
Constructive interval temporal logic in AlfSimon ThompsonComputing LaboratoryUniversity of Kent at CanterburyS.J.Thompson@ukc.ac.ukAbstract. This paper gives an implementation of an interval temporallogic in a constructive type theory, using the Alf proof system. Afterexplaining the constructive approach, its relevance to interval temporallogic and potential applications of our work, we explain the fundamentalsof the Alf system. We then present the implementation of the logic andgive a number of examples of its use. We conclude by exploring how thework can be extended in the future.1 IntroductionThe traditional approach to executing temporal logics is to execute the formu-las of the logic; this is in accord with the logic programming paradigm. Theimplementation can be deterministic for particular subclasses of formulas, as inthe approach taken by Moszkowski and others [8, 6, 4]. On the other hand, allthe formulas of a logic can be executed using a backtracking mechanism; this isshown by Gabbay's normal form result in [5] and is implemented in the variousMetateM systems [1] amongst others.There is another paradigm for implementing logics, based on a constructivephilosophy [7, 11]. Instead of formulas being seen as true or false on the basis oftruth tables or model theory, a constructive approach takes proof as the meansof exhibiting validity; as a slogan, one might say that constructive logic is `prooffunctional' rather than `truth functional'. A constructive proof of a propositioncontains more information than a classical version, so that from a proof we canderive all the evidence for the proposition being valid. For instance, a proof ofan existential statement will contain a witness which is an object for which thestatement holds.Under the constructive approach, then, we execute not the formulas of thelogic but their proofs, which we can see from the discussion above contain suf-�cient witnessing information to be executable. Further details of the basics ofconstructive logics, and their interpretation as programming languages can befound in Section 2.The system in which we make our implementation is Alf, which comes fromthe programming logics group at Chalmers University of Technology in G�oteborg,Sweden. We give a short introduction to Alf in Section 3.The logic we look at here is an interval temporal logic, which describes �niteintervals. Because of this, besides containing the familiar temporal operators 2,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 and so on, interval temporal logics also contain predicates which can onlyapply to �nite intervals, such as those which measure length or which composetwo propositions in sequence (or `chop'). Introductions to the logic are to befound in [8, 4, 2] and we refer readers there for further details. One distinctiveaspect of our logic is that it involves atomic actions which happen at the instantsof an interval.The approach we examine here can equally well be used to give a constructiveaccount of an in�nitary linear (or branching time) logic. Details of an implemen-tation in the Coq system are to be found elsewhere [10].We see three strengths of the work reported here.{ We provide a single system in which we can model both speci�cations andtheir implementations. Speci�cations can be related by logical inference, andare shown to be consistent by exhibiting an implementation; inconsistentspeci�cations will simply have no implementation.{ We maintain two levels of abstraction in our system. In speci�cations we canuse operators such as 3 and `chop' which can be realised in many ways; wecan think of them as non-deterministic. In our implementations or proofs wehave determinism. For example, a constructive proof of a formula 3P willshow not only that P holds at some point in the future but also will stateat precisely which point in the future P holds. This distinction is entirelyappropriate to the modelling applications of interval temporal logics.{ An implementation of a logic such as this forces an implementer to checkthe coherence of his or her de�nition of the logic. In our work here we see adistinction between the notions of interval and interval proposition which inan informal account may be elided. We also have to maintain a distinctionbetween an action A, say, and the proposition that `A happens (now)'.In our related work on linear-time temporal logics, [10], the issue of whetherthe logic is anchored or not has to be addressed at an early stage in writingthe implementation.I am grateful to Erik Poll both for supplying an implementation of basic logicfor modi�cation and for making a number of useful comments on drafts of thepaper. I would also like to thank Howard Bowman, Helen Cameron and PeterKing for their collaboration in the Mexitl [2] work. It was this which stimulatedthe investigation reported here.2 Constructive logicWhat counts as a constructive proof of a formula? An informal explanation isgiven in Figure 1.That this gives the logic a distinctive character should not be in question;while truth functionally one would accept A _ :A for any A, it is by no meansclear that for an arbitrary formula one can �nd either a proof of A or a proofthat A is contradictory. On the other hand we can see that proofs are much moreinformative than in the classical case. A proof of a disjunction must be a proof

A ^B A proof of A ^B consists of a proof of A and a proof of B.A _B A proof of A _B consists either of a proof of A or of a proof of B.A! B A proof of A ! B is a method (or function) taking proofs of A intoproofs of B.(9x 2 A)B(x) A proof of (9x 2 A)B(x) consists of an element a of A together with aproof of B(a).(8x 2 A)B(x) A proof of (8x 2 A)B(x), which we also write (x 2 A)! B, consists ofa function taking x in A to a proof of B(x).Fig. 1. Proof in constructive logicof one of the disjuncts, and a proof of an existential statement must provide awitness which is a point where the statement holds, together with a proof thatit does indeed hold at that point.How does a constructive implementation work? We take the formulas of alogic as speci�cations of behaviour; it is then the proofs of these formulas thatare implemented. Underlying this is an important correspondence, attributed toCurry and Howard and illustrated in Figure 2, which identi�es a constructivelogic and a (functional) programming language.Constructive Logic Programming LanguageFormula TypeProof ValueConjunction ^ Product or record typeDisjunction _ Sum or union typeImplication ! Function spaceExistential quanti�cation 9 `Dependent' record typeUniversal quanti�cation 8 `Dependent' function typeFig. 2. The Curry-Howard correspondenceUnder the Curry-Howard correspondence the formulas of a logic are seen asthe types of an expressive type system which includes not only record, unionand function types but also dependent function types(x 2 A)! Bin which B can depend upon x, so that the type of a function application candepend upon the value to which the function is applied. These types correspond

to universally quanti�ed formulas, while a dependent record type represents anexistentially quanti�ed statement | we shall see this in Section 3.1.Given this explanation we can now see how our implementation is built. Theformulas of our interval logic become the types of functions which implementthe speci�cations that the formulas embody.3 Introducing AlfThe logic used here is a standard formulation of a constructive logic in Alf. Aswe explained in Section 2 we can view Alf as a functional programming languagewith a strong type system. It is for this reason that we chose to use Alf hererather than, say, Coq; in Coq the proof terms are implicit rather than explicit,and we wanted to emphasise these functions in our account.We explain the basics of the system by means of a sequence of examples3.1 Basic constructive logic in AlfBuilt into the system is the type Set 2 Typewhich is the type of sets or alternatively the type of propositions. Types arede�ned in Alf by inductive de�nitions, these are a strengthening of the algebraicdata types of standard functional languages such as Haskell [9]. We �rst de�ne atrivially true propositionTrue by giving it a single element, trivial. Constructorsof types are given in boldface; here we see that trivial is a constant, that is a0-ary constructor. �True 2 Set= data ftrivial ()gThinking set theoretically, True is a one element set. A False proposition is aproposition with no proof, or an empty type, which has no constructors:�False 2 Set= data < >The angled brackets here indicate that the type has no constructors, and so isindeed empty. Next, we have a de�nition of conjunction:24And(P;Q 2 Set) 2 Set= data �conj �p 2 Pq 2 Q��This de�nition of a data type states that to construct an element of And P Qit is necessary to use the single constructor conj. This requires two argumentsto construct an element of the conjunction, namely elements p of P and q of Q.

In other words, it is necessary to supply proofs of both conjuncts to give a proofof the conjunction. We also have a de�nition of a constructive disjunction24Or(P;Q 2 Set) 2 Set= data � inl (p 2 P)inr (q 2 Q)�To supply an element of Or P Q we need either to give an element p of P , makinginl p 2 (Or P Q), or to give an element q of Q, so that inr q 2 (Or P Q). Thisis evidently a constructive disjunction, since a proof of Or P Q is a proof ofone of the disjuncts; the �rst disjunct if it is of the form inl p and the seconddisjunct otherwise. As we implied earlier, this explanation is quite di�erent froma classical interpretation, and so the law of the excluded middle, (Or A (Not A))is not valid in general.The existential quanti�er is also constructive:24Exists(A 2 Set; P 2 (x 2 A)! Set) 2 Set= sig �witness 2 Aproof 2 P witness�We can think of this type as giving a signature; the elements of the type arestructures taking the formstruct �witness = : : :proof = : : : �thus containing a witness of the point at which the predicate P holds togetherwith a proof that the predicate holds at the witness, that is an element ofP witness. Note that we use a dependent type here: the type of the secondelement: P witness depends on the �rst element, witness.The syntax of Alf allows quanti�ers to be written in a more readable form,with Exists x 2 A : ::::x::::replacing Exists A (� x! ::::x::::)where we use ::::x:::: for an expression involving x. We use this form in theremainder of the paper.3.2 Data typesThe natural numbers are given by the declaration24Nat 2 Set= data �0 ()S (n 2 Nat)�and the constants zero, one, two and so on have the obvious meaning.

In our implementation of interval temporal logic we represent intervals bynon-empty lists of propositions. In order to do this we have to de�ne a type con-structor for non-empty lists, and this constructor needs to be of the appropriatekind: since it is used to build lists of Set it needs to take a Type to a Type. Theconstructor is called list, and takes a Type argument, making it polymorphic:2664 list 2 (T 2 Type) ! Type= � T ! data8<: sing (x 2 T)cons�x 2 Txs 2 list T �9=;Because the lists are non-empty, they all have a �rst and a last element. Herewe use the case construction which gives case analysis (and indeed primitiverecursion) over a data type, by means of pattern matching.24 first 2 (T 2 Type; b 2 list T)! T= � T b! case b of � sing x ! xcons x xs ! x�An arbitrary element of the type list T will either have the form sing x orcons x xs; the case construct requires us to give the value of first in both thesecases. We can use the variables in the particular pattern in the correspondingpart of the de�nition.24 last 2 (T 2 Type; b 2 list T)! T= � T b! case b of � sing x ! xcons x xs ! last� xs�Although the function last takes two arguments we suppress the �rst (type)argument, since it is invariably obvious from the context. The absence of one ormore parameters is indicated by the superscript in last�.Before we proceed, note that in this presentation of lists we take the length ofa list to be the number of elements it contains minus one. In particular thereforea single element list has length zero in this formulation.The functions take and drop are used to select portions of a list. The naturalnumber argument supplied gives an indication of the number of elements takenor dropped from the front of the list. Speci�callytake� n lgives a list of length n (that is comprising (n+1) elements) from the front of l,whilst drop� n lremoves n elements from the front of l. The e�ect of this choice is that take� n land drop� n l overlap by one element.2666664 take 2 (T 2 Type; b 2 Nat; c 2 list T)! list T= � T b c! case b of8>>><>>>:0 ! case c of � sing x ! sing xcons x xs ! sing x�Sn ! case c of (sing x ! sing xcons x xs !cons x (take� n xs))9>>>=>>>;

2664drop 2 (T 2 Type; b 2 Nat; c 2 list T)! list T= � T b c! case b of8<:0 ! cSn ! case c of � sing x ! sing xcons x xs ! drop� n xs�9=;The function index selects an element of a list, numbering the elements fromzero. If the index exceeds the number of elements in the list, the last element isreturned.2664 index 2 (T 2 Type; b 2 Nat; c 2 list T)! T= � T b c! case b of8<:0 ! first� cSn ! case c of � sing x ! xcons x xs ! index� n xs�9=;3.3 Using AlfWe have used the experimental Alfa version of Alf, which is implemented usingHaskell and the Fudgets library [3] by Thomas Hallgren. The system containsan interactive graphical editor which allows a user to build complex de�nitionsby point and click. A particularly valuable feature is a menu of options givingpossible constructions which it would be type safe to use at any point in anexpression; by means of this one constructs type correct programs.This concludes our introduction to the aspects of Alf used here; more detailscan be found at http://www.cs.chalmers.se/ hallgren/Alfa/4 Interval Temporal LogicIn this section we begin by giving in Section 4.1 our de�nition of the fundamen-tals of the implementation, namely de�nitions of what it is to be an interval, anaction and an interval proposition.Central to interval logic are various connectives or combinators which allowus to combine interval propositions together to give more complex propositions.Apart from the obvious lifting of the propositional connectives and quanti�ersof predicate logic, which we look at in Section 4.8, and the standard temporaloperators de�ned in Section 4.7, we introduce two operators characteristic of aninterval logic.The �rst is chop P Q, in Section 4.3, which holds of an interval when theinterval can be split into two halves satisfying P and Q separately. Secondly weintroduce proj P Q which projects one interval, by means of P , onto anotherwhich should meet Q; projection is introduced in Section 4.5.4.1 Actions and IntervalsWe take the type of actions as given; for the sake of exposition here we assumeit is a data type of constants (or 0-ary constructors):24Act 2 Set= data �A (): : : �

There are various means of representing sets in constructive logic; here we chooseto model sets of actions by `characteristic' functions from Act to Set:�ActSet 2 Type= (A 2 Act) ! SetAn interval is a list of action sets.�Interval 2 Type= list ActSetand an interval proposition or IntProp is a function which takes an interval to aproposition (that is a Set).�IntProp 2 Type= (I 2 Interval) ! SetAn interval is said to be empty if it contains a single point.24Empty 2 IntProp= � I ! case I of � sing x ! Truecons x xs ! False�Generalising this is a proposition Length n expressing that the length of aninterval is n: Empty is then given by Length 0.266664Length 2 (a 2 Nat)! IntProp= � a b! case a of8>><>>:0 ! case b of � sing x ! Truecons x xs ! False�S n ! case b of � sing x ! Falsecons x xs ! Length n xs�9>>=>>;Our �nal example of an atomic proposition is `A happens now', that is at thefirst point of an interval�happensNow 2 (A 2 Act)! IntProp= � A I ! first� I AThe expression first� I is an action set, and so the proposition that A holds isgiven by applying the action set to the action, giving the proposition (first� I A).4.2 Speci�cationsA speci�cation of an interval can now be seen as an interval property, that isa member P of IntProp. An implementation of such a speci�cation will be aninterval I for which we can �nd a proofp 2 P IThe proof p contains information about exactly how the interval I meets thespeci�cation P . It will, for instance, state a point in an interval at which a 3property holds, and state which of a pair of disjuncts is valid. Examples aregiven in Sections 4.4 and 4.6 below.

