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Statistical modelling of flood risk at ungauged sites 

By Thomas R. Kjeldsen, David A. Jones and Adrian C. Bayliss 

Centre for Ecology & Hydrology, Wallingford, Oxfordshire 

Abstract 
The use of multivariable regression models which provide linkage between a particular hydrological 
variable and a set of physical catchment descriptors is a long established practice in applied hydrology. 
This paper focuses on the modelling and prediction of the median annual maximum index flood at gauged 
and ungauged sites through the use of regression modelling and on data transfer from gauged to ungauged 
catchments as outlined in the Flood Estimation Handbook (FEH). Through an extension of the commonly 
used regression model to include, in addition to cross correlation of sampling errors, non-zero cross 
correlation of model errors, it is possible to establish a more formal relationship between the regression 
model and the use of data transfer from a gauged (donor) catchment to an ungauged catchment. By 
explicitly considering the correlation between the regression model errors, a revised data transfer scheme 
has been developed, which was found to perform better in terms of predictive error than the established 
FEH scheme and the case where only the regression model is used. In fact, the automated version of the 
original FEH data transfer scheme used in this study was found to give estimates of the index flood with 
higher prediction variance than estimates obtained using regression only. 

1.  Introduction 

The Flood Estimation Handbook (FEH) published by IH (1999) is used as the standard for flood 
frequency analysis in the UK. The statistical method for flood risk assessment outlined in the FEH is 
based on the index flood method, where, for an ungauged catchment, the index flood is estimated through 
a multivariable linear regression model linking the index flood, defined in the FEH as the logarithm of the 
median annual maximum flood (QMED), to a set of catchment descriptors. The FEH guidelines then 
emphasise the importance of data transfer from nearby gauged catchments (donor catchments) to enhance 
the initial regression estimate. However, little guidance was previously available to practitioners to assist 
in the selection of donor catchments. This paper presents a revised regression model for estimation of the 
index flood at ungauged sites combined with a more formalised framework for data transfer, as an 
alternative to the procedure used in the FEH methodology. The regression model is formulated to 
represent a covariance structure, including both a sampling error component resulting from the limited 
sample sizes and a model error component arising from the inability of a simple linear regression model 
to accurately represent the complex dynamics of real catchments. By introducing a specific model 
component accounting for the correlation between the model errors, it is possible to derive an optimal 
data transfer scheme from a gauged donor catchment to an ungauged site of interest. The results presented 
in this paper are based on analysis of annual maximum series of peak flow and the associated FEH 
catchment descriptors for 602 catchments included in the web-based dataset produced by the 
Environment Agency led HiFlows-UK project (www.environment-agency.gov.uk/hiflowsuk). 

2.  Regression of the index flood on catchment descriptors 
Consider a vector of sample (log-transformed) median annual floods, yi, where individual sites are 
denoted with a subscript i. Each sample value is considered an estimate of the underlying true population 
value of the median, i.e. 

 [ ] [ ] iiiy εξ += lnln  (2.1) 

where iε  is the sampling error of the log-transformed median annual flood with a mean value of 

{ } 0E =iε  and a covariance structure which will be specified later. The notion of a true value, iξ , is 

defined here as a hypothetical median of an infinite sample of annual maximum flood peaks from a 



 

catchment in a stationary condition. Next, consider the actual model, where it is assumed that the true log 
-transformed index flood can be estimated as a linear combination of a set of catchment descriptors and a 
site specific model error 
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where β  is a vector of true regression model parameters, xi is a vector of catchment descriptors and iη  is 

the regression modelling error with the statistical properties 
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where the model error correlation ijr ,η  will be estimated from a maximum-likelihood procedure outlined 

below. By combining equation (2.1) and equation (2.2), the sample estimate of the index flood can be 
expressed in terms of the true regression model and two error components representing the sampling and 
modelling error, respectively 

 [ ] ii

T

iiy εη ++= βxln  (2.4) 

The covariance matrix of the sampling errors is denoted εΣ , the corresponding covariance matrix of the 

modelling errors is denoted ηΣ  and the two errors are assumed mutually independent. It is assumed that 

the elements along the diagonal of the modelling error covariance ηΣ  are identical ( 2

ησ ) and that the 

associated correlation matrix ηR   has unit diagonal elements. The two error terms are generated from two 

very different processes. The sampling covariance is caused by similarity of the flood generating rainfall 
events striking two catchments located close to one another, whereas correlation of the model errors is 
caused by the inability of a simple regression type model to adequately represent the relationship between 
catchment descriptors and the index flood at different sites. The covariance matrix of the total errors is the 
sum of the sampling and model error components 
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where G is a composite matrix which plays a particular role in the computations. Each element in the 
sampling error covariance εΣ  is estimated based on considerations of the asymptotic variance of the 

sampling median and defined as 
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where iβ  is the scale parameter of the Generalised Logistic (GLO) distribution standardised to unit 

median and estimated using the L-moment ratios as shown by Kjeldsen and Jones (2006). Here nij denotes 
the number of years where both series have data, while ni and nj denote the total number of years for the 
two series separately. Note that the conventional notation for the GLO distribution and the regression 
model both use “beta” but with two distinct meanings. In addition, estimation of the off-diagonal 
elements requires estimates of the correlation coefficient between the log-transformed median annual 
maximum flood for each site, ijr ,ε , which can be estimated directly from the dataset through 

bootstrapping. Based on 1000 bootstrap replications, Kjeldsen and Jones (2007a) used all pairs of records 
with more than 39 overlapping years to estimate the correlation between the log-transformed median 
annual maximum peak flow values and related it to geographical distance between catchment centroids 
using a weighted sum of two exponential distributions, as shown in Figure 1 
 



 

 
FIGURE 1. Correlation between sampling errors of log-transformed median annual maximum flood as a 

function of distance between catchment centroids. 
 
Similarly to the correlation between sample values of the log-transformed median illustrated in Figure 1, 
the non-diagonal elements in the model error correlation matrix, ηR , are described as a weighted sum of 

two exponential distributions as  

 ( ) ( ) ( )ijijij ddr 21, exp1exp ϕψϕψη −−+−=  (2.7) 

where ψ , 1ϕ  and 2ϕ  are model parameters and dij is the geographical distance [km] between catchment 

centroids. It is important to note that the model parameters are not necessarily equal to those used for the 
correlation between the sample values shown in Figure 1. Justification for equation (2.7) can be found in 
Kjeldsen and Jones (2007a) but the interpretation is that the regression residuals from nearby catchments 
have a tendency to be more positively correlated for nearby pairs of gauges, i.e. a simple regression 
model fails to encompass some local factors controlling flood response. It seems reasonable to assume 
that a simple regression model cannot fully represent the complexity of real catchments. However, it is 
important to include this known behaviour of the model error explicitly into the modelling framework to 
ensure statistically correct estimates. The relationship in equation (2.7) plays an important role when 
transferring information from donor sites to ungauged sites as we shall demonstrate later. 
 
The regression model error,2ησ , and the additional three parameters in equation (2.7) describing the 

model error correlation are estimated using the maximum-likelihood method. Assuming an initial set of 
regression model parameters, β , the four model error parameters are estimated by minimising the 

negative of the log-likelihood function 
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For any trial value of the four parameters, an estimate of the composite matrix G is used for obtaining an 
updated estimate of the regression model parameters using the well-known generalised least square (GLS) 
estimator 

 ( ) yGXXGXβ
1T1T −−−= 1ˆ  (2.9) 

where y is a vector of sample values of the log-transformed median. The resulting regression model 
parameters as well as the parameters of the model error correlation model are shown in Table 1. 



 

 
Coefficient Parameter Standard error t-value P-value 
Intercept 2.1170 0.1172 18.06 0.000 
Ln[AREA] 0.8510 0.0114 74.35 0.000 
SAAR-1 -1.8734 0.0968 -19.35 0.000 
Ln[FARL] 3.4450 0.2654 12.98 0.000 
BFIHOST2 -3.0800 0.1158 -26.60 0.000 

1286.02 =ησ    df = 598   r2 = 0.945 

4598.0=ψ    0200.01 =ϕ    4785.02 =ϕ  

 
TABLE 1. Results of regression analysis 

 
The resulting regression model used for predicting the index flood in ungauged catchments is given as 
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=  (2.10) 

where the catchment descriptors AREA, SAAR, FARL and BFIHOST represent catchment area (km2) and 
catchment average values of annual average rainfall 1961-1990 (mm), flood attenuation due to upstream 
reservoirs and lakes, and the hydrological properties of catchment soils, respectively. The descriptors are 
available for any UK catchment larger than 0.5 km2 and are further described by Bayliss (1999). The 
model error variance reported in Table 1 is equal to fse = 1.431 which is 7.5 % less than the 
corresponding value of fse = 1.549 reported for the corresponding QMED model in the FEH (IH, 1999), 
where the factorial standard error (fse) is defined as ( )ησexp=fse . The choice of catchment descriptors 

in Table 1 and the particular transformations used here has been based on other analysis, which are not 
described here but included examining the model residuals by plotting them against catchment 
descriptors. Note that the model presented in Table 1 and equation (2.10) is provided as an example of a 
model estimated from the dataset rather than a direct substitute for the QMED equation presented in the 
FEH. 

3.  Using donor adjustment 

When conducting a flood frequency analysis at an ungauged site, the FEH strongly recommends 
transferring data from catchments judged to be hydrologically similar to the subject site and for which 
annual maximum flood data are available. However, in a comprehensive assessment of the FEH statistical 
method, Morris (2003) found inappropriate adjustment of the regression model estimate using donor 
catchments to be a major source of potential error. In a separate study, Kjeldsen and Jones (2007b) 
analysed the benefits of using data transfer from donor sites from the perspective of reducing prediction 
variance at the site of interest. The results obtained by Kjeldsen and Jones (2007b) enabled a more 
analytical approach than that of Morris (2003) to be carried out and the resulting improved data transfer 
scheme is presented below. 

3.1  The FEH donor adjustment  

Once a suitable donor site has been identified, the index flood at the site of interest is estimated as 
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where the subscript s refers to the ungauged subject site and g the gauged donor site, the subscript cds 
refers to catchment descriptor estimates at the gauged and subject sites, obs the observed value at the 
gauged site and adj the adjusted value at the subject site. While this adjustment assumes the residuals 
from the regression equation at both the subject and the donor site exhibit the same behaviour, the 
recommended procedure makes no use of the distance-based model for the model error correlation that is 
included in the FEH model (IH, 1999). The linkage between the model error correlation and the 
prediction variance of ln[ys,adj] was derived by Kjeldsen and Jones (2007b) to be approximately 

 [ ] [ ]{ } ( ) ggsgsadjs gry ,,

2

, 12lnlnvar εηησξ +−≈−  (3.2) 



 

where sgr ,η  is the correlation of the model errors of the subject and donor catchment derived from 

equation (2.7) and ggg ,ε  is the sampling variance of the log-transformed median at the donor site. In most 

cases ggg ,

2

εησ >>  and therefore, unless the donor and subject catchments are located very closely 

together, the prediction variance arising from the donor transfer quickly increases to twice that obtained 
using the regression model only. In fact, from equation (3.2), it is clear that unless 5.0, >sgrη  the donor 

transfer is not preferable with the FEH data transfer method. Based on equation (2.7) and the parameters 
in Table 1 this corresponds to a maximum distance between catchment centroids of about 4 km. 

3.2 A new data transfer scheme 

A major advance of the FEH statistical method developed as part of this project is the ability to identify 
and estimate a separate model for the model error correlations (Kjeldsen and Jones, 2007a). Kjeldsen and 
Jones (2007b) showed that knowledge of the model error correlation can be use to define an alternative 
data transfer scheme of the form 
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where the new parameter α  is estimated by minimising the prediction variance of ln[ys,adj]  given as 
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where 2

ησ  is the model error variance, ggg ,ε  is the sampling variance of ln[yg] and sgr ,η  is the model error 

correlation between the subject s and the donor g sites calculated using the model specified in equation 
(2.7), i.e. based on the geographical distance between the subject and the donor site. The resulting 
estimator of α  is 
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As mentioned before, the sampling error of ln[yg] ( ggg ,ε ) is generally much smaller than the model error 

variance and, thus, for most practical purposes, the α  parameter in equation (3.5) reduces to 

sgr ,ηα = which is given by equation (2.7) with the model parameters shown in Table 1. 

4. Application 

The effect of data transfer when predicting the index flood for ungauged catchments has been investigated 
based on estimates obtained for 602 catchments from the HiFlows-UK dataset and using three different 
approaches: 
 
i)   using only the regression model and predicting the index flood based on catchment descriptors only, 
ii) identifying the geographically closest catchment, using catchment centroids, out of the 601 other 
gauged catchments and using the FEH data transfer procedure equation (3.1); and 
iii) identifying the donor as in ii) but using the new data transfer procedure in equation (3.3). 
 
To assess the performance of each of the three methods, the root mean square error (RMSE) was derived 
for each method as 
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where the subscripts s, g, adj and obs are described in a previous section. The degrees of freedom are  
M-5 = 602 – 5 = 597 corresponding to the five parameters in the regression model. Note that the use of 
RMSE as defined above is somewhat flawed since it has to make use of the sample median as the “target” 
for the estimation rather than the true median. Thus this empirical measure of performance is affected by 
the sampling error and by the correlation of these. The RMSE values obtained for each of the three 



 

options are shown in Table 2, where it can be observed that, while the new data transfer method improves 
the RMSE when compared to using regression only, the FEH data transfer scheme has, in fact, a higher 
RMSE than regression only. The latter finding indicates that, on average, the FEH data transfer scheme 
does not improve the prediction compared to using the regression model only. 
 

Method RMSE 
Regression only 0.357 
FEH data transfer 0.377 
New data transfer 0.327 

 
TABLE 2. RMSE for each of the three methods predicting the index flood in ungauged catchments 

 
To further investigate the structure of the RMSE values, the 602 catchments were divided into 20 groups 
according to the distance from a particular catchment and its closest donor catchment. Each of the 20 
groups span a distance of 1 km and within each group the RMSE was estimated as 
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where Mi is the number of catchment pairs in the i’th group. For each of the three methods, the RMSE 
was estimated for each of the 20 groups and the results plotted on Figure 2. 
 

 
FIGURE 2. RMSE for 1 km intervals in distance between subject and donor catchments. 

 
As observed on Figure 2, both the FEH and the new transfer scheme have improved the predictions 
compared to using regression only for very short distances less than 3 km. In general, the new transfer 
scheme is consistently performing better than both the regression-only option and the FEH data transfer 
scheme, whereas the FEH method often gives higher RMSE values than the regression model on its own. 
This is confirmed by the average RMSE values reported in Table 2. 

5. Conclusion 

The analytical framework presented in this paper represents a significant improvement in the ability to 
estimate the index flood (or any other hydrological variable) at both gauged and ungauged sites. By 
estimating the correlation between the regression model errors and successfully linking it to geographical 
distance between catchments, it is possible to make an objective assessment of the weight attached to data 
transferred from a neighbouring donor catchment. 



 

 
The results obtained in the comparison of the predictive ability of the different methods showed that the 
performance of the traditional FEH data transfer scheme (3.1) performs rather more poorly than expected. 
In fact, on average, a smaller prediction error was obtained using the regression model only than when 
using the regression model with the FEH donor transfer method. The simple automated donor selection 
method implemented in this study might have been improved somewhat if the selection for each 
catchment had been carried out manually, but the conclusion is not likely to have changed much, i.e. the 
FEH donor transfer scheme should be used with care and does not necessarily guarantee an improved 
estimate. In comparison, the improved transfer scheme developed in this study is consistently 
outperforming the regression model and the FEH transfer scheme. It is therefore recommended that this 
scheme should be adopted for practical use. 
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