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Abstract

This paper explores how certain ideas in object oriented languages have their
correspondents in functional languages. In particular we look at the analogue of
the iterators of the C++ standard template library. We also give an example of the
use of constructor classes which feature in Haskell 1.3 and Gofer.

1 Introduction

The combination of higher order and polymorphic functions in modern programming
languages — chiefly in functional languages, but increasingly in object-oriented lan-
guages as well — makes them most suitable for software reuse. Polymorphism allows
operations to be applied over whole classes of types, whilst function parameters mean
that particular operations can be abstracted away, to be passed in as values on applica-
tion. the first part of the paper provides a tutorial on this, in the Miranda1 functional
programming language.

Beyond this ‘algorithmic’ abstraction, there lies data abstraction: access to a par-
ticular type can be given (solely) through a signature of operations, hiding the concrete
nature of the type. In the second half of the paper we show that using a higher-order,
polymorphic interface signature we can describe the essential properties of various
types, and using this approach, we can treat one type as if it were another. The ex-
amples in the paper include treating lists as trees, and trees as lists. The inspiration
for this work came from the iterators of [Musser and Stepanov, 1994]. An iterator is
an abstract index into a sequential structure, giving a uniform treatment of lists arrays
and trees. The aim of the work here is to extend that approach in two ways. First,
we wanted to see how to describe an iterator in a functional language – the list-like
types. More importantly, we wanted to be able to take a different abstract view of types:
the paradigm embodied by trees is divide and conquer, and we show that if we take a
tree-like view of lists, the Quicksort algorithm can be developed in a very natural way.

Any language allowing higher order functions can be used to implement these ideas,
but extra features can facilitate it further. In particular the constructor classes of Gofer,

1Miranda is a trade mark of Research Software Ltd.
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[Jones, 1993], allow the recursion operators to be overloaded, avoiding the necessity
of passing the appropriate parameters into applications. The paper concludes with a
survey of the different language features which can be used to aid the implementation
of these ideas.

I am grateful to Ian Utting for his patient explanations of some of the arcana of C++,
and for pointing me in the direction of the Standard Template Library, [Stepanov and
Lee, 1994], which is implemented using the iterator classes.

2 Functional programming

Modern functional programming languages like Miranda, Standard ML and Haskell
[Turner, 1985, Milner et al., 1990, Hudak et al., 1992] are based on function definitions
as equations or more generally as sequences of equations. For example, suppose we
have already defined the functionsales :: num -> num
that is a function sales which takes a numerical argument (i.e. an argument of typenum) and returns a number. We can then write a function to return the sum of the firstn values of sales thus:totalSales :: num -> numtotalSales 0 = 0totalSales n = totalSales (n-1) + sales (n-1)
The first equation gives the value of totalSales on 0, the second on non-zero values,
illustrating the fact that the ordering of the defining equations is significant, the first
one to apply being chosen.

Functions can have various alternatives on the right-hand side. If we want only to
add the positive sales we may writetotalPosSales :: num -> numtotalPosSales 0 = 0totalPosSales n= totalPosSales (n-1) + sales (n-1) , if sales (n-1) > 0= totalPosSales (n-1) , otherwise
Finding the time of the maximum sales, we can writemaxMonth 0 = 0maxMonth n = n , if sales n > sales old
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= old , otherwisewhereold = maxMonth (n-1)
in which the where clause attached to the second equation is used to make local
definitions whose scope is that equation.

If t is a type, then [t] is the type of lists of items from type t, so, for example,[2,3,4] :: [num] [[2],[],[3,4]] :: [[num]]
Functions over lists are defined by equations just as above, so to sum a list of numbers
we writesum :: [num] -> numsum [] = 0sum (a:x) = a + sum x
On the left hand sides of the equations are seen patterns rather than variables. Patterns
provide a case analysis: is the list empty, [] or not, (a:x)? In the latter case it has
a first element, or head, a and remainder, or tail, x; these components can be used in
calculating the result, thus pattern matching allows the selection of parts of structured
data objects.

Thus far, what we have seen has much in common with traditional imperative
programming languages: alternatives are provided by equations with multiple right
hand sides, iteration by recursion, and local definitions and calculations by where
clauses.

3 Higher-order functions

The function totalSales returns running totals for the function sales; if we wish to
do the same for newSaleswe have to write rewrite the function totalSales. All that
changes is the function called. Instead of demanding a re-write, we can abstract from
the particular function to be summed, and make this a parameter, thus:total :: (num -> num) -> num -> numtotal f 0 = 0total f n = total f (n-1) + f (n-1)
The running totals of particular functions are then given bytotalSales = total sales
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totalNewSales = total newSales
where we have partially applied the function total to the first of its arguments; the
result is itself a function, which when given a number returns a number. We call a
function higher order when it takes a function as argument or returns a function as
result; total is higher-order in both senses.

The abstraction here turns a particular operation, sales, into a parameter, f; the
calculation of running totals can then be reused in many situations, both of similar sales
calculations and in completely different contexts.

In a similar way, we might round all numbers in a list to the closest integer,roundList :: [num] -> [num]roundList [] = []roundList (a:x) = round a : roundList xround v = entier (v + 0.5)
The operation of rounding is obviously only one of a whole class of possible functions
to be applied to every element of a list. The general function to ‘map’ a function ismapNum :: (num -> num) -> [num] -> [num]mapNum f [] = []mapNum f (a:x) = f a : mapNum f x
androundList = mapNum round
This Section has shown how abstracting a particular sort of behaviour from a function
increases its generality: not only is it applicable to forming its original target, but also
it can be used to form a host of other functions.

4 Polymorphism

Suppose we want the length of a list of numbers. We can write# [] = 0 (1)# (a:x) = # x + 1
(Note that function application binds more tightly then operator application, so that# x + 1 equals (# x)+1.) The definition contains no reference to the type of objects
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in the list argument, and so it is applicable to a list of any type. Its type is# :: [*] -> num (2)
in which the ‘*’ is a type variable. Just as for an ordinary variable, a type variable is
used to signify that the property is valid for any instance of the variable. In this case,(2) implies that# :: [[num]] -> num# :: [bool] -> num
to take two examples. Types containing variables, such as (2), are called polymorphic;
alternatively we might call the definition (1) generic.

Other objects of polymorphic type are [] :: [*] andswap :: (*,**) -> (**,*)swap (a,b) = (b,a)
where the elements in a pair have their order swapped. For instance, swap (True,3)
is (3,True); from this example it is apparent that the type variables * and ** can be
given different instances, so thatswap :: (bool,num) -> (num,bool)
in the example seen above.

Polymorphism supports re-use: a function intended to give the length of numerical
lists can be used over any list type, for example.

5 Higher-Order + Polymorphic

Separately, we have seen that higher-order functions and polymorphic functions each
support reuse. Together, we have general functions of considerable power. In Section
3 we defined a higher-order function to ‘map’ numeric functions along lists of numbers.
Nowhere in the definition is it apparent that the lists are numerical, and we have the
general definitionmap :: (* -> **) -> [*] -> [**]map f [] = []map f (a:x) = f a : map f x
We have two dimensions of generality here:� The type of list along which the operation is applied is arbitrary, as is the result
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type of the operation.� Once the input and output types are known, there is a choice of operations to be
applied: the choice is given as an argument when map is applied.

Forming general functions

How do we find the definitions of general functions? Often it can be seen as a two-stage
process, which we illustrate with the sum function from Section 2.sum :: [num] -> numsum [] = 0sum (a:x) = a + sum x
What can become a parameter here?� The operation we use to combine the values, (+) is a function of typenum -> num -> num� The start value, 0, is a number.

Rewriting, we havefoldr :: (num->num->num) -> num -> [num] -> numfoldr f st [] = st (3)foldr f st (a:x) = f a (foldr f st x)sum = foldr (+) 0
The operation is called foldr because it involves folding in the function f from the
right. For example,foldr (+) 0 [v1,v2,: : :,vn] = v1 + (v2 +: : :+ (vn + 0): : :)
After transforming from the particular definition to sum a list, the definition(3)becomes
polymorphic, since there is no longer any reference to the lists being made up of
numbers. We havefoldr :: (*->*->*) -> * -> [*] -> *
so that we can join a list of lists by folding in the operator ++ which joins together two
lists:concat :: [[*]] -> [*]
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concat = foldr (++) []concat [[2,3],[],[4,1]]= [2,3] ++ ([] ++ ([4,1] ++ []))= [2,3,4,1]
In fact, the full generality2 of the type isfoldr :: (*->**->**) -> ** -> [*] -> **
In other words, there is no reason for the function folded in to return a value of the
same type as the elements of the list. For example, we can define the length function
by folding in addOne# = foldr addOne 0whereaddOne val len = len + 1
General vs polymorphic

It is instructive to examine the polymorphic functions provided in the Miranda ‘standard
environment’. A few are first-order: they return the length of a list, reverse a list or
divide a list into parts by taking or dropping a number of elements; all these functions
are ‘structural’, in that their operation is independent of the elements of the list.3

The majority of the library functions over lists will examine elements, and these
functions are higher-order, since the way in which the elements are examined is pack-
aged as a function or functions, passed into the general function when it is applied.4

This analysis is based on examining a functional library, but there is every reason
to believe that in an imperative context a similar conclusion will be reached. [Kershen-
baum et al., 1988] discusses the role of higher order imperative programs.

The way in which instantiation takes place is assumed here to be function appli-
cation; an argument can be made for replacing higher-order functions by parametrised
modules, [Goguen, 1990], but this mechanism appears to be simultaneously more
cumbersome and less powerful; we discuss this further in Section 9 below.

2This greater than anticipated generality is not an isolated phenomenon.
3This intuitive characterisation can be made formal; the functions are strict in the spine the list, but are

lazy in the elements themselves.
4In general these functions will be strict in the elements of their list arguments. For instance, map f is as

strict in the elements as is the function f.
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6 The essence of lists

The type [*] is characterised by its constructors[] :: [*](:) :: * -> [*] -> [*]
the list [2,12] being built thus:2 : (12 : [])
Every list can be seen as arising in this way, by repeatedly adding elements to the empty
list. How are lists used? A typical definition has the formg [] = stg (a:x) = ... a ... x ... g x ...
where the right-hand side of the definition of g (a:x) uses the components a and x as
well as the value of g on the tail, g x. Rewriting this as a function application, we haveg [] = stg (a:x) = h (g a) a x
As a higher order function, we definefold :: (** -> * -> [*] -> **) -> ** -> [*] -> **fold h st [] = stfold h st (a:x) = h (fold h st x) a x
which can be seen as a generalisation of the foldr function, in that h takes the tail x
as an argument in addition to the head of the list and the recursive call of the folding
function.5

Using fold, empty = [] and cons = (:) we can define any list processing
function. For example,tail = fold tailPart (error "tail")wheretailPart v a x = xmap g = fold h emptywhereh v a x = cons (g a) v

5Note that the fold function here is not the same as the fold in the Miranda standard environment.
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From another, more abstract, point of view, we can see any family of types t * as being
a list of * if we have objectsempty :: t *cons :: * -> t * -> t * (4)fold :: (** -> * -> t * -> **) -> ** -> t * -> **
These objects can become parameters to the definitions of tail, map, and so on, givingmapGen :: ( t * ,* -> t * -> t * ,(** -> * -> t * -> **) -> ** -> t * -> ** ) ->(*** -> ****) -> t *** -> t ****mapGen (empty,cons,fold) g= fold h emptywhereh v a x = cons (g a) v
To summarise, we have shown in this Section that a family of types t * is list-like if
we can define functions conforming to the signature (4). Given such a family, we can
define all the general functions over lists over the types in the family.

The novelty of this approach is that t * can be any family of types: we shall see in
the next Section that trees and error types conform to this signature.

This characterisation is inspired by the iterators of the Standard Template Library
for C++, [Stepanov and Lee, 1994, Musser and Stepanov, 1994]. Iterators are an
abstraction from indices (or pointers), allowing a walk through a sequential structure.
List-like types are analogue of these in a functional setting, and the tree-like types
discussed in Section 8 generalise them in providing a ‘divide and conquer’ interface to
a data structure, which is not provided (at least directly) by iterators.

7 Views of data: list-like types

We have various examples of list-like types, which we enumerate now.

Trees as lists

Given the definitiontree * ::= Leaf | Node * (tree *) (tree *)
we can make a sequential traversal of these trees. The definitions of empty, cons andfold follow now.
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empty = Leafcons a Leaf = Node a Leaf Leafcons a (Node b t1 t2) = Node b (cons a t1) t2
As can be seen from the definition, in this case the traversal is in pre-order; other
traversals of the trees give rise to other definitions and therefore other ‘views’ of trees
as lists.fold f st Leaf = stfold f st t = f (fold f st t') b t'where(b,t') = splitTree t
and the splitting up of the general tree is given bysplitTree :: tree * -> (*,tree *)splitTree Leaf = error "splitTree"splitTree (Node a Leaf t) = (a,t)splitTree (Node a t1 t2) = (b,Node a t1' t2)where(b,t1') = splitTree t1
As we remarked above, other traversals give rise to other cons and fold functions;
whatever the case, the family of general list processing functions will be available.

Snoc lists

Elements are added to the end of a list rather than the start by cons, and folding is also
done from that end. The requisite definitions areempty = []cons = snocfold = foldAlt
wheresnoc a [] = [a]snoc a (b:x) = b : snoc a xfoldAlt f st [] = stfoldAlt f st x = f (foldAlt f st x') a x'where
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(a,x') = split xsplit :: [*] -> (*,[*])split [] = error "split"split [a] = (a,[])split (a:x) = (b,(a:x'))where (b,x') = split x
Other examples

Other examples are given by other traversals of trees, ordered traversals of lists, and
the error typeserr * ::= Error | OK *
We leave the definitions as exercises for the reader.

8 Tree-like types

A typical recursion over the typetree * ::= Leaf | Node * (tree *) (tree *)
has the formh Leaf = sth (Node a t1 t2) = ...h t1...h t2...a...t1...t2...
and so is an application oftreeRec :: (** -> ** -> * -> tree * -> tree * -> **) ->** -> tree * -> **treeRec f st Leaf = sttreeRec f st (Node a t1 t2)= f (treeRec f st t1) (treeRec f st t2) a t1 t2
A tree-like type t * carries the operationsleaf :: t *node :: * -> t * -> t * -> t *
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treeRec :: (** -> ** -> * -> t * -> t * -> **) -> ** -> t * -> **
and using these operations we can form a sorting algorithm:tSort :: t * -> [*]tSort = treeRec mergeVal []wheremergeVal sort1 sort2 val t1 t2 = mVal sort1 sort2 val
where the function mVal :: [*] -> [*] -> * -> [*] takes two sorted lists and a
value and merges them into a single sorted list. Its definition simultaneously generalises
a merge of two sorted lists and the insertion of an element into a sorted list, and is left
as an exercise for the reader.

The essence of a recursion over a tree is that is works by divide and conquer, so
that viewing an arbitrary type as a tree will give divide and conquer algorithms over
that type. Our first example is (of course) trees themselves, but we can also view lists
as trees.

Lists as trees

We define, over listsleaf = []node a l1 l2 = l1 ++ [a] ++ l2
and for recursion,treeRec f st [] = sttreeRec f st l = f v1 v2 a t1 t2wherev1 = treeRec f st t1v2 = treeRec f st t2(a,t1,t2) = listToTree l
and lists are bisected thuslistToTree :: [*] -> (*,[*],[*])listToTree [] = error "listToTree"listToTree (a:x) = (a,l1,l2)wheren = #x div 2l1 = take n x
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l2 = drop n x
Other views of lists as trees are possible. If, for instance, we re-define listToTree so
thatlistToTree (a:x) = (a, [ b | b<-x ; b<=a ] , [ b | b<-x ; b>a ])
then the function to flatten a tree
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flatten = treeRec joinUp []joinUp flat1 flat2 a t1 t2 = flat1 ++ [a] ++ flat2
becomes the quicksort function.

9 Type abstractions and language mechanisms

The last three Sections have shown how to take an abstract view of data structures.
Not only do we have libraries of general functions over lists, trees and so on, but these
libraries can be extended, by further parametrisation, to list-like and tree-like types.
As examples, we showed that lists can be tree-like, and trees list-like, according to the
kind of recursion we wish to perform. This Section looks at the mechanisms by which
this view of abstraction can be supported in various programming languages.

Parameter passing

In a language with higher-order functions, we can define the library functions such asmap relative to a triple of parameters, as we did for mapGen in Section 6 above.
This method calls for explicit parameters to be given at each invocation of mapGen,

but has the advantage that mapGen can in a single scope be used over different types,
or different recursors over the same type. An instance of the latter might be to consider
ordinary recursion (fold) and snoc-recursion (foldAlt) in the same scope.

Constructor classes

The Gofer language supports constructor classes, [Jones, 1993], which generalise the
type classes of Haskell by (essentially) allowing the classification of type constructors
rather than types. Our classifications of lists and trees in this paper give exactly
constructor classes. Using a hybrid notation (*’s for type variables), we can give the
class of tree-like types thus:class TreeRec t whereleaf :: t *node :: * -> t * -> t * -> t *treeRec :: (** -> ** -> * -> t * -> t * -> **) -> ** -> t * -> **
We can then in a single scope give various instantiations of the class. We can declare
lists as tree-like thus
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instance TreeRec List whereleaf = []node = ...treeRec = ...
The definition of tSort using leaf, node and treeRec will then be applicable over
lists.

Note, however, that only one instance declaration per type is allowed in any single
scope. Using this mechanism, therefore, does not allow us to view lists as trees in two
different ways in a single scope.

Abstract data types

Many programming languages allow declarations of abstract data types, by means
of a specified signature to which an implementation is bound. Note that only one
implementation is allowed per scope, and that the abstraction given by such a type
is closed: no operations are allowed on the type beyond those in the signature. This
proscriptive approach does not fit well with the permissive tenor of this work, where
we use the tree-like nature of a type to allow certain sorts of definition, rather than to
prevent all others.

Structures and signatures

The approach of binding structures to signatures in Standard ML is permissive, but will
not allow the overloading of multiple bindings per scope. The same restriction applies
to parametrised modules, as in [Goguen, 1990].

Dynamic binding

In most object-oriented languages there are mechanisms for dynamic binding. In C++,
for example, a virtual class forces all its subclasses to provide operations, such as those
of a tree-like type. Each subclass can implement these in different ways, but objects of
any of these subclasses are all considered to be of the virtual class. A list of objects of
such a class will have to associate operations with values in the list dynamically, since
a single operation will not in general serve all objects of the list.

10 Conclusion

The aim of this paper has been to show that the twin features of higher-order functions
and polymorphism (or generics, in other terminology) support a programming style in
which re-use of software is encouraged. We illustrated the propositionwith the example
of data abstraction — the treatment of one type as if it were structured like another
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— which supports a general, ‘algorithm oriented’ style, as introduced in [Musser and
Stepanov, 1994].
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