
- 1 -

Testing Object-Oriented Programs: Making it Simple

John Rosenberg and Michael Kölling
Basser Department of Computer Science

University of Sydney, NSW 2006
Australia

{johnr,mik}@cs.usyd.edu.au

Abstract
One of the major difficulties facing anyone trying to

teach the first programming course is how to encourage
students to thoroughly test their programs. We would
argue that the main reasons for this are the lack of
suitable tools for testing and the need to write extra
"debug" code in order to verify correct operation. We
further argue that the problem is even worse with object-
oriented languages because of multiple classes and
encapsulation. In this paper we describe the testing tools
within the Blue programming environment which allow
object-oriented programs to be thoroughly tested without
writing a single line of new code.

1 Introduction
The design and implementation of error-free

programs is an extremely difficult task, even for
experienced computing professionals. It is therefore not
surprising that students have great difficulty in producing
well debugged programs. This is further compounded by
the fact that most students do not undertake rigorous
testing of their code. The aim of this paper is to explore
the reasons for this and to describe some tools which
alleviate the problem.

As experienced programmers it is obvious to us that
when we develop new programs we must also test them.
Why is this not obvious to students? The answer may
well lie in the fact that students begin by writing very
small programs, so small that in most cases it is difficult
to argue the case for any serious testing. The classic
example of this is the infamous "Hello World" program.

One of the advantages of teaching using an object
oriented paradigm is that it actively encourages
decomposition of the program into classes and the re-use
of existing library code. This means that students can
work on larger projects earlier in the course. They need
not write all of the code for the project themselves; they
can write just a few of the classes and these can then be
integrated with those provided.

Proceedings of 28th SIGCSE Technical Symposium on
Computer Science Education, San Jose, California,
U.S.A., February 1997, pp 77-81.

However, this advantage in terms of structure is itself an
obstacle in terms of testing. Typical object oriented
programs will have a number of classes. We would
encourage students to test each of these classes
individually before combining them to form a solution to
the problem. In order to do this, test programs must be
developed. There may well be one test program for each
class. Since a class typically has several methods, these
test programs can become quite lengthy and complex. In
fact it would not be unusual for the test program to be
longer than the class being tested! The development of
such test programs can easily become more of an obstacle
for the students than the development of the original
classes themselves.

Clearly what is required is better tools for testing. In
particular we would like to reduce the amount of code
which must be written in order to test classes. Ideally no
special testing code should have to be written.

This paper describes an environment which supports
this ideal by allowing the interactive creation of instances
of classes and interactively invocation of their methods.
This, coupled with the ability to examine the internal
state variables of objects allows students to interactive
test their classes without writing a single line of test code.

The tools described have been developed as a part of
a larger project known as Blue [1]. Blue is both an
object-oriented programming language [2] and a program
development environment [3] and has been specifically
designed for teaching programming to first year students.

The tools described in this paper are only those used
for testing. There is still a need for specialised debugging
tools which in the Blue system include breakpoints,
single-stepping, display of variable values, etc. It must
be emphasized that we see a clear distinction between
testing, which must take place for the very first program
written by a student, and debugging, which can be
introduced after the students have some experience.

In this paper we first describe the Blue language and
environment followed by the use of the tools. We then
conclude with a brief discussion of the advantages of our
approach.

2 The Blue Language and Environment
It is difficult to separate the language and the

environment in Blue since it is an integrated system.
Users are not directly aware of the underlying operating
system, the file system, the command language, etc. All

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 2 -

interaction with the system takes place using a graphical
interface. It is not envisaged that there will ever be a
version of Blue with a textual interface.

Blue is a pure object-oriented programming language.
By this we mean that the only compilable construct is a
class and all data items (including built-in types) are
represented as objects. Syntactic sugar is provided to
allow a familiar syntax for the built-in types such as
integers. The notion of a program can be represented by
having an initial class with a single method, perhaps
called “run”. All objects are manipulated using reference
semantics.

Each Blue class defines some internal data (and
possibly internal routines), a creation routine
(constructor) and a set of methods. There are no
destructors. These are unnecessary since Blue has
garbage collection. Only the constructor and the methods
are visible from outside of the class.

Figure 1 shows a Blue class definition for the class
person.

class person is
 internal
 var
 surname : string
 givenName : string
 numChildren : integer

 interface
 creation (Surname : string,
 GivenName : string) is
 == creates a person object
 do
 surname := Surname
 givenName := GivenName
 numChildren := 0
 end creation

 routines
 addChildren (New : integer) ->
 (Total : integer) is
 == add some extra children
 do
 numChildren := numChildren+New
 Total := numChildren
 end addChildren

 getNames -> (Surname : string,
 GivenName : string) is
 == get the names of the person
 do
 Surname := surname
 GivenName := givenName
 end getNames
end class

Figure 1: A sample Blue class

There are three internal data items, surname,
givenName and numChildren. The constructor has two
parameters. Constructors, when called, always return an
instance of their class.

Thus, an instance of a person may be created by the
following code:

aPerson := create person ("Rosenberg", "John")

The variable "aPerson" is a reference to an object of
type person. The class person has two methods which
may be called using the familiar "dot" notation as
follows:

n := aPerson.addChildren(2)

Note that methods may have multiple return
parameters listed after the "->" symbol. These are

accessed using a multiple assignment notation, e.g.

sName, gName := aPerson.getNames

Blue routines can also optionally specify pre and post
conditions and classes may have class invariants. These
have been omitted here for simplicity.

The Blue environment is based around the notion of
projects. Each program is treated as a separate project.
Students begin by defining the classes for the project.

This is done graphically with icons on the screen
representing classes. Existing classes from the library
may be included in the project using a graphical class
browser.

A sample project is shown in figure 2. Lines between
the classes indicate relationships. Double lines (not used
in the example) indicate inheritance while the single lines
represent inclusion. These relationships may be defined
graphically using the mouse.

The code associated with a class may be edited by
double clicking on the class icon. This starts the editor
(known as “Red”). There are no header files. Instead the
code may either be viewed as the interface only or the
implementation. For library classes only the interface
can be accessed.

Blue automatically maintains the relationships
between classes and a single button causes recompilation
of those classes which have been modified and all classes
which depend on these.

The region of the project window at the bottom is
known as the Object Bench and is described in the next
section.

3 Interactive Testing - The Object Bench

3.1 The Problem
One of the major advantages of object-oriented

programming languages is that they actively encourage
the decomposition of programs into classes where each
class encapsulates the state of an object type and provides
interface routines (methods) for accessing and
manipulating the state. The concrete structure of the
internal state is hidden from users of the class so that it
can potentially be changed in the future without affecting
other classes. This hiding of information improves
reliability and reduces the cost of software maintenance.

Although encapsulation is clearly of value in terms of
software engineering, it does create difficulties for the
implementor of a class in terms of testing. It is certainly
possible to write a test program which creates an instance
of a class and calls the various methods, printing out
results for later examination. What is of concern is that
such a program will tend to be quite large since it must
prompt for parameters from the user to enable testing of
various combinations of parameters to the methods.

Assuming that we are able to write such a test
program, it is more difficult to ascertain whether the
internal data of the class being tested is correct. It may
not even be possible to access some of the internal data
because no appropriate methods are provided. Such
hiding of data purely related to the implementation is not
uncommon.

- 3 -

Figure 2: Blue project window

There are at least two solutions to this problem. First,
"debug" print statements could be added into the class
code to print out relevant internal data when methods are
called. This has several associated problems. The
insertion of new test code could well introduce errors in
itself. How often has a student come to you with a
program that has errors stating that he has not changed a
thing - he just added a print statement! In addition if
there are several classes, the volume of output can
become difficult to interpret.

The second solution is to use a symbolic debugger to
insert breakpoints and examine the data. This requires
the student to become familiar with the debugger at a
very early stage. Since we would like students to test the
very first class they write, it may be unrealistic to expect
them to learn to use the debugger at the same time.

We have above identified two major problems with
testing object-oriented programs. First, a substantial
volume of test code must be written and second we need
to be able to examine the internal data of objects.

3.2 The Solution
The Blue system provides a solution to both of the

problems identified by providing a facility for interactive
testing of classes. This facility has two components. The
first allows an instance of a class to be created
interactively and the second allows examination of the
internal state of an object

An instance of a class may be created by selecting a
class in the project and clicking the create button which
results in a dialogue box being displayed. The dialogue
includes the definition of the creation header and allows
entry of the creation parameters (if required) and a name

for the instance (see figure 3). Previous creation
parameters are available for reuse in the area above the
entry field. After OK is clicked the instance is created
and is represented on the Object Bench by an icon.

Figure 3: Object creation dialogue

Selection of the instance icon with the right mouse
button displays a popup menu of the methods of the
corresponding class as well as inspect and remove
options (see figure 4). Methods may be called by
selecting them from the menu. Again, a dialogue box is
displayed for parameter entry and returned results are
displayed after the method has been called. The internal
data of an object may be viewed by selecting inspect
from the pop-up menu.

- 4 -

Figure 4: Method menu

There are additional facilities provided for handling
object references which cannot simply be displayed as a
value and for following these references. These are
discussed in the next section.

4 An Example
In this section we demonstrate the interactive testing

mechanisms using a simple example. The example
consists of two classes which implement a sequence of
integers. The code is greatly simplified to reduce its size
and does not include any error handling, etc.

The sequence class is designed to support a fixed (at
construction time) size sequence of integers with an
integer index. There are only two operations, getVal
and setVal,

class sequence is
 == Implements a sequence of integers
 uses node
 internal
 var
 head : node

 interface
 creation (Size : integer) is
 == Create a sequence of integers
 var
 count : integer
 do
 head := nil
 count := Size
 loop
 head := create node(head, count)
 count := count - 1
 exit on count = 0
 end loop
 end creation

 routines
 getVal(Index : integer) ->
 (Value : integer) is
 == Get the value at position Index
 var
 count : integer
 pos : node
 do
 count := 1
 pos := head
 loop
 exit on count = Index
 pos := pos.getNext
 count := count + 1
 end loop
 Value := pos.getVal
 end getVal

 setVal(Index : integer,
 Value : integer) is
 == Set the value at position Index
 …
end class

Figure 5a: The class sequence

which both have an index as a parameter and return/set

the value at the index respectively. The nodes in the
sequence are represented using another class called node.
The code for these two classes is shown in figures 5a and
5b.

The creation routine of sequence creates a linked list
of nodes with each element having an initial value which
is its index. Figure 3 shows the dialogue that would be
displayed if an instance of sequence was created. The
dialogue requires the size to be entered and a name to be
given to the sequence object. Once OK is selected the
sequence is created and is displayed on the object bench
as shown in figure 2.

Selecting example with the right mouse button will
display the popup menu shown in figure 4.

class node is
 == Implements the nodes for a sequence
 internal
 var
 value : integer
 next : node

 interface
 creation (Next : node,
 Value : integer) is
 == Creates a node for the sequence
 do
 next := Next
 value := Value
 end creation

 routines
 getNext -> (Next : node) is
 == Get a reference to the next node
 do
 Next := next
 end getNext

 getVal -> (Value : integer) is
 == Get the value in the current node
 do
 Value := value
 end getVal

 setVal (Value : integer) is
 == Set the value for the current node
 do
 value := Value
 end setVal
end class

Figure 5b: The class node

Figure 6: Method call dialogue

- 5 -

We may now interactively call the methods of
example. Suppose we select getVal from the menu. The
dialogue in figure 6 will be displayed. This allows the
entry of an index and, after selecting OK, displays a new
dialogue with the return value.

Selection of the Inspect option from the menu
displays the dialogue shown in figure 7. The only
internal data in an object of class sequence is the
reference to the head of the list. The declaration of the
variable is shown with its value being <object reference>.
We know that the reference is to an object of class node.
This can be inspected by selecting the object reference
and clicking the inspect button in the sequence inspection
dialogue.

The dialogue shown in figure 8 will be displayed. It
shows the internal state of the object referenced by the
head variable of the sequence object. We can see the
value in the node and that it has a reference to the node in
the list. This reference can again be followed using the
inspect button. The procedure could be repeated until we
reach the end of the list which will be marked by a nil
object reference that cannot be followed.

Figure 7: Inspection dialogue

With these two basic mechanisms, interactive method
invocation and internal data inspection, we are now able
to fully test the sequence and node classes.

Note that we are able to examine any object reachable
from an object available on the Object Bench.
Sometimes it can become clumsy to repeatedly navigate
through object references to reach an object we wish to
examine. The Get button on the inspection dialogue
(figure 8) allows a reference to any existing object to be
placed on the object bench so that it can be re-examined
at a later time.

In more complex examples we may wish to create
instances of many different classes and test these each
individually. Each object created will appear on the
object bench with its class name and object name. Such
objects may also be used as parameters to methods of
other objects and are referred to using their name.

Finally, there is a record facility which will textually
record all interactive object creations, method
invocations, return values, text input and text output.
This may be used by students as part of an assignment
submission.

Figure 8: Following object references

6 Conclusions
Our experience with teaching the first programming

course over many years is that students, in general, fail to
adequately test their software. Indications are that a
move to an object-oriented language may well make the
problem worse because a test program must be written
for each class. In addition, the encapsulation of data
within classes complicates testing.

In this paper we have argued the need for testing
facilities which do not require code to be written and are
simple enough to be used by novices. The Blue system
provides such a facility as an integral component within
the programming environment. Objects may be created
and tested interactively and the encapsulated data of
objects may be inspected. Appropriate facilities are
provided to examine arbitrary dynamic data structures.

Since these tools are a part of the standard
environment and are simple enough to use to test the first
programs written by a student, testing is actively
encouraged and considered to be a part of the normal
program development cycle. We expect this to result in
an improvement in the reliability of student programs and
a better appreciation by the students of the importance of
thorough testing.

The environment described in this paper has been
fully implemented and will be utilised as the basis for our
first programming course at the start of 1997. We are
also developing more advanced visualisation tools to be
used later in the course. These will include the ability to
examine the stack and to navigate through data structures
in the heap in a graphical manner.

References
1. Kölling, M., Koch, B. and Rosenberg, J.

“Requirements for a First Year Object-Oriented
Teaching Language”, ACM SIGCSE Bulletin, 27, 1,
March 1995, pp. 173-177.

2. Kölling, M.. and Rosenberg, J. “Blue - A Language
for Teaching Object-Oriented Programming",
Proceedings ACM SIGCSE Symposium, 1996, pp.
190-194.

3. Kölling, M.. and Rosenberg, J. “An Object-Oriented
Program Development Environment for the First
Programming Course", Proceedings ACM SIGCSE
Symposium, 1996, pp. 83-87.

