
where

10



(a,x’) = split x

split :: [*] —> (*,[*])

split [] = error "split"
split [al = (a,[1)
split (a:x) = (b,(a:x’))

where (b,x’) = split x

Other examples

Other examples are given by other traversals of trees, ordered traversals of lists, and
the error types

err * ::= Error | OK *

We leave the definitions as exercises for the reader.

8 Treeliketypes

A typical recursion over thetype

tree * ::= Leaf | Node * (tree *) (tree *)
hastheform
h Leaf = st

1]
=

h (Node a t1 t2) t1...h t2...a...t1...t2...

and so is an application of

treeRec :: (k* —> ** -> * —-> tree * —> tree * —> **) —>
** —> tree * —> **
treeRec £ st Leaf = st
treeRec £ st (Node a t1 t2)
= f (treeRec f st t1) (treeRec f st t2) a t1 t2

A tree-liketypet * carriesthe operations

leaf R A
node Pk => % % => t ¥ => t %

1



treeRec :: (k* —=> ** —> * => £ * —> t * —> *%) —> ** —> § * —> **

and using these operationswe can form a sorting algorithm:

tSort :: t * —-> [*]
tSort = treeRec mergeVal []
where
mergeVal sortl sort2 val t1 t2 = mVal sortl sort2 val

wherethefunctionmval :: [*] -> [*] -> * -> [x] takestwo sorted listsand a
valueand mergestheminto asinglesorted list. Itsdefinitionsimultaneously generalises
amerge of two sorted listsand the insertion of an element into a sorted list, and isleft
as an exercise for the reader.

The essence of arecursion over atreeis that is works by divide and conquer, so
that viewing an arbitrary type as a tree will give divide and conquer agorithms over
that type. Our first example is (of course) trees themselves, but we can also view lists
astrees.

Listsastrees

We define, over lists

leaf =[]
node a 11 12 11 ++ [a]l ++ 12

and for recursion,

treeRec £ st [] = st
treeRec £ st 1 = f vl v2 a t1 t2
where
vl = treeRec £ st t1
v2 = treeRec £ st t2
(a,t1,t2) = listToTree 1

and lists are bisected thus

listToTree :: [*] -> (*,[*],[*])

error "listToTree"
(a,11,12)
where

listToTree []
listToTree (a:x)

n = #x div 2
11 = take n x

12



12 = drop n x

Other views of listsastrees are possible. If, for instance, were-define 1istToTree SO
that

listToTree (a:x) = (a, [ b | b<-x ; b<=a ]l , [ b | b<-x ; b>a ])

then the function to flatten atree

13



flatten = treeRec joinUp []

joinUp flatl flat2 a t1 t2 = flatl ++ [a] ++ flat2

becomes the quicksort function.

9 Typeabstractions and language mechanisms

The last three Sections have shown how to take an abstract view of data structures.
Not only do we have libraries of general functionsover lists, trees and so on, but these
libraries can be extended, by further parametrisation, to list-like and tree-like types.
As examples, we showed that lists can be tree-like, and trees list-like, according to the
kind of recursion we wish to perform. This Section looks at the mechanisms by which
thisview of abstraction can be supported in various programming languages.

Parameter passing

In alanguage with higher-order functions, we can define the library functions such as
map relativeto atriple of parameters, as we did for mapGen in Section 6 above.

This method callsfor explicit parameters to be given at each invocation of mapGen,
but has the advantage that mapGen can in a single scope be used over different types,
or different recursors over the sametype. Aninstance of the latter might beto consider
ordinary recursion (fold) and snoc-recursion (fo1dAlt) in the same scope.

Constructor classes

The Gofer language supports constructor classes, [Jones, 1993], which generalise the
type classes of Haskell by (essentially) allowing the classification of type constructors
rather than types. Our classifications of lists and trees in this paper give exactly
constructor classes. Using a hybrid notation (*’s for type variables), we can give the
class of tree-liketypesthus:

class TreeRec t where

leaf HEE v
node tk => t k => t *¥ => t %
treeRec :: (k* —=> ** —> * => £ * —> t * —> *%) —> ** —> § * —> **

We can then in asingle scope give various instantiations of the class. We can declare
listsas tree-like thus

14



instance TreeRec List where
leaf = []

node = ...

treeRec = ...

The definition of tSort using Leaf, node and treeRec will then be applicable over
lists.

Note, however, that only one instance declaration per typeis allowed in any single
scope. Using this mechanism, therefore, does not allow usto view lists as treesin two
different waysin a single scope.

Abstract datatypes

Many programming languages allow declarations of abstract data types, by means
of a specified signature to which an implementation is bound. Note that only one
implementation is allowed per scope, and that the abstraction given by such a type
is closed: no operations are allowed on the type beyond those in the signature. This
proscriptive approach does not fit well with the permissive tenor of this work, where
we use the tree-like nature of atype to allow certain sorts of definition, rather than to
prevent all others.

Structuresand signatures

The approach of binding structuresto signaturesin Standard ML is permissive, but will
not alow the overloading of multiple bindings per scope. The same restriction applies
to parametrised modules, asin [Goguen, 1990].

Dynamic binding

In most object-oriented languages there are mechanisms for dynamic binding. In C++,
for example, avirtual classforcesal its subclasses to provide operations, such as those
of atree-liketype. Each subclass can implement thesein different ways, but objects of
any of these subclasses are al considered to be of the virtual class. A list of objects of
such aclass will have to associate operations with values in the list dynamically, since
asingle operation will not in general serve al objectsof the list.

10 Conclusion

The aim of this paper has been to show that thetwin features of higher-order functions
and polymorphism (or generics, in other terminology) support a programming stylein
whichre-useof softwareisencouraged. Weillustrated the propositionwith theexample
of data abstraction — the treatment of one type as if it were structured like another
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— which supports a general, ‘algorithm oriented’ style, asintroduced in [Musser and
Stepanov, 1994].
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